1
|
Girl P, Euringer K, Coroian M, Mihalca AD, Borde JP, Dobler G. Comparison of Five Serological Methods for the Detection of West Nile Virus Antibodies. Viruses 2024; 16:788. [PMID: 38793670 PMCID: PMC11126072 DOI: 10.3390/v16050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The West Nile Virus (WNV), a member of the family Flaviviridae, is an emerging mosquito-borne flavivirus causing potentially severe infections in humans and animals involving the central nervous system (CNS). Due to its emerging tendency, WNV now occurs in many areas where other flaviviruses are co-occurring. Cross-reactive antibodies with flavivirus infections or vaccination (e.g., tick-borne encephalitis virus (TBEV), Usutu virus (USUV), yellow fever virus (YFV), dengue virus (DENV), Japanese encephalitis virus (JEV)) therefore remain a major challenge in diagnosing flavivirus infections. Virus neutralization tests are considered as reference tests for the detection of specific flavivirus antibodies, but are elaborate, time-consuming and need biosafety level 3 facilities. A simple and straightforward assay for the differentiation and detection of specific WNV IgG antibodies for the routine laboratory is urgently needed. In this study, we compared two commercially available enzyme-linked immunosorbent assays (anti-IgG WNV ELISA and anti-NS1-IgG WNV), a commercially available indirect immunofluorescence assay, and a newly developed in-house ELISA for the detection of WNV-NS1-IgG antibodies. All four tests were compared to an in-house NT to determine both the sensitivity and specificity of the four test systems. None of the assays could match the specificity of the NT, although the two NS1-IgG based ELISAs were very close to the specificity of the NT at 97.3% and 94.6%. The in-house WNV-NS1-IgG ELISA had the best performance regarding sensitivity and specificity. The specificities of the ELISA assays and the indirect immunofluorescence assays could not meet the necessary specificity and/or sensitivity.
Collapse
Affiliation(s)
- Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (K.E.); (G.D.)
- Central Institute of the Bundeswehr Medical Service Munich, 85748 Garching, Germany
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Kathrin Euringer
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (K.E.); (G.D.)
- Division of Infectious Diseases, Department of Medicine II, University Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Mircea Coroian
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.C.); (A.D.M.)
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.C.); (A.D.M.)
| | - Johannes P. Borde
- Division of Infectious Diseases, Department of Medicine II, University Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Praxis Prof. Borde and Kollegen, 77704 Oberkirch, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (K.E.); (G.D.)
- Department of Infectious Diseases and Tropical Medicine, LMU Center of Medicine, 80336 Munich, Germany
- Department of Parasitology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
2
|
Stander J, Chabeda A, Rybicki EP, Meyers AE. A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:738619. [PMID: 34589108 PMCID: PMC8475786 DOI: 10.3389/fpls.2021.738619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/27/2023]
Abstract
West Nile virus (WNV) is a globally disseminated Flavivirus that is associated with encephalitis outbreaks in humans and horses. The continuous global outbreaks of West Nile disease in the bird, human, and horse populations, with no preventative measures for humans, pose a major public health threat. The development of a vaccine that contributes to the "One Health" Initiative could be the answer to prevent the spread of the virus and control human and animal disease. The current commercially available veterinary vaccines are generally costly and most require high levels of biosafety for their manufacture. Consequently, we explored making a particulate vaccine candidate made transiently in plants as a more cost-effective and safer means of production. A WNV virus-like particle-display-based vaccine candidate was generated by the use of the SpyTag/SpyCatcher (ST/SC) conjugation system. The WNV envelope protein domain III (EDIII), which contains WNV-specific epitopes, was fused to and displayed on AP205 phage virus-like particles (VLPs) following the production of both separately in Nicotiana benthamiana. Co-purification of AP205 and EDIII genetically fused to ST and SC, respectively, resulted in the conjugated VLPs displaying EDIII with an average coupling efficiency of 51%. Subcutaneous immunisation of mice with 5 μg of purified AP205: EDIII VLPs elicited a potent IgG response to WNV EDIII. This study presents the potential plants being used as biofactories for making significant pharmaceutical products for the "One Health" Initiative and could be used to address the need for their local production in low- and middle-income countries (LMICs).
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A Review: Aedes-Borne Arboviral Infections, Controls and Wolbachia-Based Strategies. Vaccines (Basel) 2021; 9:32. [PMID: 33435566 PMCID: PMC7827552 DOI: 10.3390/vaccines9010032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
Arthropod-borne viruses (Arboviruses) continue to generate significant health and economic burdens for people living in endemic regions. Of these viruses, some of the most important (e.g., dengue, Zika, chikungunya, and yellow fever virus), are transmitted mainly by Aedes mosquitoes. Over the years, viral infection control has targeted vector population reduction and inhibition of arboviral replication and transmission. This control includes the vector control methods which are classified into chemical, environmental, and biological methods. Some of these control methods may be largely experimental (both field and laboratory investigations) or widely practised. Perceptively, one of the biological methods of vector control, in particular, Wolbachia-based control, shows a promising control strategy for eradicating Aedes-borne arboviruses. This can either be through the artificial introduction of Wolbachia, a naturally present bacterium that impedes viral growth in mosquitoes into heterologous Aedes aegypti mosquito vectors (vectors that are not natural hosts of Wolbachia) thereby limiting arboviral transmission or via Aedes albopictus mosquitoes, which naturally harbour Wolbachia infection. These strategies are potentially undermined by the tendency of mosquitoes to lose Wolbachia infection in unfavourable weather conditions (e.g., high temperature) and the inhibitory competitive dynamics among co-circulating Wolbachia strains. The main objective of this review was to critically appraise published articles on vector control strategies and specifically highlight the use of Wolbachia-based control to suppress vector population growth or disrupt viral transmission. We retrieved studies on the control strategies for arboviral transmissions via arthropod vectors and discussed the use of Wolbachia control strategies for eradicating arboviral diseases to identify literature gaps that will be instrumental in developing models to estimate the impact of these control strategies and, in essence, the use of different Wolbachia strains and features.
Collapse
Affiliation(s)
- Samson T. Ogunlade
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Michael T. Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
| | - Adeshina I. Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
| | - Diana P. Rojas
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Oyelola A. Adegboye
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Emma S. McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia; (M.T.M.); (A.I.A.); (O.A.A.); (E.S.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
4
|
Ebbers M, Hemmer CJ, Müller-Hilke B, Reisinger EC. Immunotherapy and vaccination against infectious diseases. Wien Klin Wochenschr 2020; 133:714-720. [PMID: 33326055 PMCID: PMC7738774 DOI: 10.1007/s00508-020-01746-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Due to the overuse of antibiotics, infections, in particular those caused by multidrug-resistant bacteria, are becoming more and more frequent. Despite the worldwide introduction of antibiotic therapy, vaccines and constant improvements in hygiene, the burden of multidrug-resistant bacterial infections is increasing and is expected to rise in the future. The development of monoclonal therapeutic antibodies and specific immunomodulatory drugs represent new treatment options in the fight against infectious diseases. This article provides a brief overview of recent advances in immunomodulatory therapy and other strategies in the treatment of infectious disease.
