1
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
O’Ketch M, Williams S, Larson C, Uhrlaub JL, Wong R, Hall B, Deshpande NR, Schenten D. MAVS regulates the quality of the antibody response to West-Nile Virus. PLoS Pathog 2020; 16:e1009009. [PMID: 33104760 PMCID: PMC7644103 DOI: 10.1371/journal.ppat.1009009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
A key difference that distinguishes viral infections from protein immunizations is the recognition of viral nucleic acids by cytosolic pattern recognition receptors (PRRs). Insights into the functions of cytosolic PRRs such as the RNA-sensing Rig-I-like receptors (RLRs) in the instruction of adaptive immunity are therefore critical to understand protective immunity to infections. West Nile virus (WNV) infection of mice deficent of RLR-signaling adaptor MAVS results in a defective adaptive immune response. While this finding suggests a role for RLRs in the instruction of adaptive immunity to WNV, it is difficult to interpret due to the high WNV viremia, associated exessive antigen loads, and pathology in the absence of a MAVS-dependent innate immune response. To overcome these limitations, we have infected MAVS-deficient (MAVSKO) mice with a single-round-of-infection mutant of West Nile virus. We show that MAVSKO mice failed to produce an effective neutralizing antibody response to WNV despite normal antibody titers against the viral WNV-E protein. This defect occurred independently of antigen loads or overt pathology. The specificity of the antibody response in infected MAVSKO mice remained unchanged and was still dominated by antibodies that bound the neutralizing lateral ridge (LR) epitope in the DIII domain of WNV-E. Instead, MAVSKO mice produced IgM antibodies, the dominant isotype controlling primary WNV infection, with lower affinity for the DIII domain. Our findings suggest that RLR-dependent signals are important for the quality of the humoral immune response to WNV.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody Formation
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Female
- Immunity, Humoral
- Immunity, Innate/immunology
- Immunoglobulin M
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Signal Transduction/immunology
- West Nile Fever/immunology
- West Nile Fever/virology
- West Nile virus/pathogenicity
Collapse
Affiliation(s)
- Marvin O’Ketch
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Spencer Williams
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Larson
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel Wong
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| | - Brenna Hall
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominik Schenten
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Gore MM. Vaccines Against Dengue and West Nile Viruses in India: The Need of the Hour. Viral Immunol 2020; 33:423-433. [PMID: 32320353 DOI: 10.1089/vim.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of flaviviruses, dengue (DEN), Japanese encephalitis (JE) and West Nile (WN) viruses, and others, is generating a major concern in many countries. Both JE along with DEN have been endemic in large regions of India. WN virus infection, although circulating in southern regions for many years, in recent years, WN encephalitis patients have been demonstrated. While vaccines against JE have been developed and decrease outbreaks, in case of DEN and WN, vaccines are still in developing level, especially, it has been difficult to achieve the long-term protective immune response. The first licensed DEN vaccine, which is a live attenuated vaccine, was administered in countries where the virus is endemic, and has a potential to cause serious side effects, especially when administered to younger population as observed in the Philippines vaccination drive. In the case of WN, although the purified inactivated virion-based vaccine worked effectively as a veterinary vaccine for horses, no effective vaccine has yet been licensed for humans. The induction of CD4+ and CD8+ T cell responses is essential to complete protection by these viruses, as evidenced by responses to asymptomatic infections. Many studies have shown that neutralizing antibody (NAb) response is against surface structural proteins; CD4+ and CD8+ responses are mainly directed against nonstructural proteins rather than NAb response. New data suggest that encapsulating virus vaccines in nanoparticles (NPs) will direct antigen in cytoplasmic compartment by antigen-presenting cells, which will improve presentation to CD4+ and CD8+ T cells. Since tissue culture-derived, purified inactivated viruses are easier to manufacture and safer than developing live virus vaccines, inclusion of NP provides an attractive alternative for generating robust flaviviral vaccines that are affordable with long-lived protection.
