1
|
Li M, Qiu Y, Zhu D, Xu X, Tian S, Wang J, Yu Y, Ren Y, Gong G, Zhang H, Xu Y, Zhang J. Editing eIF4E in the Watermelon Genome Using CRISPR/Cas9 Technology Confers Resistance to ZYMV. Int J Mol Sci 2024; 25:11468. [PMID: 39519021 PMCID: PMC11546804 DOI: 10.3390/ijms252111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Watermelon is one of the most important cucurbit crops, but its production is seriously affected by viral infections. Although eIF4E proteins have emerged as the major mediators of the resistance to viral infections, the mechanism underlying the contributions of eIF4E to watermelon disease resistance remains unclear. In this study, three CleIF4E genes and one CleIF(iso)4E gene were identified in the watermelon genome. Among these genes, CleIF4E1 was most similar to other known eIF4E genes. To investigate the role of CleIF4E1, CRISPR/Cas9 technology was used to knock out CleIF4E1 in watermelon. One selected mutant line had an 86 bp deletion that resulted in a frame-shift and the expression of a truncated protein. The homozygous mutant exhibits developmental defects in plant growth, leaf morphology and reduced yield. Furthermore, the mutant was protected against the zucchini yellow mosaic virus, but not the cucumber green mottled mosaic virus. In summary, this study preliminarily clarified the functions of eIF4E proteins in watermelon. The generated data will be useful for elucidating eIF4E-related disease resistance mechanisms in watermelon. The tissue-specific editing of CleIF4E1 in future studies may help to prevent adverse changes to watermelon fertility.
Collapse
Affiliation(s)
- Maoying Li
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yanhong Qiu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Dongyang Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiulan Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Shouwei Tian
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Jinfang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yongtao Yu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yi Ren
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Guoyi Gong
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Haiying Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Yong Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; (Y.Q.); (D.Z.); (X.X.); (J.W.); (Y.Y.); (Y.R.); (G.G.); (H.Z.); (Y.X.)
| |
Collapse
|
2
|
Zhang XZ, Wang J, Tian WJ, You JL, Chi XJ, Wang XJ. Phospho-eIF4E stimulation regulates coronavirus entry by selective expression of cell membrane-residential factors. J Virol 2024; 98:e0194823. [PMID: 38299843 PMCID: PMC10878034 DOI: 10.1128/jvi.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.
Collapse
Affiliation(s)
- Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing-Ling You
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Dong HJ, Wang J, Zhang XZ, Li CC, Liu JF, Wang XJ. Proteomic screening identifies RPLp2 as a specific regulator for the translation of coronavirus. Int J Biol Macromol 2023; 230:123191. [PMID: 36632964 PMCID: PMC9827737 DOI: 10.1016/j.ijbiomac.2023.123191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5'UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- College of Animal Science and Technol, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lu L, Zheng J, Liu B, Wu H, Huang J, Wu L, Li D. The m7G Modification Level and Immune Infiltration Characteristics in Patients with COVID-19. J Multidiscip Healthc 2022; 15:2461-2472. [PMID: 36320552 PMCID: PMC9618243 DOI: 10.2147/jmdh.s385050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose The 7-methylguanosine (m7G)-related genes were used to identify the clinical severity and prognosis of patients with coronavirus disease 2019 (COVID-19) and to identify possible therapeutic targets. Patients and Methods The GSE157103 dataset provides the transcriptional spectrum and clinical information required to analyze the expression of m7G-related genes and the disease subtypes. R language was applied for immune infiltration analysis, functional enrichment analysis, and nomogram model construction. Results Most m7G-related genes were up-regulated in COVID-19 and were closely related to immune cell infiltration. Disease subtypes were grouped using a clustering algorithm. It was found that the m7G-cluster B was associated with higher immune infiltration, lower mechanical ventilation, lower intensive care unit (ICU) status, higher ventilator-free days, and lower m7G scores. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between m7G-cluster A and B were enriched in viral infection and immune-related aspects, including COVID-19 infection; Th17, Th1, and Th2 cell differentiation, and human T-cell leukemia virus 1 infection. Finally, through machine learning, six disease characteristic genes, NUDT4B, IFIT5, LARP1, EIF4E, LSM1, and NUDT4, were screened and used to develop a nomogram model to estimate disease risk. Conclusion The expression of most m7G genes was higher in COVID-19 patients compared with that in non-COVID-19 patients. The m7G-cluster B showed higher immune infiltration and milder symptoms. The predictive nomogram based on the six m7G genes can be used to accurately assess risk.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Jiaolong Zheng