Collapse
Affiliation(s)
- Meinolf Ebbers
- Department of Tropical Medicine and Infectious Diseases, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.,Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Christoph J Hemmer
- Department of Tropical Medicine and Infectious Diseases, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine and Infectious Diseases, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
5
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
6
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
7
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
8
|
West Nile Virus Vaccine Design by T Cell Epitope Selection: In Silico Analysis of Conservation, Functional Cross-Reactivity with the Human Genome, and Population Coverage. J Immunol Res 2020; 2020:7235742. [PMID: 32258174 PMCID: PMC7106935 DOI: 10.1155/2020/7235742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
West Nile Virus (WNV) causes a debilitating and life-threatening neurological disease in humans. Since its emergence in Africa 50 years ago, new strains of WNV and an expanding geographical distribution have increased public health concerns. There are no licensed therapeutics against WNV, limiting effective infection control. Vaccines represent the most efficacious and efficient medical intervention known. Epitope-based vaccines against WNV remain significantly underexploited. Here, we use a selection protocol to identify a set of conserved prevalidated immunogenic T cell epitopes comprising a putative WNV vaccine. Experimentally validated immunogenic WNV epitopes and WNV sequences were retrieved from the IEDB and West Nile Virus Variation Database. Clustering and multiple sequence alignment identified a smaller subset of representative sequences. Protein variability analysis identified evolutionarily conserved sequences, which were used to select a diverse set of immunogenic candidate T cell epitopes. Cross-reactivity and human leukocyte antigen-binding affinities were assessed to eliminate unsuitable epitope candidates. Population protection coverage (PPC) quantified individual epitopes and epitope combinations against the world population. 3 CD8+ T cell epitopes (ITYTDVLRY, TLARGFPFV, and SYHDRRWCF) and 1 CD4+ epitope (VTVNPFVSVATANAKVLI) were selected as a putative WNV vaccine, with an estimated PPC of 97.14%.
Collapse
|
9
|
Saxena SK, Kumar S, Haikerwal A. Animal Flaviviruses. EMERGING AND TRANSBOUNDARY ANIMAL VIRUSES 2020. [DOI: 10.1007/978-981-15-0402-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Japanese encephalitis vaccine-specific envelope protein E138K mutation does not attenuate virulence of West Nile virus. NPJ Vaccines 2019; 4:50. [PMID: 31839996 PMCID: PMC6895119 DOI: 10.1038/s41541-019-0146-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
West Nile (WNV) and Japanese encephalitis viruses (JEV) are closely related, mosquito-borne neurotropic flaviviruses. Although there are no licensed human vaccines for WNV, JEV has multiple human vaccines, including the live, attenuated vaccine SA14-14-2. Investigations into determinants of attenuation of JE SA14-14-2 demonstrated that envelope (E) protein mutation E138K was crucial to the attenuation of mouse virulence. As WNV is closely related to JEV, we investigated whether or not the E-E138K mutation would be beneficial to be included in a candidate live attenuated WNV vaccine. Rather than conferring a mouse attenuated phenotype, the WNV E-E138K mutant reverted and retained a wild-type mouse virulence phenotype. Next-generation sequencing analysis demonstrated that, although the consensus sequence of the mutant had the E-E138K mutation, there was increased variation in the E protein, including a single-nucleotide variant (SNV) revertant to the wild-type glutamic acid residue. Modeling of the E protein and analysis of SNVs showed that reversion was likely due to the inability of critical E-protein residues to be compatible electrostatically. Therefore, this mutation may not be reliable for inclusion in candidate live attenuated vaccines in related flaviviruses, such as WNV, and care must be taken in translation of attenuating mutations from one virus to another virus, even if they are closely related. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are closely related neurotropic viruses—a live attenuated vaccine exists for JEV but not for WNV. A team led by Alan D.T. Barrett at the University of Texas investigated whether a key E-protein mutation (E138K) in the live attenuated JEV vaccine can also attenuate a candidate live WNV vaccine. The mutant WNV vaccine shows essentially identical behavior to the virulent parental strain in vitro but unexpectedly also has unimpaired lethality and neurotropism when mice are challenged intraperitoneally. Sequencing of the mutant WNV vaccine demonstrated increased frequencies of single-nucleotide variants clustered around residue 138—including reversion to the parental strain glutamic acid. E138K mutation is therefore unlikely to be a reliable means to attenuate candidate WNV vaccines.
Collapse
|
11
|
Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines (Basel) 2019; 7:vaccines7040123. [PMID: 31547131 PMCID: PMC6963367 DOI: 10.3390/vaccines7040123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses in the Flaviviridae family are important human and animal pathogens that impose serious threats to global public health. This family of viruses includes emerging and re-emerging viruses, most of which are transmitted by infected mosquito or tick bites. Currently, there is no protective vaccine or effective antiviral treatment against the majority of these viruses, and due to their growing spread, several strategies have been employed to manufacture prophylactic vaccines against these infectious agents including virus-like particle (VLP) subunit vaccines. VLPs are genomeless viral particles that resemble authentic viruses and contain critical repetitive conformational structures on their surface that can trigger the induction of both humoral and cellular responses, making them safe and ideal vaccine candidates against these viruses. In this review, we focus on the potential of the VLP platform in the current vaccine development against the medically important viruses in the Flaviviridae family.
Collapse
|
12
|
Kaiser JA, Barrett ADT. Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses 2019; 11:E823. [PMID: 31491885 PMCID: PMC6784102 DOI: 10.3390/v11090823] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Although West Nile virus (WNV) has been a prominent mosquito-transmitted infection in North America for twenty years, no human vaccine has been licensed. With a cumulative number of 24,714 neurological disease cases and 2314 deaths in the U.S. since 1999, plus a large outbreak in Europe in 2018 involving over 2000 human cases in 15 countries, a vaccine is essential to prevent continued morbidity, mortality, and economic burden. Currently, four veterinary vaccines are licensed, and six vaccines have progressed into clinical trials in humans. All four veterinary vaccines require multiple primary doses and annual boosters, but for a human vaccine to be protective and cost effective in the most vulnerable older age population, it is ideal that the vaccine be strongly immunogenic with only a single dose and without subsequent annual boosters. Of six human vaccine candidates, the two live, attenuated vaccines were the only ones that elicited strong immunity after a single dose. As none of these candidates have yet progressed beyond phase II clinical trials, development of new candidate vaccines and improvement of vaccination strategies remains an important area of research.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
13
|
Regulatory T cells limit unconventional memory to preserve the capacity to mount protective CD8 memory responses to pathogens. Proc Natl Acad Sci U S A 2019; 116:9969-9978. [PMID: 31036644 DOI: 10.1073/pnas.1818327116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunological memory exists so that following infection an expanded population of pathogen-specific lymphocytes can rapidly and efficiently control infection in the case of reexposure. However, in the case of CD8+ T lymphocytes, a population of unconventional CD44+CD122+ virtual memory T cells (TVM) has been described that possesses many, though not all, features of "true memory" T cells, without the requirement of first encountering cognate antigen. Here, we demonstrate a role for regulatory T cell-mediated restraint of TVM at least in part through limiting IL-15 trans-presentation by CD11b+ dendritic cells. Further, we show that keeping TVM in check ensures development of functional, antigen-specific "true" memory phenotype CD8+ T cells that can assist in pathogen control upon reexposure.