Collapse
Affiliation(s)
- Milind M Gore
- Emeritus Scientist, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
4
|
Jiménez de Oya N, Escribano-Romero E, Blázquez AB, Martín-Acebes MA, Saiz JC. Current Progress of Avian Vaccines Against West Nile Virus. Vaccines (Basel) 2019; 7:vaccines7040126. [PMID: 31547632 PMCID: PMC6963603 DOI: 10.3390/vaccines7040126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023] Open
Abstract
Birds are the main natural host of West Nile virus (WNV), the worldwide most distributed mosquito-borne flavivirus, but humans and equids can also be sporadic hosts. Many avian species have been reported as susceptible to WNV, particularly corvids. In the case that clinical disease develops in birds, this is due to virus invasion of different organs: liver, spleen, kidney, heart, and mainly the central nervous system, which can lead to death 24–48 h later. Nowadays, vaccines have only been licensed for use in equids; thus, the availability of avian vaccines would benefit bird populations, both domestic and wild ones. Such vaccines could be used in endangered species housed in rehabilitation and wildlife reserves, and in animals located at zoos and other recreational installations, but also in farm birds, and in those that are grown for hunting and restocking activities. Even more, controlling WNV infection in birds can also be useful to prevent its spread and limit outbreaks. So far, different commercial and experimental vaccines (inactivated, attenuated, and recombinant viruses, and subunits and DNA-based candidates) have been evaluated, with various regimens, both in domestic and wild avian species. However, there are still disadvantages that must be overcome before avian vaccination can be implemented, such as its cost-effectiveness for domestic birds since in many species the pathogenicity is low or zero, or the viability of being able to achieve collective immunity in wild birds in freedom. Here, a comprehensive review of what has been done until now in the field of avian vaccines against WNV is presented and discussed.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Juan-Carlos Saiz
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| |
Collapse
|
5
|
Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses. PLoS One 2019; 14:e0218928. [PMID: 31242236 PMCID: PMC6594639 DOI: 10.1371/journal.pone.0218928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a critical innate immune signaling protein that directs the actions of the RIG-I-like receptor (RLR) signaling pathway of RNA virus recognition and initiation of anti-viral immunity against West Nile virus (WNV). In the absence of MAVS, mice die more rapidly after infection with the pathogenic WNV-Texas (TX) strain, but also produce elevated WNV-specific IgG concomitant with increased viral burden. Here we investigated whether there was a B cell intrinsic role for MAVS during the development of protective humoral immunity following WNV infection. MAVS-/- mice survived infection from the non-pathogenic WNV-Madagascar (MAD) strain, with limited signs of disease. Compared to wildtype (WT) controls, WNV-MAD-infected MAVS-/- mice had elevated serum neutralizing antibodies, splenic germinal center B cells, plasma cells and effector T cells. We found that when rechallenged with the normally lethal WNV-TX, MAVS-/- mice previously infected with WNV-MAD were protected from disease. Thus, protective humoral and cellular immune responses can be generated in absence of MAVS. Mice with a conditional deletion of MAVS only in CD11c+ dendritic cells phenocopied MAVS whole body knockout mice in their humoral responses to WNV-MAD, displaying elevated virus titers and neutralizing antibodies. Conversely, a B cell-specific deletion of MAVS had no effect on immune responses to WNV-MAD compared to WT controls. Thus, MAVS in dendritic cells is required to control WNV replication and thereby regulate downstream humoral immune responses.
Collapse
|
6
|
[The Recent Epidemic Spread of Zika Virus Disease]. Uirusu 2019; 68:1-12. [PMID: 31105130 DOI: 10.2222/jsv.68.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Zika virus (ZIKV) is one of the members of the Spondweni serocomplex within the genus Flavivirus of the family Flaviviridae. The virus was first isolated from a serum specimen from a sentinel non-human primate in the Zika forest of Uganda in 1947. ZIKV is transmitted by Aedes aegypti and A. albopictus in an urban cycle and maintained in a sylvatic cycle between Aedes mosquitoes and monkeys in Africa and Asia. Initially, the virus was thought to cause only mild and nonspecific clinical symptoms in humans. However, ZIKV became a serious public health concern in recent years due to an association with congenital malformation known as microcephaly in newborns as well as Guillain-Barré syndrome and other neurologic disorders in adults. The severe nature of complications of ZIKV infection have led to an urgent need for a safe and effective vaccine worldwide including Japan. The first large outbreak of disease caused by ZIKV infection was reported from the island of Yap, Micronesia in 2007. It was followed by outbreaks in French Polynesia, Cook Islands, Ester Island, and New Caledonia in 2013 and 2014. In 2015, ZIKV outbreak was reported in Brazil and has spread across the Latin America, and the Caribbean. The exact prevalence of ZIKV infection has not been reported because of the absence of a standardized protocol for differential diagnosis and its clinical resemblance to dengue virus and other flavivirus infections. In Japan, the first human case of ZIK fever, who developed illness soon after returning from French Polynesia, was reported in 2013, and until 2017, 20 imported cases were documented. Currently, research on ZIKV has progressed remarkably thus this article aims to review recent progress in virology, epidemiology, and pathology of ZIKV infection.