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Haicong Wu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Jiaofeng Huang
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Liqing Wu
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China,Correspondence: Dongliang Li, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, No. 156 Xierhuan Road, Fuzhou, Fujian, 350025, People’s Republic of China, Tel/Fax +86 591 22859128, Email
| |
Collapse
|
6
|
Hong PP, Li C, Niu GJ, Zhao XF, Wang JX. White spot syndrome virus directly activates mTORC1 signaling to facilitate its replication via polymeric immunoglobulin receptor-mediated infection in shrimp. PLoS Pathog 2022; 18:e1010808. [PMID: 36067252 PMCID: PMC9481175 DOI: 10.1371/journal.ppat.1010808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/16/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture. White spot syndrome virus (WSSV) is the causative pathogen of white spot disease (WSD) and represents the most destructive viral disease of shrimp. The virus has evolved various strategies to escape from host defenses or exploit host biological pathways for its reproduction. Studies on viral immune-escape mechanisms can provide new strategies for disease prevention and control in shrimp aquaculture. Mechanistic target of rapamycin (mTOR) plays a central role in the regulation of cell growth and metabolism, which nucleates two distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) with diverse functions at different levels of the signaling pathway. mTORC1 is reported to be exploited by viruses in their reproduction. However, the detail mechanism remains unclear. In this study, we identified a new mechanism of mTOR being hijacked by WSSV in shrimp (Marsupenaeus japonicus). WSSV infects shrimp by its receptor, pIgR and induces the interaction of the intracellular domain of pIgR with Calmodulin. Calmodulin subsequently promotes the activation of AKT by interaction with the pleckstrin homology domain of the kinase. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, S6Ks, for viral protein synthesis. Moreover, mTORC1 also phosphorylates 4EBP1, which results in the separation of 4EBP1 from eIF4E for the translation of viral proteins in shrimp. Our study reveals a novel strategy for WSSV proliferation in shrimp and indicates that the components of mTORC1 may represent potential clinical targets for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
7
|
Wang Y, Qiao X, Li Y, Yang Q, Wang L, Liu X, Wang H, Shen H. Role of the receptor for activated C kinase 1 during viral infection. Arch Virol 2022; 167:1915-1924. [PMID: 35763066 DOI: 10.1007/s00705-022-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Viruses can survive only in living cells, where they depend on the host's enzymatic system for survival and reproduction. Virus-host interactions are complex. On the one hand, hosts express host-restricted factors to protect the host cells from viral infections. On the other hand, viruses recruit certain host factors to facilitate their survival and transmission. The identification of host factors critical to viral infection is essential for comprehending the pathogenesis of contagion and developing novel antiviral therapies that specifically target the host. Receptor for activated C kinase 1 (RACK1), an evolutionarily conserved host factor that exists in various eukaryotic organisms, is a promising target for antiviral therapy. This review primarily summarizes the roles of RACK1 in regulating different viral life stages, particularly entry, replication, translation, and release.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuhan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingru Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Kershanskaya OI, Yessenbaeva GL, Nelidova DS, Karabekova AN, Sadullaeva ZN. CRISPR/Cas genome editing perspectives for barley breeding. PHYSIOLOGIA PLANTARUM 2022; 174:e13686. [PMID: 35451132 DOI: 10.1111/ppl.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The CRISPR/Cas9 technology shows potential to improve crop breeding efficiency and antiviral defense. The interest in DNA editing in crops has grown due to the possibility of increasing the resistance of different plants to many viruses. Our aim was to create an elite disease-resistant local barley cultivar using CRISPR/Cas9 biotechnology. For this purpose, we used CRISPR/Cas 9-eIF4E with the eukaryotic translation initiation factor 4E (eIF4E) barley gene to edit the genomes of five local Kazakhstan barley cultivars. After identifying the single guide RNA (sgRNA) target sequences, they were synthesized and cloned into the CRISPR-plant vector before being introduced into barley cells via our own patented Agrobacterium germ-line transformation technique. Barley plants eIF4E-modified were successfully obtained and were resistant to virus infection. Based on our research, the CRISPR/Cas9 system for plant genome editing could be a prospect for applying this breakthrough biotechnology in barley breeding.