Collapse
|
14
|
A case of West Nile virus encephalitis accompanied by diabetic ketoacidosis and rhabdomyolysis. IDCases 2019; 15:e00505. [PMID: 30815360 PMCID: PMC6378900 DOI: 10.1016/j.idcr.2019.e00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
Introduction We present here a case of West Nile Virus (WNV) encephalitis that initially presented with diabetic ketoacidosis and rhabdomyolysis. Case presentation A 35-year-old male with no past medical history presented to the emergency department complaining of polydipsia, generalized weakness, lightheadedness, and visual disturbances of one week duration. He was found to be in diabetic ketoacidosis. His hemoglobin A1c was 11%. The patient was appropriately treated for diabetic ketoacidosis and it resolved on hospital day 1. On hospital day 2, the patient developed a fever of 101.6 °F and his mental status became severely altered. He developed auditory and visual hallucinations. IgM and IgG antibodies to West Nile Virus were positive in the cerebral spinal fluid (CSF). The patient's creatine kinase level rose to 118,400 U/L during his hospitalization and eventually returned to baseline. The patient made a full recovery with no residual neurologic deficits after an 11 day hospital course. Discussion In this patient, neuroinvasive WNV was confirmed with positive CSF IgM. The patient's newly diagnosed diabetes likely contributed to his susceptibility to neuroinvasive disease. Furthermore, WNV encephalitis in a background of DKA has not been previously described in the literature and this case demonstrates WNV neuroinvasive disease should be in the differential diagnosis for patients presenting with unexplained neurological symptoms. Conclusion Diagnosis of neuroinvasive WNV is imperative to stop unnecessary therapies, limit further diagnostic evaluation, help predict patient outcomes, direct public health prevention measures, and further provide investigations into the clinical conditions that define the spectrum of WNV disease.
Collapse
|
15
|
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, Tabain I, Hrnjakovic-Cvjetkovic I, Bogdanic M, Klobucar A, Mrzljak A, Stevanovic V, Dinjar-Kujundzic P, Radmanic L, Monaco F, Listes E, Savini G. Emerging Trends in the Epidemiology of West Nile and Usutu Virus Infections in Southern Europe. Front Vet Sci 2019; 6:437. [PMID: 31867347 PMCID: PMC6908483 DOI: 10.3389/fvets.2019.00437] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
The epidemiology of West Nile (WNV) and Usutu virus (USUV) has changed dramatically over the past two decades. Since 1999, there have been regular reports of WNV outbreaks and the virus has expanded its area of circulation in many Southern European countries. After emerging in Italy in 1996, USUV has spread to other countries causing mortality in several bird species. In 2009, USUV seroconversion in horses was reported in Italy. Co-circulation of both viruses was detected in humans, horses and birds. The main vector of WNV and USUV in Europe is Culex pipiens, however, both viruses were found in native Culex mosquito species (Cx. modestus, Cx. perexiguus). Experimental competence to transmit the WNV was also proven for native and invasive mosquitoes of Aedes and Culex genera (Ae. albopictus, Ae. detritus, Cx. torrentium). Recently, Ae. albopictus and Ae. japonicus naturally-infected with USUV were reported. While neuroinvasive human WNV infections are well-documented, USUV infections are sporadically detected. However, there is increasing evidence of a role of USUV in human disease. Seroepidemiological studies showed that USUV circulation is more common than WNV in some endemic regions. Recent data showed that WNV strains detected in humans, horses, birds, and mosquitoes mainly belong to lineage 2. In addition to European USUV lineages, some reports indicate the presence of African USUV lineages as well. The trends in WNV/USUV range and vector expansion are likely to continue in future years. This mini-review provides an update on the epidemiology of WNV and USUV infections in Southern Europe within a multidisciplinary "One Health" context.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Tatjana Vilibic-Cavlek
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dusan Petric
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Hrnjakovic-Cvjetkovic
- Center for Microbiology, Institute of Public Health Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ana Klobucar
- Division of Disinfection, Disinfestation and Pest Control, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Luka Radmanic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| |
Collapse
|
16
|
Smatti MK, Al Thani AA, Yassine HM. Viral-Induced Enhanced Disease Illness. Front Microbiol 2018; 9:2991. [PMID: 30568643 PMCID: PMC6290032 DOI: 10.3389/fmicb.2018.02991] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding immune responses to viral infections is crucial to progress in the quest for effective infection prevention and control. The host immunity involves various mechanisms to combat viral infections. Under certain circumstances, a viral infection or vaccination may result in a subverted immune system, which may lead to an exacerbated illness. Clinical evidence of enhanced illness by preexisting antibodies from vaccination, infection or maternal passive immunity is available for several viruses and is presumptively proposed for other viruses. Multiple mechanisms have been proposed to explain this phenomenon. It has been confirmed that certain infection- and/or vaccine-induced immunity could exacerbate viral infectivity in Fc receptor- or complement bearing cells- mediated mechanisms. Considering that antibody dependent enhancement (ADE) is a major obstacle in vaccine development, there are continues efforts to understand the underlying mechanisms through identification of the epitopes and antibodies responsible for disease enhancement or protection. This review discusses the recent findings on virally induced ADE, and highlights the potential mechanisms leading to this condition.
Collapse
Affiliation(s)
- Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Van Hoeven N, Wiley S, Gage E, Fiore-Gartland A, Granger B, Gray S, Fox C, Clements DE, Parks DE, Winram S, Stinchcomb DT, Reed SG, Coler RN. A combination of TLR-4 agonist and saponin adjuvants increases antibody diversity and protective efficacy of a recombinant West Nile Virus antigen. NPJ Vaccines 2018; 3:39. [PMID: 30302281 PMCID: PMC6158298 DOI: 10.1038/s41541-018-0077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Members of the Flaviviridae family are the leading causes of mosquito-borne viral disease worldwide. While dengue virus is the most prevalent, the recent Zika virus outbreak in the Americas triggered a WHO public health emergency, and yellow fever and West Nile viruses (WNV) continue to cause regional epidemics. Given the sporadic nature of flaviviral epidemics both temporally and geographically, there is an urgent need for vaccines that can rapidly provide effective immunity. Protection from flaviviral infection is correlated with antibodies to the viral envelope (E) protein, which encodes receptor binding and fusion functions. TLR agonist adjuvants represent a promising tool to enhance the protective capacity of flavivirus vaccines through dose and dosage reduction and broadening of antiviral antibody responses. This study investigates the ability to improve the immunogenicity and protective capacity of a promising clinical-stage WNV recombinant E-protein vaccine (WN-80E) using a novel combination adjuvant, which contains a potent TLR-4 agonist and the saponin QS21 in a liposomal formulation (SLA-LSQ). Here, we show that, in combination with WN-80E, optimized SLA-LSQ is capable of inducing long-lasting immune responses in preclinical models that provide sterilizing protection from WNV challenge, reducing viral titers following WNV challenge to undetectable levels in Syrian hamsters. We have investigated potential mechanisms of action by examining the antibody repertoire generated post-immunization. SLA-LSQ induced a more diverse antibody response to WNV recombinant E-protein antigen than less protective adjuvants. Collectively, these studies identify an adjuvant formulation that enhances the protective capacity of recombinant flavivirus vaccines.
