1
|
Meewan I, Panmanee J, Petchyam N, Lertvilai P. HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES. Sci Rep 2024; 14:9262. [PMID: 38649402 PMCID: PMC11035669 DOI: 10.1038/s41598-024-59933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.
Collapse
Affiliation(s)
- Ittipat Meewan
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pichaya Lertvilai
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
2
|
Mallya S, Pissurlenkar RRS. In-silico Investigations for the Identification of Novel Inhibitors Targeting Hepatitis C Virus RNA-dependent RNA Polymerase. Med Chem 2024; 20:52-62. [PMID: 37815178 DOI: 10.2174/0115734064255683230919071808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Hepatitis C is an inflammatory condition of the liver caused by the hepatitis C virus, exhibiting acute and chronic manifestations with severity ranging from mild to severe and lifelong illnesses leading to liver cirrhosis and cancer. According to the World Health Organization's global estimates, a population of about 58 million have chronic hepatitis C virus infection, with around 1.5 million new infections occurring every year. OBJECTIVE The present study aimed to identify novel molecules targeting the Hepatitis C viral RNA Dependent RNA polymerases, which play a crucial role in genome replication, mRNA synthesis, etc. Methods: Structure-based virtual screening of chemical libraries of small molecules was done using AutoDock/Vina. The top-ranking pose for every ligand was complexed with the protein and used for further protein-ligand interaction analysis using the Protein-ligand interaction Profiler. Molecules from virtual screening were further assessed using the pkCSM web server. The proteinligand interactions were further subjected to molecular dynamics simulation studies to establish dynamic stability. RESULTS Molecular docking-based virtual screening of the database of small molecules, followed by screening based on pharmacokinetic and toxicity parameters, yielded eight probable RNA Dependent RNA polymerase inhibitors. The docking scores for the proposed candidates ranged from - 8.04 to -9.10 kcal/mol. The potential stability of the ligands bound to the target protein was demonstrated by molecular dynamics simulation studies. CONCLUSION Data from exhaustive computational studies proposed eight molecules as potential anti-viral candidates, targeting Hepatitis C viral RNA Dependent RNA polymerases, which can be further evaluated for their biological potential.
Collapse
Affiliation(s)
- Shailaja Mallya
- Department of Pharmacology, Goa College of Pharmacy, Panaji Goa, 403001 India
| | | |
Collapse
|
3
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
4
|
Irfan A, Faisal S, Ahmad S, Saif MJ, Zahoor AF, Khan SG, Javid J, Al-Hussain SA, Muhammed MT, Zaki MEA. An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches. Biomedicines 2023; 11:3085. [PMID: 38002085 PMCID: PMC10669698 DOI: 10.3390/biomedicines11113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Benzofuran, 1,3,4-oxadiazole, and 1,2,4-triazole are privileged heterocyclic moieties that display the most promising and wide spectrum of biological activities against a wide variety of diseases. In the current study, benzofuran-1,3,4-oxadiazole BF1-BF7 and benzofuran-1,2,4-triazole compounds BF8-BF15 were tested against HCV NS5B RNA-dependent RNA polymerase (RdRp) utilizing structure-based screening via a computer-aided drug design (CADD) approach. A molecular docking approach was applied to evaluate the binding potential of benzofuran-appended 1,3,4-oxadiazole and 1,2,4-triazole BF1-BF15 molecules. Benzofuran-1,3,4-oxadiazole scaffolds BF1-BF7 showed lesser binding affinities (-12.63 to -14.04 Kcal/mol) than benzofuran-1,2,4-triazole scaffolds BF8-BF15 (-14.11 to -16.09 Kcal/mol) against the HCV NS5B enzyme. Molecular docking studies revealed the excellent binding affinity scores exhibited by benzofuran-1,2,4-triazole structural motifs BF-9 (-16.09 Kcal/mol), BF-12 (-15.75 Kcal/mol), and BF-13 (-15.82 Kcal/mol), respectively, which were comparatively better than benzofuran-based HCV NS5B inhibitors' standard reference drug Nesbuvir (-15.42 Kcal/mol). A molecular dynamics simulation assay was also conducted to obtain valuable insights about the enzyme-compounds interaction profile and structural stability, which indicated the strong intermolecular energies of the BF-9+NS5B complex and the BF-12+NS5B complex as per the MM-PBSA method, while the BF-12+NS5B complex was the most stable system as per the MM-GBSA calculation. The drug-likeness and ADMET studies of all the benzofuran-1,2,4-triazole derivatives BF8-BF15 revealed that these compounds possessed good medicinal chemistry profiles in agreement with all the evaluated parameters for being drugs. The molecular docking affinity scores, MM-PBSA/MM-GBSA and MD-simulation stability analysis, drug-likeness profiling, and ADMET study assessment indicated that N-4-fluorophenyl-S-linked benzofuran-1,2,4-triazole BF-12 could be a future promising anti-HCV NS5B RdRp inhibitor therapeutic drug candidate that has a structural agreement with the Nesbuvir standard reference drug.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Jamila Javid