Collapse
Affiliation(s)
- Olga I Kershanskaya
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Gulvira L Yessenbaeva
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Darya S Nelidova
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Aizhan N Karabekova
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Zarina N Sadullaeva
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
9
|
Ramdhan P, Li C. Targeting Viral Methyltransferases: An Approach to Antiviral Treatment for ssRNA Viruses. Viruses 2022; 14:v14020379. [PMID: 35215972 PMCID: PMC8880702 DOI: 10.3390/v14020379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Methyltransferase enzymes have been associated with different processes within cells and viruses. Specifically, within viruses, methyltransferases are used to form the 5′cap-0 structure for optimal evasion of the host innate immune system. In this paper, we seek to discuss the various methyltransferases that exist within single-stranded RNA (ssRNA) viruses along with their respective inhibitors. Additionally, the importance of motifs such as the KDKE tetrad and glycine-rich motif in the catalytic activity of methyltransferases is discussed.
Collapse
|
10
|
Wang H, Liu J, Zhang Y, Sun L, Zhao M, Luo B. Eukaryotic initiating factor eIF4E is targeted by EBV-encoded miR-BART11-3p and regulates cell cycle and apoptosis in EBV-associated gastric carcinoma. Virus Genes 2021; 57:358-368. [PMID: 34146250 DOI: 10.1007/s11262-021-01854-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) is a component of the eukaryotic translation initiation factor 4F, a significant complex in the protein translation process. It has been found to be closely related to many human tumors, such as gastric carcinoma. It is known that the Epstein-Barr virus (EBV) upregulates eIF4E in various ways in nasopharyngeal carcinoma. However, there are very few studies on eIF4E in EBV-associated gastric carcinoma. We found that the expression level of eIF4E in EBV-associated gastric carcinoma was lower than other types of gastric carcinoma, and the downregulation of eIF4E could lead to increased apoptosis of gastric carcinoma cells, retardation at S phase, and decreased cell migration. The dual luciferase reporter experiment showed that EBV-miR-BART11-3p could directly target the 3'-UTR region of eIF4E, and BART11-3p is the key factor leading to the downregulation of eIF4E. It could provide a new evidence for EBV-regulating host gene to affect the development of gastric carcinoma.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Juanjuan Liu
- School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Sandong, PR China
| | - Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University Medical College, 308 NingXia Road, Qingdao, 266021, PR China
| | - Menghe Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Sandong, PR China.
| |
Collapse
|
11
|
Targeting the DEAD-Box RNA Helicase eIF4A with Rocaglates-A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics. Microorganisms 2021; 9:microorganisms9030540. [PMID: 33807988 PMCID: PMC8001013 DOI: 10.3390/microorganisms9030540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs and vaccines are developed and rolled out. Viruses depend on the host’s protein synthesis machinery for replication. Several natural compounds that target the cellular DEAD-box RNA helicase eIF4A, a key component of the eukaryotic translation initiation complex eIF4F, have emerged as potential broad-spectrum antivirals. Rocaglates, a group of flavaglines of plant origin that clamp mRNAs with highly structured 5′ untranslated regions (5′UTRs) onto the surface of eIF4A through specific stacking interactions, exhibit the largest selectivity and potential therapeutic indices among all known eIF4A inhibitors. Their unique mechanism of action limits the inhibitory effect of rocaglates to the translation of eIF4A-dependent viral mRNAs and a minor fraction of host mRNAs exhibiting stable RNA secondary structures and/or polypurine sequence stretches in their 5′UTRs, resulting in minimal potential toxic side effects. Maintaining a favorable safety profile while inducing efficient inhibition of a broad spectrum of RNA viruses makes rocaglates into primary candidates for further development as pan-antiviral therapeutics.