Collapse
Affiliation(s)
- Neal Van Hoeven
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - Steven Wiley
- Imdaptive Inc., 3010 Northwest 56th Street, Seattle, WA 98107 USA
| | - Emily Gage
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - Andrew Fiore-Gartland
- 4Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, WA 98109 USA
| | - Brian Granger
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA
| | - Sean Gray
- 5PAI Life Sciences Incorporated, 1616 Eastlake Avenue, Suite 250, Seattle, WA 98102 USA
| | - Christopher Fox
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - David E Clements
- 6Hawaii Biotech Inc., 99-193 Aiea Heights Drive, Aiea, HI 96701 USA
| | - D Elliot Parks
- 6Hawaii Biotech Inc., 99-193 Aiea Heights Drive, Aiea, HI 96701 USA
| | - Scott Winram
- 7Leidos Inc., 11951 Freedom Drive, Reston, VA 20190 USA
| | - Dan T Stinchcomb
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA
| | - Steven G Reed
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA
| | - Rhea N Coler
- 1Infectious Disease Research Institute, 1616 Eastlake Ave E., Suite 400, Seattle, WA 98102 USA.,2Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA 98195 USA.,5PAI Life Sciences Incorporated, 1616 Eastlake Avenue, Suite 250, Seattle, WA 98102 USA
| |
Collapse
|
18
|
Sule WF, Oluwayelu DO, Hernández-Triana LM, Fooks AR, Venter M, Johnson N. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasit Vectors 2018; 11:414. [PMID: 30005653 PMCID: PMC6043977 DOI: 10.1186/s13071-018-2998-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) is the aetiological agent of the mosquito-borne zoonotic disease West Nile fever. The virus, first isolated in Uganda in 1937, evolved into two distinct lineages in sub-Saharan Africa (SSA) that subsequently spread to most continents where the virus has evolved further as evident through phylogenetic analysis of extant genomes. Numerous published reports from the past 70 years from countries in SSA indicate that the virus is endemic across the region. However, due in part to the limited availability of diagnostic methods across large areas of the continent, the human burden of WNV is poorly understood. So too are the drivers for translocation of the virus from countries south of the Sahara Desert to North Africa and Europe. Migratory birds are implicated in this translocation although the transient viraemia, measured in days, and the time taken to migrate, measured in weeks, suggest a more complex mechanism is in play. This review considers the evidence for the presence of WNV across SSA and the role of migratory birds in the emergence of the virus in other continents.
Collapse
Affiliation(s)
- Waidi F Sule
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Anthony R Fooks
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT153NB, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marietjie Venter
- Emerging Arbo and Respiratory Program, Centre for Viral Zoonosis, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Nicholas Johnson
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT153NB, UK. .,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU27XH, UK.
| |
Collapse
|
19
|
Human monoclonal antibodies against West Nile virus from Japanese encephalitis-vaccinated volunteers. Antiviral Res 2018; 154:58-65. [DOI: 10.1016/j.antiviral.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/25/2023]
|
20
|
Lin CF, Jiang HK, Chen NC, Wang TY, Chen TY. Novel subunit vaccine with linear array epitope protect giant grouper against nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:551-558. [PMID: 29355759 DOI: 10.1016/j.fsi.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Viral nervous necrosis caused by nervous necrosis virus (NNV) is one of the most severe diseases resulting in high fish mortality rates and high economic losses in the giant grouper industry. Various NNV vaccines have been evaluated, such as inactivated viruses, virus-like particles (VLPs), recombinant coat proteins, synthetic peptides of coat proteins, and DNA vaccines. However, a cheaper manufacturing process and effective protection of NNV vaccines for commercial application are yet to be established. Hence, the present study developed a novel subunit vaccine composed of a carrier protein, receptor-binding domain of Pseudomonas exotoxin A, and tandem-repeated NNV coat protein epitopes by using the structural basis of epitope prediction and the linear array epitope (LAE) technique. On the basis of the crystal structure of the NNV coat protein, the epitope was predicted from the putative target cell receptor-binding region to elicit neutralizing immune responses. The safety of the LAE vaccine was evaluated, and all vaccinated fish survived without any physiological changes. The coat protein-specific antibody titers in the vaccinated fish increased after vaccine administration and exerted NNV-neutralizing effects. The efficacy tests revealed that the relative percent survival (RPS) of LAE antigen formulated with adjuvant was above 72% and LAE vaccine was effective for preventing NNV infection in giant grouper. This study is the first to develop an NNV vaccine by using epitope repeats, which provided effective protection to giant grouper against virus infection. The LAE construct can be used as a vaccine design platform against various pathogenic diseases.
Collapse
Affiliation(s)
- Chao-Fen Lin
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Kai Jiang
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nai-Chi Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ting-Yu Wang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
21
|
Abstract
Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.
Collapse
Affiliation(s)
- Anju Aggarwal
- Department of Pediatrics, University College of Medical Sciences & Guru Tegh Bahadur Hospital, New Delhi, 110095, India.
| | - Neha Garg
- Department of Pediatrics, University College of Medical Sciences & Guru Tegh Bahadur Hospital, New Delhi, 110095, India
| |
Collapse
|
22
|
The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr Opin Infect Dis 2018; 30:108-116. [PMID: 27849636 PMCID: PMC5325245 DOI: 10.1097/qco.0000000000000342] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose of review Wolbachia is a genus of Gram-negative intracellular bacteria that is naturally found in more than half of all arthropod species. These bacteria cannot only reduce the fitness and the reproductive capacities of arthropod vectors, but also increase their resistance to arthropod-borne viruses (arboviruses). This article reviews the evidence supporting a Wolbachia-based strategy for controlling the transmission of dengue and other arboviral infections. Recent findings Studies conducted 1 year after the field release of Wolbachia-infected mosquitoes in Australia have demonstrated the suppression of dengue virus (DENV) replication in and dissemination by mosquitoes. Recent mathematical models show that this strategy could reduce the transmission of DENV by 70%. Consequently, the WHO is encouraging countries to boost the development and implementation of Wolbachia-based prevention strategies against other arboviral infections. However, the evidence regarding the efficacy of Wolbachia to prevent the transmission of other arboviral infections is still limited to an experimental framework with conflicting results in some cases. There is a need to demonstrate the efficacy of such strategies in the field under various climatic conditions, to select the Wolbachia strain that has the best pathogen interference/spread trade-off, and to continue to build community acceptance. Summary Wolbachia represents a promising tool for controlling the transmission of arboviral infections that needs to be developed further. Long-term environmental monitoring will be necessary for timely detection of potential changes in Wolbachia/vector/virus interactions.