- Department of Chemistry, University of Sialkot, Sialkot 51040, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32260, Turkey
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| |
Collapse
|
5
|
Soliman MA, Mahmoud AM, Elzanfaly ES, Abdel Fattah LE. Electrochemical sensor based on bio-inspired molecularly imprinted polymer for sofosbuvir detection. RSC Adv 2023; 13:25129-25139. [PMID: 37614794 PMCID: PMC10443622 DOI: 10.1039/d3ra03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
The electropolymerized molecularly imprinted polymers (MIP) have enabled the utilization of various functional monomers with superior selective recognition of the target analyte template. Methyldopa is an attractive synthetic dopamine analogue which has phenolic, carboxylic, and aminic functional groups. In this research, methyldopa was exploited to fabricate selective MIPs, for the detection of sofosbuvir (SFB), by a simple electropolymerization step onto a disposable pencil graphite electrode (PGE) substrate. The interaction between methyldopa, as a functional monomer, and a template has been investigated experimentally by UV spectroscopy. A polymethyldopa (PMD) polymer was electrografted onto PGE in the presence of SFB as a template. X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (ESI), and cyclic voltammetry (CV) were used for the characterization of the fabricated sensor. Differential pulse voltammetry (DPV) of a ferrocyanide/ferricyanide redox probe was employed to indirectly detect the SFB binding to the MIP cavities. The sensor shows a reproducible and linear response over a dynamic linear range from 1.0 × 10-11 M to 1.0 × 10-13 M of SFB with a limit of detection of 3.1 × 10-14 M. The sensor showed high selectivity for the target drug over structurally similar and co-administered interfering drugs, and this enabled its application to detect SFB in its pharmaceutical dosage form and in spiked human plasma samples.
Collapse
Affiliation(s)
- Mahmoud A Soliman
- Misr University for Science and Technology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Department of Analytical Chemistry 6th of October City 12566 Egypt
| | - Amr M Mahmoud
- Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry Cairo 12613 Egypt
| | - Eman S Elzanfaly
- Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry Cairo 12613 Egypt
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University Cairo Egypt
| | - Laila E Abdel Fattah
- Misr University for Science and Technology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Department of Analytical Chemistry 6th of October City 12566 Egypt
- Cairo University, Faculty of Pharmacy, Department of Analytical Chemistry Cairo 12613 Egypt
| |
Collapse
|
6
|
Vishwanath D, Shete-Aich A, Honnegowda MB, Anand MP, Chidambaram SB, Sapkal G, Basappa B, Yadav PD. Discovery of Hybrid Thiouracil-Coumarin Conjugates as Potential Novel Anti-SARS-CoV-2 Agents Targeting the Virus's Polymerase "RdRp" as a Confirmed Interacting Biomolecule. ACS OMEGA 2023; 8:27056-27066. [PMID: 37546653 PMCID: PMC10398856 DOI: 10.1021/acsomega.3c02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
The coronavirus (COVID-19) pandemic, along with its various strains, has emerged as a global health crisis that has severely affected humankind and posed a great challenge to the public health system of affected countries. The replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly depends on RNA-dependent RNA polymerase (RdRp), a key enzyme that is involved in RNA synthesis. In this regard, we designed, synthesized, and characterized hybrid thiouracil and coumarin conjugates (HTCAs) by ether linkage, which were found to have anti-SARS-CoV-2 properties. Our in vitro real-time quantitative reverse transcription PCR (RT-qPCR) results confirmed that compounds such as 5d, 5e, 5f, and 5i inhibited the replication of SARS-CoV-2 with EC50 values of 14.3 ± 0.14, 6.59 ± 0.28, 86.3 ± 1.45, and 124 ± 2.38 μM, respectively. Also, compound 5d displayed significant antiviral activity against human coronavirus 229E (HCoV-229E). In addition, some of the HTCAs reduced the replication of SARS-CoV-2 variants such as D614G and B.617.2. In parallel, HTCAs in uninfected Vero CCL-81 cells indicated that no cytotoxicity was noticed. Furthermore, we compared the in silico interaction of lead compounds 5d and 5e toward the cocrystal structure of Suramin and RdRp polymerase with Remdesvir triphosphate, which showed that compounds 5d, 5e, and Remdesvir triphosphate (RTP) share a common catalytical site of RdRp but not Suramin. Additionally, the in silico ADMET properties predicted for the lead HTCAs and RTP showed that the maximum therapeutic doses recommended for compounds 5d and 5e were comparable to those of RTP. Concurrently, the pharmacokinetics of 5d was characterized in male Wistar Albino rats by administering a single oral gavage at a dose of 10 mg/kg, which gave a Cmax value of 0.22 μg/mL and a terminal elimination half-life period of 73.30 h. In conclusion, we established a new chemical entity that acts as a SARS-CoV-2 viral inhibitor with minimal or no toxicity to host cells in the rodent model, encouraging us to proceed with preclinical studies.