Collapse
|
12
|
Khan MAAK, Islam ABMMK. SARS-CoV-2 Proteins Exploit Host's Genetic and Epigenetic Mediators for the Annexation of Key Host Signaling Pathways. Front Mol Biosci 2021; 7:598583. [PMID: 33585554 PMCID: PMC7872968 DOI: 10.3389/fmolb.2020.598583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The constant rise of the death toll and cases of COVID-19 has made this pandemic a serious threat to human civilization. Understanding of host-SARS-CoV-2 interaction in viral pathogenesis is still in its infancy. In this study, we utilized a blend of computational and knowledgebase approaches to model the putative virus-host interplay in host signaling pathways by integrating the experimentally validated host interactome proteins and differentially expressed host genes in SARS-CoV-2 infection. While searching for the pathways in which viral proteins interact with host proteins, we discovered various antiviral immune response pathways such as hypoxia-inducible factor 1 (HIF-1) signaling, autophagy, retinoic acid-inducible gene I (RIG-I) signaling, Toll-like receptor signaling, fatty acid oxidation/degradation, and IL-17 signaling. All these pathways can be either hijacked or suppressed by the viral proteins, leading to improved viral survival and life cycle. Aberration in pathways such as HIF-1 signaling and relaxin signaling in the lungs suggests the pathogenic lung pathophysiology in COVID-19. From enrichment analysis, it was evident that the deregulated genes in SARS-CoV-2 infection might also be involved in heart development, kidney development, and AGE-RAGE signaling pathway in diabetic complications. Anomalies in these pathways might suggest the increased vulnerability of COVID-19 patients with comorbidities. Moreover, we noticed several presumed infection-induced differentially expressed transcription factors and epigenetic factors, such as miRNAs and several histone modifiers, which can modulate different immune signaling pathways, helping both host and virus. Our modeling suggests that SARS-CoV-2 integrates its proteins in different immune signaling pathways and other cellular signaling pathways for developing efficient immune evasion mechanisms while leading the host to a more complicated disease condition. Our findings would help in designing more targeted therapeutic interventions against SARS-CoV-2.
Collapse
|
13
|
Barrado-Gil L, Del Puerto A, Muñoz-Moreno R, Galindo I, Cuesta-Geijo MÁ, Urquiza J, Nistal-Villán E, Maluquer de Motes C, Alonso C. African Swine Fever Virus Ubiquitin-Conjugating Enzyme Interacts With Host Translation Machinery to Regulate the Host Protein Synthesis. Front Microbiol 2020; 11:622907. [PMID: 33384682 PMCID: PMC7771050 DOI: 10.3389/fmicb.2020.622907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023] Open
Abstract
African Swine Fever virus (ASFV) causes one of the most relevant emerging diseases affecting swine, now extended through three continents. The virus has a large coding capacity to deploy an arsenal of molecules antagonizing the host functions. In the present work, we have studied the only known E2 viral-conjugating enzyme, UBCv1 that is encoded by the I215L gene of ASFV. UBCv1 was expressed as an early expression protein that accumulates throughout the course of infection. This versatile protein, bound several types of polyubiquitin chains and its catalytic domain was required for enzymatic activity. High throughput mass spectrometry analysis in combination with a screening of an alveolar macrophage library was used to identify and characterize novel UBCv1-host interactors. The analysis revealed interaction with the 40S ribosomal protein RPS23, the cap-dependent translation machinery initiation factor eIF4E, and the E3 ubiquitin ligase Cullin 4B. Our data show that during ASFV infection, UBCv1 was able to bind to eIF4E, independent from the cap-dependent complex. Our results provide novel insights into the function of the viral UBCv1 in hijacking cellular components that impact the mTORC signaling pathway, the regulation of the host translation machinery, and the cellular protein expression during the ASFV lifecycle.
Collapse
Affiliation(s)
- Lucía Barrado-Gil
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana Del Puerto
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Raquel Muñoz-Moreno
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Jesús Urquiza
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Instituto de Medicina Molecular Aplicada (IMMA), Madrid, Spain
| | - Carlos Maluquer de Motes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Covadonga Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
14
|
Atarashi H, Jayasinghe WH, Kwon J, Kim H, Taninaka Y, Igarashi M, Ito K, Yamada T, Masuta C, Nakahara KS. Artificially Edited Alleles of the Eukaryotic Translation Initiation Factor 4E1 Gene Differentially Reduce Susceptibility to Cucumber Mosaic Virus and Potato Virus Y in Tomato. Front Microbiol 2020; 11:564310. [PMID: 33362728 PMCID: PMC7758215 DOI: 10.3389/fmicb.2020.564310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/11/2020] [Indexed: 01/27/2023] Open