Collapse
|
7
|
Klein RS, Garber C, Funk KE, Salimi H, Soung A, Kanmogne M, Manivasagam S, Agner S, Cain M. Neuroinflammation During RNA Viral Infections. Annu Rev Immunol 2019; 37:73-95. [PMID: 31026414 PMCID: PMC6731125 DOI: 10.1146/annurev-immunol-042718-041417] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Kristen E Funk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Hamid Salimi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Allison Soung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Marlene Kanmogne
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Sindhu Manivasagam
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Shannon Agner
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
8
|
Abstract
The recent epidemic of Zika virus (ZIKV) in the Americas has revealed the devastating consequences of ZIKV infection, particularly in pregnant women. Congenital Zika syndrome, characterized by malformations and microcephaly in neonates as well as developmental challenges in children, highlights the need for the development of a safe and effective vaccine. Multiple vaccine candidates have been developed and have shown promising results in both animal models and phase I clinical trials. However, important challenges remain for the clinical development of these vaccines. In this Progress article, we discuss recent preclinical studies and lessons learned from first-in-human clinical trials with ZIKV vaccines.
Collapse
|
9
|
Giordano D, Draves KE, Young LB, Roe K, Bryan MA, Dresch C, Richner JM, Diamond MS, Gale M, Clark EA. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization. PLoS Pathog 2017; 13:e1006743. [PMID: 29176765 PMCID: PMC5720816 DOI: 10.1371/journal.ppat.1006743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/07/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Kevin E. Draves
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Lucy B. Young
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Marianne A. Bryan
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Christiane Dresch
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Justin M. Richner
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Edward A. Clark
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
10
|
McCracken MK, Gromowski GD, Friberg HL, Lin X, Abbink P, De La Barrera R, Eckles KH, Garver LS, Boyd M, Jetton D, Barouch DH, Wise MC, Lewis BS, Currier JR, Modjarrad K, Milazzo M, Liu M, Mullins AB, Putnak JR, Michael NL, Jarman RG, Thomas SJ. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog 2017; 13:e1006487. [PMID: 28771605 PMCID: PMC5542404 DOI: 10.1371/journal.ppat.1006487] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.
Collapse
Affiliation(s)
- Michael K. McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Heather L. Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Xiaoxu Lin
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rafael De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kenneth H. Eckles
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lindsey S. Garver
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Boyd
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Jetton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew C. Wise
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Bridget S. Lewis
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kayvon Modjarrad
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mark Milazzo
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michelle Liu
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Anna B. Mullins
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - J. Robert Putnak
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Stephen J. Thomas
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
11
|
Yu L, Wang R, Gao F, Li M, Liu J, Wang J, Hong W, Zhao L, Wen Y, Yin C, Wang H, Zhang Q, Li Y, Zhou P, Zhang R, Liu Y, Tang X, Guan Y, Qin CF, Chen L, Shi X, Jin X, Cheng G, Zhang F, Zhang L. Delineating antibody recognition against Zika virus during natural infection. JCI Insight 2017; 2:93042. [PMID: 28614803 DOI: 10.1172/jci.insight.93042] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that shares a considerable degree of homology with dengue virus (DENV). Here, we examined longitudinal antibody response against ZIKV during natural infection in 2 convalescent individuals. By decomposing the antibody recognition into DI/DII and DIII of the E glycoprotein, we showed their development in humans followed a spatiotemporal hierarchy. Plasma binding to DI/DII appeared to peak and wane during early infection with extensive cross-reactivity with DI/DII of DENV. Binding to DIII, however, peaked early but persisted months into the infection without detectable cross-reactivity with DIII of DENV. A clear trend of increase in DIII-specific neutralizing activity was observed over the course of infection. mAbs isolated during early infection are largely DI/DII specific, weakly neutralizing, and highly cross-reactive with DENV, while those from later infection are more diverse in recognition, potently neutralizing, and ZIKV specific. The most potent neutralizing mAb targeting the DIII provided 100% protection in mice from lethal ZIKV infection and could therefore serve as a promising candidate for antibody-based therapy and prevention. The dynamic features unveiled here will assist us to better understand the pathogenesis of ZIKV infection and inform rational design of vaccines.