Collapse
Affiliation(s)
- Divakar Vishwanath
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Anita Shete-Aich
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| | | | - Mahesh Padukudru Anand
- Department
of Respiratory Medicine, JSS Medical College, and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Gajanan Sapkal
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Pragya D. Yadav
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| |
Collapse
|
7
|
Shannon A, Canard B. Kill or corrupt: Mechanisms of action and drug-resistance of nucleotide analogues against SARS-CoV-2. Antiviral Res 2023; 210:105501. [PMID: 36567022 PMCID: PMC9773703 DOI: 10.1016/j.antiviral.2022.105501] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Nucleoside/tide analogues (NAs) have long been used in the fight against viral diseases, and now present a promising option for the treatment of COVID-19. Once activated to the 5'-triphosphate state, NAs act by targeting the viral RNA-dependent RNA-polymerase for incorporation into the viral RNA genome. Incorporated analogues can either 'kill' (terminate) synthesis, or 'corrupt' (genetically or chemically) the RNA. Against coronaviruses, the use of NAs has been further complicated by the presence of a virally encoded exonuclease domain (nsp14) with proofreading and repair capacities. Here, we describe the mechanism of action of four promising anti-COVID-19 NAs; remdesivir, molnupiravir, favipiravir and bemnifosbuvir. Their distinct mechanisms of action best exemplify the concept of 'killers' and 'corruptors'. We review available data regarding their ability to be incorporated and excised, and discuss the specific structural features that dictate their overall potency, toxicity, and mutagenic potential. This should guide the synthesis of novel analogues, lend insight into the potential for resistance mutations, and provide a rational basis for upcoming combinations therapies.
Collapse
Affiliation(s)
- Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France.
| |
Collapse
|
8
|
Shoaib S, Ansari MA, Kandasamy G, Vasudevan R, Hani U, Chauhan W, Alhumaidi MS, Altammar KA, Azmi S, Ahmad W, Wahab S, Islam N. An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight. Molecules 2023; 28:795. [PMID: 36677853 PMCID: PMC9864057 DOI: 10.3390/molecules28020795] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Waseem Chauhan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Sarfuddin Azmi
- Molecular Microbiology Biology Division, Scientific Research Centre (SRC), Prince Sultan Military Medical City (PSMMC), Riyadh 11159, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Shadma Wahab
- Deparment of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Nasr T, Aboshanab AM, Mpekoulis G, Drakopoulos A, Vassilaki N, Zoidis G, Abouzid KAM, Zaghary W. Novel 6-Aminoquinazolinone Derivatives as Potential Cross GT1-4 HCV NS5B Inhibitors. Viruses 2022; 14:v14122767. [PMID: 36560772 PMCID: PMC9782603 DOI: 10.3390/v14122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections are a worldwide medical problem responsible for diverse types of liver diseases. The NS5B polymerase enzyme has become a very interesting target for the development of anti-HCV drugs owing to its fundamental role in viral replication. Here we report the synthesis of a novel series of 1-substituted phenyl-4(1H)-quinazolinone and 2-methyl-1-substituted phenyl-4(1H)-quinazolinone derivatives and evaluate their activity against HCV in HCV subgenomic replicon assays. The biological data revealed that compound 11a showed the highest activity against HCV GT1b at a micromolar concentration (EC50 = 0.984 µM) followed by compound 11b (EC50 = 1.38 µM). Both compounds 11a and 11b had high selectivity indices (SI = CC50/EC50), 160.71 and 71.75, respectively, which make them very interesting candidates for further development of more potent and selective anti-HCV agents.