Abstract
Eukaryotic translation initiation factors, including eIF4E, are susceptibility factors for viral infection in host plants. Mutation and double-stranded RNA-mediated silencing of tomato eIF4E genes can confer resistance to viruses, particularly members of the Potyvirus genus. Here, we artificially mutated the eIF4E1 gene on chromosome 3 of a commercial cultivar of tomato (Solanum lycopersicum L.) by using CRISPR/Cas9. We obtained three alleles, comprising two deletions of three and nine nucleotides (3DEL and 9DEL) and a single nucleotide insertion (1INS), near regions that encode amino acid residues important for binding to the mRNA 5' cap structure and to eIF4G. Plants homozygous for these alleles were termed 3DEL, 9DEL, and 1INS plants, respectively. In accordance with previous studies, inoculation tests with potato virus Y (PVY; type member of the genus Potyvirus) yielded a significant reduction in susceptibility to the N strain (PVYN), but not to the ordinary strain (PVYO), in 1INS plants. 9DEL among three artificial alleles had a deleterious effect on infection by cucumber mosaic virus (CMV, type member of the genus Cucumovirus). When CMV was mechanically inoculated into tomato plants and viral coat accumulation was measured in the non-inoculated upper leaves, the level of viral coat protein was significantly lower in the 9DEL plants than in the parental cultivar. Tissue blotting of microperforated inoculated leaves of the 9DEL plants revealed significantly fewer infection foci compared with those of the parental cultivar, suggesting that 9DEL negatively affects the initial steps of infection with CMV in a mechanically inoculated leaf. In laboratory tests, viral aphid transmission from an infected susceptible plant to 9DEL plants was reduced compared with the parental control. Although many pathogen resistance genes have been discovered in tomato and its wild relatives, no CMV resistance genes have been used in practice. RNA silencing of eIF4E expression has previously been reported to not affect susceptibility to CMV in tomato. Our findings suggest that artificial gene editing can introduce additional resistance to that achieved with mutagenesis breeding, and that edited eIF4E alleles confer an alternative way to manage CMV in tomato fields.
Collapse
Affiliation(s)
- Hiroki Atarashi
- Research and Development Division, Kikkoman Corporation, Noda, Chiba, Japan
| | - Wikum Harshana Jayasinghe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.,Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Joon Kwon
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yosuke Taninaka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kotaro Ito
- Research and Development Division, Kikkoman Corporation, Noda, Chiba, Japan
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Pham TN, Spaulding C, Munshi HG. Controlling TIME: How MNK Kinases Function to Shape Tumor Immunity. Cancers (Basel) 2020; 12:cancers12082096. [PMID: 32731503 PMCID: PMC7465005 DOI: 10.3390/cancers12082096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
Collapse
Affiliation(s)
- Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| |
Collapse
|
16
|
Global Analysis of Alternative Splicing Difference in Peripheral Immune Organs between Tongcheng Pigs and Large White Pigs Artificially Infected with PRRSV In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4045204. [PMID: 32083129 PMCID: PMC7011390 DOI: 10.1155/2020/4045204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022]
Abstract
Alternative splicing (AS) plays a significant role in regulating gene expression at the transcriptional level in eukaryotes. Flexibility and diversity of transcriptome and proteome can be significantly increased through alternative splicing of genes. In the present study, transcriptome data of peripheral immune organs including spleen and inguinal lymph nodes (ILN) were used to identify AS difference between PRRSV-resistant Tongcheng (TC) pigs and PRRSV-susceptible Large White (LW) pigs artificially infected with porcine reproductive and respiratory syndrome virus (PRRSV) in vivo. The results showed that PRRSV infection induced global alternative splicing events (ASEs) with different modes. Among them, 373 genes and 595 genes in the spleen and ILN of TC pigs, while 458 genes and 560 genes in the spleen and ILN of LW pigs had significantly differential ASEs. Alternative splicing was subject to tissue-specific and lineage-specific regulation in response to PRRSV infection. Enriched GO terms and pathways showed that genes with differential ASEs played important roles in transcriptional regulation, immune response, metabolism, and apoptosis. Furthermore, a splicing factor associated with apoptosis, SRSF4, was significantly upregulated in LW pigs. Functional analysis on apoptosis associated genes was validated by RT-PCR and DNA sequencing. These findings revealed different response to PRRSV between PRRSV-resistant TC pigs and PRRSV-susceptible LW pigs at the level of alternative splicing, suggesting the potential relationship between AS and disease resistance to PRRSV.