Collapse
Affiliation(s)
- Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Min Li
- Viral Disease and Vaccine Translational Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenxin Hong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingfen Wen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yangyang Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Panpan Zhou
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rudian Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjun Guan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Huang B, Prow NA, van den Hurk AF, Allcock RJN, Moore PR, Doggett SL, Warrilow D. Archival Isolates Confirm a Single Topotype of West Nile Virus in Australia. PLoS Negl Trop Dis 2016; 10:e0005159. [PMID: 27906966 PMCID: PMC5131910 DOI: 10.1371/journal.pntd.0005159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022] Open
Abstract
West Nile virus is globally wide-spread and causes significant disease in humans and animals. The evolution of West Nile virus Kunjin subtype in Australia (WNVKUN) was investigated using archival samples collected over a period of 50 years. Based on the pattern of fixed amino acid substitutions and time-stamped molecular clock analyses, a single long-term lineage (or topotype) was inferred. This implies that a bottleneck exists such that regional strains eventually die out and are replaced with strains from a single source. This was consistent with current hypotheses regarding the distribution of WNVKUN, whereby the virus is enzootic in northern Australia and is disseminated to southern states by water-birds or mosquitoes after flooding associated with above average rainfall. In addition, two previous amino acid changes associated with pathogenicity, an N-Y-S glycosylation motif in the envelope protein and a phenylalanine at amino acid 653 in the RNA polymerase, were both detected in all isolates collected since the 1980s. Changes primarily occurred due to stochastic drift. One fixed substitution each in NS3 and NS5, subtly changed the chemical environment of important functional groups, and may be involved in fine-tuning RNA synthesis. Understanding these evolutionary changes will help us to better understand events such as the emergence of the virulent strain in 2011. West Nile virus is endemic in Australia, and is considered benign in relation to strains that circulate globally. In 2011, a more pathogenic variant emerged which caused disease in horses. To understand the evolution of the virus, and as a background to the emergence of the pathogenic strain, we used high throughput sequencing combined with bioinformatics tools to obtain an overview of the evolution of the virus over 50 years. A single lineage regardless of the collection site was apparent. This was also supported by the pattern of changes in sequence between the isolates. The most significant finding was that the single lineage nature of the virus’s evolution infers that regional strains circulate for some years before becoming extinct. The regional strains must then be replaced by continual re-seeding, most likely by waterbirds that disseminate the virus across the continent after above average rainfall. There were changes in the nucleotide sequence that had become established at a population level. These were related to the structure of the viral proteins: in particular the envelope protein, the helicase (NS3) and methyltransferase domain of NS5. There were two changes in catalytic domains which may indicate some fine-tuning of replication.
Collapse
Affiliation(s)
- Bixing Huang
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
| | - Natalie A Prow
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
| | - Richard J. N. Allcock
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
- Translational Cancer Pathology Laboratory, Pathwest Laboratory Medicine WA, QEII Medical Centre, Nedlands, Australia
| | - Peter R. Moore
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Pathology West–ICPMR, Westmead Hospital, Westmead, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, Archerfield, Australia
- * E-mail:
| |
Collapse
|
13
|
Tsioris K, Gupta NT, Ogunniyi AO, Zimnisky RM, Qian F, Yao Y, Wang X, Stern JNH, Chari R, Briggs AW, Clouser CR, Vigneault F, Church GM, Garcia MN, Murray KO, Montgomery RR, Kleinstein SH, Love JC. Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr Biol (Camb) 2015; 7:1587-97. [PMID: 26481611 PMCID: PMC4754972 DOI: 10.1039/c5ib00169b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
West Nile virus (WNV) infection is an emerging mosquito-borne disease that can lead to severe neurological illness and currently has no available treatment or vaccine. Using microengraving, an integrated single-cell analysis method, we analyzed a cohort of subjects infected with WNV - recently infected and post-convalescent subjects - and efficiently identified four novel WNV neutralizing antibodies. We also assessed the humoral response to WNV on a single-cell and repertoire level by integrating next generation sequencing (NGS) into our analysis. The results from single-cell analysis indicate persistence of WNV-specific memory B cells and antibody-secreting cells in post-convalescent subjects. These cells exhibited class-switched antibody isotypes. Furthermore, the results suggest that the antibody response itself does not predict the clinical severity of the disease (asymptomatic or symptomatic). Using the nucleotide coding sequences for WNV-specific antibodies derived from single cells, we revealed the ontogeny of expanded WNV-specific clones in the repertoires of recently infected subjects through NGS and bioinformatic analysis. This analysis also indicated that the humoral response to WNV did not depend on an anamnestic response, due to an unlikely previous exposure to the virus. The innovative and integrative approach presented here to analyze the evolution of neutralizing antibodies from natural infection on a single-cell and repertoire level can also be applied to vaccine studies, and could potentially aid the development of therapeutic antibodies and our basic understanding of other infectious diseases.
Collapse
Affiliation(s)
- Konstantinos Tsioris
- Department of Chemical Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg. 76-253, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Of Mice and Men: Protective and Pathogenic Immune Responses to West Nile virus Infection. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:41-48. [PMID: 26120511 DOI: 10.1007/s40475-015-0040-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
West Nile virus, a mosquito-borne flavivirus, first emerged in the Western Hemisphere in 1999. Although the majority of infections are asymptomatic, WNV causes significant morbidity and mortality in a minority of individuals who develop neuroinvasive disease, in particular the elderly and immunocompromised. Research in animal models has demonstrated interactions between WNV and the innate and adaptive immune system, some of which protect the host and others which are deleterious. Studies of disease pathogenesis in humans are less numerous, largely due to the complexities of WNV epidemiology. Human studies that have been done support the notion that innate and adaptive immune responses are delicately balanced and may help or harm the host. Further human investigations are needed to characterize beneficial responses to WNV with the goal of such research leading to therapeutics and effective vaccines in order to control this emerging viral disease.
Collapse
|