Collapse
|
23
|
Abstract
The persistence of West Nile virus (WNV) infections throughout the USA since its inception in 1999 and its continuous spread throughout the globe calls for an urgent need of effective treatments and prevention measures. Although the licensing of several WNV vaccines for veterinary use provides a proof of concept, similar efforts on the development of an effective vaccine for humans remain still unsuccessful. Increased understanding of biology and pathogenesis of WNV together with recent technological advancements have raised hope that an effective WNV vaccine may be available in the near future. In addition, rapid progress in the structural and functional characterization of WNV and other flaviviral proteins have provided a solid base for the design and development of several classes of inhibitors as potential WNV therapeutics. Moreover, the therapeutic monoclonal antibodies demonstrate an excellent efficacy against WNV in animal models and represent a promising class of WNV therapeutics. However, there are some challenges as to the design and development of a safe and efficient WNV vaccine or therapeutic. In this chapter, we discuss the current approaches, progress, and challenges toward the development of WNV vaccines, therapeutic antibodies, and antiviral drugs.
Collapse
|
24
|
Kaaijk P, Luytjes W. Are we prepared for emerging flaviviruses in Europe? Challenges for vaccination. Hum Vaccin Immunother 2017; 14:337-344. [PMID: 29053401 PMCID: PMC5806644 DOI: 10.1080/21645515.2017.1389363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis and West Nile fever are endemic flavivirus diseases in Europe. Climate change, virus evolution, and social factors may increase the risk of these flavivirus infections and may lead to the emergence of other flaviviruses in Europe that are endemic in (sub)tropical regions of the world. Control of the spread of flaviviruses is very difficult considering the cycling of flaviviruses between arthropod vectors and animal reservoir hosts. The increasing threat of flavivirus infections emphasizes the necessity of a sustainable vector surveillance system, an active animal health surveillance system and an adequate human surveillance system for early detection of flavivirus infections. Vaccination is the most important approach to prevent flavivirus infections. Effective inactivated whole virus vaccines against tick-borne encephalitis (TBE) infection are available. Implementation of TBE vaccination based on favorable cost-effectiveness estimates per region and per target group can reduce the disease burden of TBE infection. At present, several West Nile virus (WNV) vaccine candidates are in various stages of clinical development. A major challenge for WNV vaccine candidates is to demonstrate efficacy, because of the sporadic nature of unpredictable WNV outbreaks. Universal WNV vaccination is unlikely to be cost-effective, vaccination of high-risk groups will be most appropriate to protect against WNV infections.
Collapse
Affiliation(s)
- Patricia Kaaijk
- a Department Clinical Immunology, Centre for Infectious Disease Control , National institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| | - Willem Luytjes
- a Department Clinical Immunology, Centre for Infectious Disease Control , National institute for Public Health and the Environment (RIVM) , Bilthoven , Netherlands
| |
Collapse
|
25
|
Giordano D, Draves KE, Young LB, Roe K, Bryan MA, Dresch C, Richner JM, Diamond MS, Gale M, Clark EA. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization. PLoS Pathog 2017; 13:e1006743. [PMID: 29176765 PMCID: PMC5720816 DOI: 10.1371/journal.ppat.1006743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/07/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Kevin E. Draves
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Lucy B. Young
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Marianne A. Bryan
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Christiane Dresch
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Justin M. Richner
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Edward A. Clark
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Kaiser JA, Wang T, Barrett AD. Virulence determinants of West Nile virus: how can these be used for vaccine design? Future Virol 2017; 12:283-295. [PMID: 28919920 DOI: 10.2217/fvl-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
West Nile virus (WNV), a neurotropic mosquito-borne flavivirus, has become endemic in the USA and parts of Europe since 1999. There is no licensed WNV vaccine for humans. Considering the robust immunity from immunization with live, attenuated vaccines, a live WNV vaccine is an ideal platform for disease control. Animal and mosquito studies have identified a number of candidate attenuating mutations, including the structural proteins premembrane/membrane and envelope, and the nonstructural proteins NS1, NS2A, NS3, NS4A, NS4B and NS5, and the 3' UTR. Many of the mutations that have been examined attenuate WNV using different mechanisms, thus providing a greater understanding of WNV virulence while also identifying specific mutations as candidates to include in a WNV live vaccine.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan Dt Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
27
|
Beckham JD. Zika virus, a novel mosquito-borne congenital virus infection. J Neurovirol 2017; 23:339-340. [DOI: 10.1007/s13365-017-0528-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
28
|
Brown JA, Espiritu MV, Abraham J, Thorpe IF. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites. Virus Res 2016; 222:80-93. [PMID: 27262620 PMCID: PMC4969206 DOI: 10.1016/j.virusres.2016.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics.
Collapse
Affiliation(s)
- Jodian A Brown
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Marie V Espiritu
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Joel Abraham
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ian F Thorpe
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
29
|
Gupta G, Giannino V, Rishi N, Glueck R. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine. Vaccine 2016; 34:4724-4731. [PMID: 27523740 PMCID: PMC7126718 DOI: 10.1016/j.vaccine.2016.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/16/2016] [Accepted: 07/27/2016] [Indexed: 01/12/2023]
Abstract
Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Virology, Vaccine Technology Centre, Cadila Healthcare Ltd., Ahmedabad, India; Etna Biotech S.r.l., Stradale Vincenzo Lancia 57, 95121 Catania, Italy; Amity Institute of Virology and Immunology, Amity University, Noida, India.
| | - Viviana Giannino
- Etna Biotech S.r.l., Stradale Vincenzo Lancia 57, 95121 Catania, Italy.
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Reinhard Glueck
- Department of Virology, Vaccine Technology Centre, Cadila Healthcare Ltd., Ahmedabad, India; Etna Biotech S.r.l., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| |
Collapse
|
30
|
Hongoh V, Campagna C, Panic M, Samuel O, Gosselin P, Waaub JP, Ravel A, Samoura K, Michel P. Assessing Interventions to Manage West Nile Virus Using Multi-Criteria Decision Analysis with Risk Scenarios. PLoS One 2016; 11:e0160651. [PMID: 27494136 PMCID: PMC4975439 DOI: 10.1371/journal.pone.0160651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022] Open
Abstract
The recent emergence of West Nile virus (WNV) in North America highlights vulnerability to climate sensitive diseases and stresses the importance of preventive efforts to reduce their public health impact. Effective prevention involves reducing environmental risk of exposure and increasing adoption of preventive behaviours, both of which depend on knowledge and acceptance of such measures. When making operational decisions about disease prevention and control, public health must take into account a wide range of operational, environmental, social and economic considerations in addition to intervention effectiveness. The current study aimed to identify, assess and rank possible risk reduction measures taking into account a broad set of criteria and perspectives applicable to the management of WNV in Quebec under increasing transmission risk scenarios, some of which may be related to ongoing warming in higher-latitude regions. A participatory approach was used to collect information on categories of concern to relevant stakeholders with respect to WNV prevention and control. Multi-criteria decision analysis was applied to examine stakeholder perspectives and their effect on strategy rankings under increasing transmission risk scenarios. Twenty-three preventive interventions were retained for evaluation using eighteen criteria identified by stakeholders. Combined evaluations revealed that, at an individual-level, inspecting window screen integrity, wearing light colored, long clothing, eliminating peridomestic larval sites and reducing outdoor activities at peak times were top interventions under six WNV transmission scenarios. At a regional-level, the use of larvicides was a preferred strategy in five out of six scenarios, while use of adulticides and dissemination of sterile male mosquitoes were found to be among the least favoured interventions in almost all scenarios. Our findings suggest that continued public health efforts aimed at reinforcing individual-level preventive behaviours combined with the application of larvicides to manage the risk of WNV infection are the interventions most acceptable and effective at reaching current management objectives now and under future theoretical transmission risk.