Collapse
|
17
|
Chen S, Feng C, Fang Y, Zhou X, Xu L, Wang W, Kong X, P Peppelenbosch M, Pan Q, Yin Y. The Eukaryotic Translation Initiation Factor 4F Complex Restricts Rotavirus Infection via Regulating the Expression of IRF1 and IRF7. Int J Mol Sci 2019; 20:ijms20071580. [PMID: 30934842 PMCID: PMC6480131 DOI: 10.3390/ijms20071580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
The eIF4F complex is a translation initiation factor that closely regulates translation in response to a multitude of environmental conditions including viral infection. How translation initiation factors regulate rotavirus infection remains poorly understood. In this study, the knockdown of the components of the eIF4F complex using shRNA and CRISPR/Cas9 were performed, respectively. We have demonstrated that loss-of-function of the three components of eIF4F, including eIF4A, eIF4E and eIF4G, remarkably promotes the levels of rotavirus genomic RNA and viral protein VP4. Consistently, knockdown of the negative regulator of eIF4F and programmed cell death protein 4 (PDCD4) inhibits the expression of viral mRNA and the VP4 protein. Mechanically, we confirmed that the silence of the eIF4F complex suppressed the protein level of IRF1 and IRF7 that exert potent antiviral effects against rotavirus infection. Thus, these results demonstrate that the eIF4F complex is an essential host factor restricting rotavirus replication, revealing new targets for the development of new antiviral strategies against rotavirus infection.
Collapse
Affiliation(s)
- Sunrui Chen
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Cui Feng
- Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yan Fang
- College of Basic Medicine, Shannxi University of Chinese Medicine, Xianyang 712046, China.
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wenshi Wang
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Xiangdong Kong
- Department of Materials Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | - Qiuwei Pan
- Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China.
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Yuebang Yin
- Erasmus MC-University Medical Center, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Khan MA. Phosphorylation of translation initiation factor eIFiso4E promotes translation through enhanced binding to potyvirus VPg. J Biochem 2019; 165:167-176. [PMID: 30371907 DOI: 10.1093/jb/mvy091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022] Open
Abstract
Interactions of phosphorylated eIFiso4E binding to VPg as a function of temperature and ionic strength were assessed employing fluorescence spectroscopic. Phosphorylation increased the binding affinity ∼3.5-fold between VPg and eIFiso4E under equilibrium conditions. Binding affinity of VPg for eIFiso4Ep correlates with the ability to enhance in vitro protein synthesis. Addition of VPg and eIFiso4Ep together to Dep WGE enhances the translation for both uncapped and capped mRNA. However, capped mRNA translation was inhibited with addition of eIFiso4Ep alone in dep WGE, suggesting that phosphorylation prevents the cap binding and favours the VPg binding to promotes translation. Temperature dependence showed that the phosphorylated form of the eIFiso4E is preferred for complex formation. A van't Hoff analysis reveals that eIFiso4Ep binding to VPg was enthalpy driven (ΔH = -43.9 ± 0.3 kJ.mol-1) and entropy-opposed (ΔS = -4.3 ± 0.1 J.mol-1K-1). Phosphorylation increased the enthalpic contributions ∼33% for eIFiso4Ep-VPg complex. The thermodynamic values and ionic strength dependence of binding data suggesting that phosphorylation increased hydrogen-bonding and decreased hydrophobic interactions, which leads to more stable complex formation and favour efficient viral translation. Overall these data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Chemistry & Biochemistry, Hunter College of the City University of New York, 695 Park Ave, New York, USA.,Department of Life Sciences, College of Science and General Studies, Alfaisal University, Takhasusi Street, P.O. Box-50927, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Montero H, Pérez-Gil G, Sampieri CL. Eukaryotic initiation factor 4A (eIF4A) during viral infections. Virus Genes 2019; 55:267-273. [PMID: 30796742 PMCID: PMC7088766 DOI: 10.1007/s11262-019-01641-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
The helicase eIF4A is part of the cellular eIF4F translation initiation complex. The main functions of eIF4A are to remove secondary complex structures within the 5′-untranslated region and to displace proteins attached to mRNA. As intracellular parasites, viruses regulate the processes involved in protein synthesis, and different mechanisms related to controlling translation factors, such as eIF4A, have been found. The inhibitors of this factor are currently known; these substances could be used in the near future as part of antiviral pharmacological therapies in instances of replication cycles in which eIF4A is required. In this review, the particularities of how some viruses make use of this initiation factor to synthesize their proteins are discussed.