Collapse
Affiliation(s)
- Tamer Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo 11795, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, MTI University, Cairo 12055, Egypt
- Correspondence: (T.N.); (G.Z.)
| | - Ahmed M. Aboshanab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - George Mpekoulis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Antonios Drakopoulos
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (T.N.); (G.Z.)
| | - Khaled A. M. Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wafaa Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| |
Collapse
|
10
|
Abstract
The virus-encoded RNA-dependent RNA polymerase (RdRp) is responsible for viral replication, and its fidelity is closely related to viral diversity, pathogenesis, virulence, and fitness. Hepatitis C virus (HCV) and the second human pegivirus (HPgV-2) belong to the family Flaviviridae and share some features, including similar viral genome structure. Unlike HCV, HPgV-2 preserves a highly conserved genome sequence and low intrahost variation. However, the underlying mechanism remains to be elucidated. In this study, we evaluated the fidelity of HPgV-2 and HCV RdRp in an in vitro RNA polymerase reaction system. The results showed higher fidelity of HPgV-2 RdRp than HCV NS5B with respect to the misincorporation rate due to their difference in recognizing nucleoside triphosphate (NTP) substrates. Furthermore, HPgV-2 RdRp showed lower sensitivity than HCV to sofosbuvir, a nucleotide inhibitor against HCV RdRp, which explained the insusceptibility of HPgV-2 to direct-acting antiviral (DAA) therapy against HCV infection. Our results indicate that HPgV-2 could be an excellent model for studying the mechanisms involved in viral polymerase fidelity as well as RNA virus diversity and evolution. IMPORTANCE RNA viruses represent the most important pathogens for humans and animals and exhibit rapid evolution and high adaptive capacity, which is due to the high mutation rates for using the error-prone RNA-dependent RNA polymerase (RdRp) during replication. The fidelity of RdRp is closely associated with viral diversity, fitness, and pathogenesis. Previous studies have shown that the second human pegivirus (HPgV-2) exhibits a highly conserved genome sequence and low intrahost variation, which might be due to the fidelity of HPgV-2 RdRp. In this work, we used a series of in vitro RNA polymerase assays to evaluate the in vitro fidelity of HPgV-2 RdRp and compared it with that of HCV RdRp. The results indicated that HPgV-2 RdRp preserves significantly higher fidelity than HCV RdRp, which might contribute to the conservation of the HPgV-2 genome. The unique feature of HPgV-2 RdRp fidelity provides a new model for investigation of viral RdRp fidelity.
Collapse
|
11
|
Travi BL. Current status of antihistamine drugs repurposing for infectious diseases. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Schmitz KS, Lange MV, Gommers L, Handrejk K, Porter DP, Alabi CA, Moscona A, Porotto M, de Vries RD, de Swart RL. Repurposing an In Vitro Measles Virus Dissemination Assay for Screening of Antiviral Compounds. Viruses 2022; 14:v14061186. [PMID: 35746658 PMCID: PMC9230603 DOI: 10.3390/v14061186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Measles virus (MV) is a highly contagious respiratory virus responsible for outbreaks associated with significant morbidity and mortality among children and young adults. Although safe and effective measles vaccines are available, the COVID-19 pandemic has resulted in vaccination coverage gaps that may lead to the resurgence of measles when restrictions are lifted. This puts individuals who cannot be vaccinated, such as young infants and immunocompromised individuals, at risk. Therapeutic interventions are complicated by the long incubation time of measles, resulting in a narrow treatment window. At present, the only available WHO-advised option is treatment with intravenous immunoglobulins, although this is not approved as standard of care. Antivirals against measles may contribute to intervention strategies to limit the impact of future outbreaks. Here, we review previously described antivirals and antiviral assays, evaluate the antiviral efficacy of a number of compounds to inhibit MV dissemination in vitro, and discuss potential application in specific target populations. We conclude that broadly reactive antivirals could strengthen existing intervention strategies to limit the impact of measles outbreaks.
Collapse
Affiliation(s)
- Katharina S. Schmitz
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Mona V. Lange
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Lennert Gommers
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Kim Handrejk
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | | | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA;
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (M.P.)
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (M.P.)
- Center for Host–Pathogen Interaction, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (K.S.S.); (M.V.L.); (L.G.); (K.H.); (R.D.d.V.)