Collapse
Affiliation(s)
- Valerie Hongoh
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| | - Céline Campagna
- Institut national de santé publique du Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Canada
| | - Mirna Panic
- Institut national de santé publique du Québec, Québec, Canada
- Canadian Field Epidemiology Program, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Onil Samuel
- Institut national de santé publique du Québec, Québec, Canada
| | - Pierre Gosselin
- Institut national de santé publique du Québec, Québec, Canada
- Ouranos, Consortium on regional climatology and adaptation to climate change, Montreal, Quebec, Canada
| | | | - André Ravel
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Karim Samoura
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Université Aube Nouvelle, Ouagadougou, Burkina Faso
| | - Pascal Michel
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- National Microbiology Laboratory at Saint-Hyacinthe, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
31
|
Sule WF, Oluwayelu DO. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria revealed no West Nile virus activity. Pan Afr Med J 2016; 23:116. [PMID: 27279943 PMCID: PMC4885691 DOI: 10.11604/pamj.2016.23.116.7249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods In order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes were sorted and tested in pools with real-time RT-PCR to detect WNV (or flavivirus) RNA using WNV-specific primers and probes, as well as, pan-flavivirus-specific primers in two-step real-time RT-PCR. Minimum infection rate (MIR) was used to estimate mosquito infection rate. Results Only two genera of mosquitoes were caught (Culex, 98.9% and Aedes, 1.0%) totalling 4,112 females. None of the 424 mosquito pools tested was positive for WNV RNA; consequently the MIR was zero. Sequencing and BLAST analysis of amplicons detected in pan-flavivirus primer-mediated RT-PCR gave a consensus sequence of 28S rRNA of Culex quinquefasciatus suggesting integration of flaviviral RNA into mosquito genome. Conclusion While the latter finding requires further investigation, we conclude there was little or no risk of human infection with WNV in the study areas during sampling. There was predominance of Culex mosquito, a competent WNV vector, around horse stables in the study areas. However, mosquito surveillance needs to continue for prompt detection of WNV activity in mosquitoes.
Collapse
Affiliation(s)
- Waidi Folorunso Sule
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, Osun State University, PMB 4494, Oke-Baale, Osogbo, 230212, Osun State, Nigeria
| | - Daniel Oladimeji Oluwayelu
- Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
32
|
Volz A, Lim S, Kaserer M, Lülf A, Marr L, Jany S, Deeg CA, Pijlman GP, Koraka P, Osterhaus ADME, Martina BE, Sutter G. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens. Vaccine 2016; 34:1915-26. [PMID: 26939903 DOI: 10.1016/j.vaccine.2016.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/30/2022]
Abstract
West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans.
Collapse
Affiliation(s)
- Asisa Volz
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Stephanie Lim
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Martina Kaserer
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Anna Lülf
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Lisa Marr
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Sylvia Jany
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany
| | - Cornelia A Deeg
- Institute for Animal Physiology, LMU University of Munich, Munich, Germany
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Penelope Koraka
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Byron E Martina
- Viroscience Lab, Erasmus Medical Center, Rotterdam, The Netherlands; Artemis One Health Research Institute, Utrecht, The Netherlands
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Veterinaerstrasse 13, D-80539 Munich, Germany.
| |
Collapse
|
33
|
Van Hoeven N, Joshi SW, Nana GI, Bosco-Lauth A, Fox C, Bowen RA, Clements DE, Martyak T, Parks DE, Baldwin S, Reed SG, Coler RN. A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PLoS One 2016; 11:e0149610. [PMID: 26901122 PMCID: PMC4762984 DOI: 10.1371/journal.pone.0149610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/27/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-transmitted member of the Flaviviridae family that has emerged in recent years to become a serious public health threat. Given the sporadic nature of WNV epidemics both temporally and geographically, there is an urgent need for a vaccine that can rapidly provide effective immunity. Protection from WNV infection is correlated with antibodies to the viral envelope (E) protein, which encodes receptor binding and fusion functions. Despite many promising E-protein vaccine candidates, there are currently none licensed for use in humans. This study investigates the ability to improve the immunogenicity and protective capacity of a promising clinical-stage WNV recombinant E-protein vaccine (WN-80E) by combining it with a novel synthetic TLR-4 agonist adjuvant. Using the murine model of WNV disease, we find that inclusion of a TLR-4 agonist in either a stable oil-in-water emulsion (SE) or aluminum hydroxide (Alum) formulation provides both dose and dosage sparing functions, whereby protection can be induced after a single immunization containing only 100 ng of WN-80E. Additionally, we find that inclusion of adjuvant with a single immunization reduced viral titers in sera to levels undetectable by viral plaque assay. The enhanced protection provided by adjuvanted immunization correlated with induction of a Th1 T-cell response and the resultant shaping of the IgG response. These findings suggest that inclusion of a next generation adjuvant may greatly enhance the protective capacity of WNV recombinant subunit vaccines, and establish a baseline for future development.