Collapse
Affiliation(s)
- Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico.
| | - Gustavo Pérez-Gil
- Centro de Ciencias Biomédicas, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n., Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Clara L Sampieri
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n. Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| |
Collapse
|
20
|
Hassanzadeh G, Naing T, Graber T, Jafarnejad SM, Stojdl DF, Alain T, Holcik M. Characterizing Cellular Responses During Oncolytic Maraba Virus Infection. Int J Mol Sci 2019; 20:ijms20030580. [PMID: 30700020 PMCID: PMC6387032 DOI: 10.3390/ijms20030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
The rising demand for powerful oncolytic virotherapy agents has led to the identification of Maraba virus, one of the most potent oncolytic viruses from Rhabdoviridae family which displays high selectivity for killing malignant cells and low cytotoxicity in normal cells. Although the virus is readied to be used for clinical trials, the interactions between the virus and the host cells is still unclear. Using a newly developed interferon-sensitive mutant Maraba virus (MG1), we have identified two key regulators of global translation (4E-BP1 and eIF2α) as being involved in the regulation of protein synthesis in the infected cells. Despite the translational arrest upon viral stress, we showed an up-regulation of anti-apoptotic Bcl-xL protein that provides a survival benefit for the host cell, yet facilitates effective viral propagation. Given the fact that eIF5B canonically regulates 60S ribosome subunit end joining and is able to replace the role of eIF2 in delivering initiator tRNA to the 40S ribosome subunit upon the phosphorylation of eIF2α we have tested whether eIF5B mediates the translation of target mRNAs during MG1 infection. Our results show that the inhibition of eIF5B significantly down-regulates the level of Bcl-xL steady-state mRNA, thus indirectly attenuates viral propagation.
Collapse
Affiliation(s)
- Golnoush Hassanzadeh
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Thet Naing
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Tyson Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Seyed Mehdi Jafarnejad
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - David F Stojdl
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Martin Holcik
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
21
|
Dong HJ, Wang ZH, Meng W, Li CC, Hu YX, Zhou L, Wang XJ. The Natural Compound Homoharringtonine Presents Broad Antiviral Activity In Vitro and In Vivo. Viruses 2018; 10:E601. [PMID: 30388805 PMCID: PMC6266276 DOI: 10.3390/v10110601] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
To complement traditional antivirals, natural compounds that act via host targets and present high barriers to resistance are of increasing interest. In the work reported here, we detected that homoharringtonine (HHT) presents effective antiviral activity. HHT completely inhibited infections of vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and porcine epidemic diarrhea virus (PEDV) at concentrations of 50, 100, and 500 nM in cell cultures, respectively. Treatment with HHT at doses of 0.05 or 0.2 mg/kg significantly reduced viral load and relieved severe symptoms in PEDV- or NDV-infected animals. HHT treatment, however, moderately inhibited avian influenza virus (AIV) infection, suggesting its potent antiviral action is restricted to a number of classes of RNA viruses. In this study, we also observed that HHT actively inhibited herpes simplex virus type 1 (HSV-1) replication with a 50% inhibitory concentration (IC50) of 139 nM; the treatment with HHT at 1000 nM led to reductions of three orders of magnitude. Moreover, HHT antagonized the phosphorylation level of endogenous and exogenous eukaryotic initiation factor 4E (p-eIF4E), which might regulate the selective translation of specific messenger RNA (mRNA). HHT provides a starting point for further progress toward the clinical development of broad-spectrum antivirals.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Zhao-Hua Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yan-Xin Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression. Viruses 2016; 8:v8100287. [PMID: 27763553 PMCID: PMC5086619 DOI: 10.3390/v8100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5' cap with 2'-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.
Collapse
|
23
|
Martins N, Imler JL, Meignin C. Discovery of novel targets for antivirals: learning from flies. Curr Opin Virol 2016; 20:64-70. [PMID: 27657660 DOI: 10.1016/j.coviro.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
Developing antiviral drugs is challenging due to the small number of targets in viruses, and the rapid evolution of viral genes. Animals have evolved a number of efficient antiviral defence mechanisms, which can serve as a source of inspiration for novel therapies. The genetically tractable insect Drosophila belongs to the most diverse group of animals. Genetic and transcriptomic analyses have recently identified Drosophila genes encoding viral restriction factors. Some of them represent evolutionary novelties and their characterization may provide hints for the design of directly acting antivirals. In addition, functional screens revealed conserved host factors required for efficient viral translation, such as the ribosomal protein RACK1 and the release factor Pelo. These proteins are promising candidates for host-targeted antivirals.
Collapse
Affiliation(s)
- Nelson Martins
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
24
|
Le Sage V, Cinti A, Amorim R, Mouland AJ. Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway. Viruses 2016; 8:v8060152. [PMID: 27231932 PMCID: PMC4926172 DOI: 10.3390/v8060152] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of gene expression, translation and various metabolic processes. Multiple extracellular (growth factors) and intracellular (energy status) molecular signals as well as a variety of stressors are integrated into the mTOR pathway. Viral infection is a significant stress that can activate, reduce or even suppress the mTOR signaling pathway. Consequently, viruses have evolved a plethora of different mechanisms to attack and co-opt the mTOR pathway in order to make the host cell a hospitable environment for replication. A more comprehensive knowledge of different viral interactions may provide fruitful targets for new antiviral drugs.