Collapse
Affiliation(s)
- Neal Van Hoeven
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
- * E-mail:
| | - Sharvari Waghmare Joshi
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Ghislain Ismael Nana
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Angela Bosco-Lauth
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, United States of America
| | - Christopher Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Richard A. Bowen
- Colorado State University Department of Biomedical Sciences, Foothills Campus, Fort Collins, CO 80523, United States of America
| | - David E. Clements
- Hawaii Biotech Inc. 99-193 Aiea Heights Drive, Aiea, Hawaii 96701, United States of America
| | - Timothy Martyak
- Hawaii Biotech Inc. 99-193 Aiea Heights Drive, Aiea, Hawaii 96701, United States of America
| | - D. Elliot Parks
- Hawaii Biotech Inc. 99-193 Aiea Heights Drive, Aiea, Hawaii 96701, United States of America
| | - Susan Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, 1616 Eastlake Ave E., Seattle, WA 98103, United States of America
| |
Collapse
|
34
|
Evaluation of Cross-Protection of a Lineage 1 West Nile Virus Inactivated Vaccine against Natural Infections from a Virulent Lineage 2 Strain in Horses, under Field Conditions. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1040-9. [PMID: 26178384 DOI: 10.1128/cvi.00302-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/05/2015] [Indexed: 12/27/2022]
Abstract
Although experimental data regarding cross-protection of horse West Nile virus (WNV) vaccines against lineage 2 infections exist, the cross-protective efficacy of these vaccines under field conditions has not been demonstrated. This study was conducted to evaluate the capability of an inactivated lineage 1 vaccine (Equip WNV) to protect against natural infections from the Nea Santa-Greece-2010 lineage 2 strain. In total, 185 WNV-seronegative horses in Thessaloniki, Greece, were selected during 2 consecutive years (2011 and 2012); 140 were immunized, and 45 were used as controls. Horses were examined for signs compatible with WNV infection. Neutralizing antibody titers against the Greek strain and the PaAn001/France lineage 1 strain were determined in immunized horses. WNV circulation was detected during both years in the study area. It was estimated that 37% and 27% of the horses were infected during 2011 and 2012, respectively. Three control animals developed clinical signs, and the WNV diagnosis was confirmed. Signs related to WNV infection were not observed in the vaccinated animals. The nonvaccinated animals had a 7.58% ± 1.82% higher chance of exhibiting signs than immunized animals (P < 0.05). Neutralizing antibodies raised against both strains in all immunized horses were detectable 1 month after the initial vaccination course. The cross-protective capacity of the lowest titer (1:40) was evident in 19 animals which were subsequently infected and did not exhibit signs. Neutralizing antibodies were detectable until the annual booster, when strong anamnestic responses were observed (geometrical mean titer ratio [GMTR] for lineage 1 of 30.2; GMTR for lineage 2 of 27.5). The results indicate that Equip WNV is capable of inducing cross-protection against natural infections from a virulent lineage 2 WNV strain in horses.
Collapse
|
35
|
Ulbert S, Magnusson SE. Technologies for the development of West Nile virus vaccines. Future Microbiol 2015; 9:1221-32. [PMID: 25405890 DOI: 10.2217/fmb.14.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV), an emerging mosquito-borne and zoonotic flavivirus, continues to spread worldwide and represents a major problem for human and veterinary medicine. In recent years, severe outbreaks were observed in the USA and Europe with neighboring countries, and the virus is considered to be endemic in an increasing number of areas. Although most infections remain asymptomatic, WNV can cause severe, even fatal, neurological disease, which affects mostly the elderly and immunocompromised individuals. Several vaccines have been licensed in the veterinary sector, but no human vaccine is available today. This review summarizes recent strategies that are being followed to develop WNV vaccines with emphasis on technologies suitable for the use in humans.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy & Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
| | | |
Collapse
|
36
|
Of Mice and Men: Protective and Pathogenic Immune Responses to West Nile virus Infection. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:41-48. [PMID: 26120511 DOI: 10.1007/s40475-015-0040-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
West Nile virus, a mosquito-borne flavivirus, first emerged in the Western Hemisphere in 1999. Although the majority of infections are asymptomatic, WNV causes significant morbidity and mortality in a minority of individuals who develop neuroinvasive disease, in particular the elderly and immunocompromised. Research in animal models has demonstrated interactions between WNV and the innate and adaptive immune system, some of which protect the host and others which are deleterious. Studies of disease pathogenesis in humans are less numerous, largely due to the complexities of WNV epidemiology. Human studies that have been done support the notion that innate and adaptive immune responses are delicately balanced and may help or harm the host. Further human investigations are needed to characterize beneficial responses to WNV with the goal of such research leading to therapeutics and effective vaccines in order to control this emerging viral disease.
Collapse
|
37
|
Bielefeldt-Ohmann H, Prow NA, Wang W, Tan CSE, Coyle M, Douma A, Hobson-Peters J, Kidd L, Hall RA, Petrovsky N. Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals. Vet Res 2014; 45:130. [PMID: 25516480 PMCID: PMC4268807 DOI: 10.1186/s13567-014-0130-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
In 2011, following severe flooding in Eastern Australia, an unprecedented epidemic of equine encephalitis occurred in South-Eastern Australia, caused by Murray Valley encephalitis virus (MVEV) and a new variant strain of Kunjin virus, a subtype of West Nile virus (WNVKUN). This prompted us to assess whether a delta inulin-adjuvanted, inactivated cell culture-derived Japanese encephalitis virus (JEV) vaccine (JE-ADVAX™) could be used in horses, including pregnant mares and foals, to not only induce immunity to JEV, but also elicit cross-protective antibodies against MVEV and WNVKUN. Foals, 74–152 days old, received two injections of JE-ADVAX™. The vaccine was safe and well-tolerated and induced a strong JEV-neutralizing antibody response in all foals. MVEV and WNVKUN antibody cross-reactivity was seen in 33% and 42% of the immunized foals, respectively. JE-ADVAX™ was also safe and well-tolerated in pregnant mares and induced high JEV-neutralizing titers. The neutralizing activity was passively transferred to their foals via colostrum. Foals that acquired passive immunity to JEV via maternal antibodies then were immunized with JE-ADVAX™ at 36–83 days of age, showed evidence of maternal antibody interference with low peak antibody titers post-immunization when compared to immunized foals of JEV-naïve dams. Nevertheless, when given a single JE-ADVAX™ booster immunization as yearlings, these animals developed a rapid and robust JEV-neutralizing antibody response, indicating that they were successfully primed to JEV when immunized as foals, despite the presence of maternal antibodies. Overall, JE-ADVAX™ appears safe and well-tolerated in pregnant mares and young foals and induces protective levels of JEV neutralizing antibodies with partial cross-neutralization of MVEV and WNVKUN.
Collapse
Affiliation(s)
- Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, Qld, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Verstrepen BE, Oostermeijer H, Fagrouch Z, van Heteren M, Niphuis H, Haaksma T, Kondova I, Bogers WM, de Filette M, Sanders N, Stertman L, Magnusson S, Lőrincz O, Lisziewicz J, Barzon L, Palù G, Diamond MS, Chabierski S, Ulbert S, Verschoor EJ. Vaccine-induced protection of rhesus macaques against plasma viremia after intradermal infection with a European lineage 1 strain of West Nile virus. PLoS One 2014; 9:e112568. [PMID: 25392925 PMCID: PMC4231036 DOI: 10.1371/journal.pone.0112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
The mosquito-borne West Nile virus (WNV) causes human and animal disease with outbreaks in several parts of the world including North America, the Mediterranean countries, Central and East Europe, the Middle East, and Africa. Particularly in elderly people and individuals with an impaired immune system, infection with WNV can progress into a serious neuroinvasive disease. Currently, no treatment or vaccine is available to protect humans against infection or disease. The goal of this study was to develop a WNV-vaccine that is safe to use in these high-risk human target populations. We performed a vaccine efficacy study in non-human primates using the contemporary, pathogenic European WNV genotype 1a challenge strain, WNV-Ita09. Two vaccine strategies were evaluated in rhesus macaques (Macaca mulatta) using recombinant soluble WNV envelope (E) ectodomain adjuvanted with Matrix-M, either with or without DNA priming. The DNA priming immunization was performed with WNV-DermaVir nanoparticles. Both vaccination strategies successfully induced humoral and cellular immune responses that completely protected the macaques against the development of viremia. In addition, the vaccine was well tolerated by all animals. Overall, The WNV E protein adjuvanted with Matrix-M is a promising vaccine candidate for a non-infectious WNV vaccine for use in humans, including at-risk populations.