Collapse
Affiliation(s)
- Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Alessandro Cinti
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
| |
Collapse
|
25
|
Sokolowski NA, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother 2015; 4:207-19. [PMID: 27512683 PMCID: PMC4918397 DOI: 10.2147/ov.s66086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oncolytic virotherapy exploits the properties of human viruses to naturally cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV) has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future.
Collapse
Affiliation(s)
- Nicolas As Sokolowski
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, NSW, Australia
| |
Collapse
|
26
|
Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes. Cell Death Differ 2015; 23:828-40. [PMID: 26586572 DOI: 10.1038/cdd.2015.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
Cleavage of eukaryotic translation initiation factor 4G (eIF4G) by enterovirus proteases during infection leads to the shutoff of cellular cap-dependent translation, but does not affect the initiation of cap-independent translation of mRNAs containing an internal ribosome entry site (IRES). Death-associated protein 5 (DAP5), a structural homolog of eIF4G, is a translation initiation factor specific for IRES-containing mRNAs. Coxsackievirus B3 (CVB3) is a positive single-stranded RNA virus and a primary causal agent of human myocarditis. Its RNA genome harbors an IRES within the 5'-untranslated region and is translated by a cap-independent, IRES-driven mechanism. Previously, we have shown that DAP5 is cleaved during CVB3 infection. However, the protease responsible for cleavage, cleavage site and effects on the translation of target genes during CVB3 infection have not been investigated. In the present study, we demonstrated that viral protease 2A but not 3C is responsible for DAP5 cleavage, generating 45- and 52-kDa N- (DAP5-N) and C-terminal (DAP5-C) fragments, respectively. By site-directed mutagenesis, we found that DAP5 is cleaved at amino acid G434. Upon cleavage, DAP5-N largely translocated to the nucleus at the later time points of infection, whereas the DAP5-C largely remained in the cytoplasm. Overexpression of these DAP5 truncates demonstrated that DAP5-N retained the capability of initiating IRES-driven translation of apoptosis-associated p53, but not the prosurvival Bcl-2 (B-cell lymphoma 2) when compared with the full-length DAP5. Similarly, DAP5-N expression promoted CVB3 replication and progeny release; on the other hand, DAP5-C exerted a dominant-negative effect on cap-dependent translation. Taken together, viral protease 2A-mediated cleavage of DAP5 results in the production of two truncates that exert differential effects on protein translation of the IRES-containing genes, leading to enhanced host cell death.
Collapse
|
27
|
Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication. Antiviral Res 2015; 124:11-9. [PMID: 26526587 DOI: 10.1016/j.antiviral.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 01/27/2023]
Abstract
Hepatitis E virus (HEV) infection, one of the foremost causes of acute hepatitis, is becoming a health problem of increasing magnitude. As other viruses, HEV exploits elements from host cell biochemistry, but we understand little as to which components of the human hepatocellular machinery are perverted for HEV multiplication. It is, however, known that the eukaryotic translation initiation factors 4F (eIF4F) complex, the key regulator of the mRNA-ribosome recruitment phase of translation initiation, serves as an important component for the translation and replication of many viruses. Here we aim to investigate the role of three subunits of the eIF4F complex: eukaryotic translation initiation factor 4A (eIF4A), eukaryotic translation initiation factor 4G (eIF4G) and eukaryotic translation initiation factor 4E (eIF4E) in HEV replication. We found that efficient replication of HEV requires eIF4A, eIF4G and eIF4E. Consistently, the negative regulatory factors of this complex: programmed cell death 4 (PDCD4) and eIF4E-binding protein 1 (4E-BP1) exert anti-HEV activities, which further illustrates the requirement for eIF4A and eIF4E in supporting HEV replication. Notably, phosphorylation of eIF4E induced by MNK1/2 activation is not involved in HEV replication. Although ribavirin and interferon-α (IFN-α), the most often-used off-label drugs for treating hepatitis E, interact with this complex, their antiviral activities are independent of eIF4E. In contrast, eIF4E silencing provokes enhanced anti-HEV activity of these compounds. Thus, HEV replication requires eIF4F complex and targeting essential elements of this complex provides important clues for the development of novel antiviral therapy against HEV.
Collapse
|