Collapse
Affiliation(s)
- Babs E. Verstrepen
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Herman Oostermeijer
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Melanie van Heteren
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Tom Haaksma
- Animal Science Department, Division of Pathology and Microbiology, BPRC Rijswijk, The Netherlands
| | - Ivanela Kondova
- Animal Science Department, Division of Pathology and Microbiology, BPRC Rijswijk, The Netherlands
| | - Willy M. Bogers
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Marina de Filette
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
| | | | | | | | | | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan Chabierski
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Merino-Ramos T, Blázquez AB, Escribano-Romero E, Cañas-Arranz R, Sobrino F, Saiz JC, Martín-Acebes MA. Protection of a single dose west nile virus recombinant subviral particle vaccine against lineage 1 or 2 strains and analysis of the cross-reactivity with Usutu virus. PLoS One 2014; 9:e108056. [PMID: 25229345 PMCID: PMC4168257 DOI: 10.1371/journal.pone.0108056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Abstract
West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus. High WNV virulence was mainly associated with lineage 1 strains, but recent outbreaks have unveiled circulation of highly virulent lineage 2 strains. Co-expression of flavivirus prM and E glycoproteins drives the assembly of recombinant subviral particles (RSPs) that share antigenic features with virions. Mouse immunization with lineage 1 WNV RSPs induced a potent humoral response against WNV with production of neutralizing antibodies. A single inoculation of RSPs formulated with Al(OH)3 as adjuvant protected mice against a lethal challenge with WNV strains from lineage 1 or 2. The cross-reactivity of the response elicited by these RSPs was analyzed against the related flavivirus Usutu virus (USUV), which shares multiple ecological and antigenic features with WNV. Immunization with WNV-RSPs increased specific, although low, antibody titers found upon subsequent USUV infection.
Collapse
Affiliation(s)
- Teresa Merino-Ramos
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
- * E-mail: (FS); (JCS)
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail: (FS); (JCS)
| | - Miguel A. Martín-Acebes
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW West Nile virus (WNV) is the most important cause of epidemic encephalitis in the United States. We review articles published in the last 18 months related to the epidemiology, immunology, clinical features, and treatment of this disease. RECENT FINDINGS There was a resurgence in WNV disease in the United States in 2012. The WNV strain now predominant in the United States (NA/WN02) differs from the initial emergent isolate in 1999 (NY99). However, differences in the genetics of currently circulating United States WNV strains do not explain variations in epidemic magnitude or disease severity. Innate and acquired immunity are critical in control of WNV, and in some cases pathways are central nervous system specific. The clinical features of infection are now well understood, although nonconfirmed observations of chronic viral excretion in urine remain controversial. There is no specific antiviral therapy for WNV, but studies of antivirals specific for other flaviviruses may identify agents with promise against WNV. Phase I and II human WNV vaccine clinical trials have established that well tolerated and immunogenic WNV vaccines can be developed. SUMMARY WNV remains an important public health problem. Although recent studies have significantly increased our understanding of host immune and genetic factors involved in control of WNV infection, no specific therapy is yet available. Development of a well tolerated, immunogenic, and effective vaccine against WNV is almost certainly feasible, but economic factors and the lack of predictability of the magnitude and location of outbreaks are problematic for designing phase III trials and ultimate licensure.
Collapse
Affiliation(s)
- Kenneth L. Tyler
- Department of Neurology, University of Colorado School of Medicine, Aurora
- Denver Veterans Affairs Medical Center, Eastern Colorado Healthcare System, Denver, Colorado, USA
| |
Collapse
|
41
|
Tinker JK, Yan J, Knippel RJ, Panayiotou P, Cornell KA. Immunogenicity of a West Nile virus DIII-cholera toxin A2/B chimera after intranasal delivery. Toxins (Basel) 2014; 6:1397-418. [PMID: 24759174 PMCID: PMC4014742 DOI: 10.3390/toxins6041397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022] Open
Abstract
West Nile virus (WNV) causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII) region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT) CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.
Collapse
Affiliation(s)
- Juliette K Tinker
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| | - Jie Yan
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| | - Reece J Knippel
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| | - Panos Panayiotou
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| | - Kenneth A Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
42
|
|
43
|
Targeting host factors to treat West Nile and dengue viral infections. Viruses 2014; 6:683-708. [PMID: 24517970 PMCID: PMC3939478 DOI: 10.3390/v6020683] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/15/2023] Open
Abstract
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.
Collapse
|
44
|
Marka A, Diamantidis A, Papa A, Valiakos G, Chaintoutis SC, Doukas D, Tserkezou P, Giannakopoulos A, Papaspyropoulos K, Patsoula E, Badieritakis E, Baka A, Tseroni M, Pervanidou D, Papadopoulos NT, Koliopoulos G, Tontis D, Dovas CI, Billinis C, Tsakris A, Kremastinou J, Hadjichristodoulou C. West Nile virus state of the art report of MALWEST Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6534-610. [PMID: 24317379 PMCID: PMC3881129 DOI: 10.3390/ijerph10126534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022]
Abstract
During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen.
Collapse
Affiliation(s)
- Andriani Marka
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexandros Diamantidis
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - Anna Papa
- National Reference Center for Arboviruses, Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mail:
| | - George Valiakos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Serafeim C. Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Persefoni Tserkezou
- Department of Microbiology, Faculty of Medicine, University of Athens, Athens 11527, Greece; E-mail:
| | - Alexios Giannakopoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Konstantinos Papaspyropoulos
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Eleni Patsoula
- Department of Parasitology, Entomology and Tropical Diseases, National School of Public Health, Athens 11521, Greece; E-mail:
| | - Evangelos Badieritakis
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Agoritsa Baka
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Maria Tseroni
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Danai Pervanidou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Volos 38446, Greece; E-mails: (A.D.); (N.T.P.)
| | - George Koliopoulos
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Athens 14561, Greece; E-mails: (E.B.); (G.K.)
| | - Dimitrios Tontis
- Laboratory of Pathology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (D.D.); (D.T.)
| | - Chrysostomos I. Dovas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-mails: (S.C.C.); (C.I.D.)
| | - Charalambos Billinis
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, Karditsa 43100, Greece; E-mails: (G.V); (A.G.); (K.P.); (C.B.)
| | - Athanassios Tsakris
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-2410-565-007; Fax: +30-2410-565-051
| | - Jenny Kremastinou
- Hellenic Centre for Disease Control and Prevention (KEELPNO), Athens 15123, Greece; E-mails: (A.B.); (M.T.); (D.P.); (J.K.)
| | | |
Collapse
|