- Correspondence:
| |
Collapse
|
13
|
Hashemian SMR, Pourhanifeh MH, Hamblin MR, Shahrzad MK, Mirzaei H. RdRp inhibitors and COVID-19: Is molnupiravir a good option? Biomed Pharmacother 2022; 146:112517. [PMID: 34902743 PMCID: PMC8654603 DOI: 10.1016/j.biopha.2021.112517] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Rapid changes in the viral genome allow viruses to evade threats posed by the host immune response or antiviral drugs, and can lead to viral persistence in the host cells. RNA-dependent RNA polymerase (RdRp) is an essential enzyme in RNA viruses, which is involved in RNA synthesis through the formation of phosphodiester bonds. Therefore, in RNA viral infections such as SARS-CoV-2, RdRp could be a crucial therapeutic target. The present review discusses the promising application of RdRp inhibitors, previously approved or currently being tested in human clinical trials, in the treatment of RNA virus infections. Nucleoside inhibitors (NIs) bind to the active site of RdRp, while nonnucleoside inhibitors (NNIs) bind to allosteric sites. Given the absence of highly effective drugs for the treatment of COVID-19, the discovery of an efficient treatment for this pandemic is an urgent concern for researchers around the world. We review the evidence for molnupiravir (MK-4482, EIDD-2801), an antiviral drug originally designed for Alphavirus infections, as a potential preventive and therapeutic agent for the management of COVID-19. At the beginning of this pandemic, molnupiravir was in preclinical development for seasonal influenza. When COVID-19 spread dramatically, the timeline for development was accelerated to focus on the treatment of this pandemic. Real time consultation with regulators took place to expedite this program. We summarize the therapeutic potential of RdRp inhibitors, and highlight molnupiravir as a new small molecule drug for COVID-19 treatment.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, ShohadaeTajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
14
|
Adeboyejo K, Grosche VR, José DP, Ferreira GM, Shimizu JF, King BJ, Tarr AW, Soares MMCN, Ball JK, McClure CP, Jardim ACG. Simultaneous determination of HCV genotype and NS5B resistance associated substitutions using dried serum spots from São Paulo state, Brazil. Access Microbiol 2022; 4:000326. [PMID: 35693474 PMCID: PMC9175972 DOI: 10.1099/acmi.0.000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Hepatitis C virus (HCV) is responsible for more than 180 million infections worldwide, and about 80 % of infections are reported in Low and Middle-income countries (LMICs). Therapy is based on the administration of interferon (INF), ribavirin (RBV) or more recently Direct-Acting Antivirals (DAAs). However, amino acid substitutions associated with resistance (RAS) have been extensively described and can contribute to treatment failure, and diagnosis of RAS requires considerable infrastructure, not always locally available. Dried serum spots (DSS) sampling is an alternative specimen collection method, which embeds drops of serum onto filter paper to be transported by posting to a centralized laboratory. Here, we assessed feasibility of genotypic analysis of HCV from DSS in a cohort of 80 patients from São Paulo state Brazil. HCV RNA was detected on DSS specimens in 83 % of samples of HCV infected patients. HCV genotypes 1a, 1b, 2a, 2c and 3a were determined using the sequence of the palm domain of NS5B region, and RAS C316N/Y, Q309R and V321I were identified in HCV 1b samples. Concerning therapy outcome, 75 % of the patients who used INF +RBV as a previous protocol of treatment did not respond to DAAs, and 25 % were end-of-treatment responders. It suggests that therapy with INF plus RBV may contribute for non-response to a second therapeutic protocol with DAAs. One patient that presented RAS (V321I) was classified as non-responder, and combination of RAS C316N and Q309R does not necessarily imply in resistance to treatment in this cohort of patients. Data presented herein highlights the relevance of studying circulating variants for a better understanding of HCV variability and resistance to the therapy. Furthermore, the feasibility of carrying out genotyping and RAS phenotyping analysis by using DSS card for the potential of informing future treatment interventions could be relevant to overcome the limitations of processing samples in several location worldwide, especially in LMICs.
Collapse
Affiliation(s)
- Kazeem Adeboyejo
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Victória Riquena Grosche
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Bioscience, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | | | - Giulia Magalhães Ferreira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jacqueline Farinha Shimizu
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Bioscience, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Barnabas J King
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | | | - Jonathan K Ball
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK.,MRC/EPSRC Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Bioscience, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Leigh KE, Modis Y. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Interface Focus 2021; 11:20210019. [PMID: 34956593 PMCID: PMC8504884 DOI: 10.1098/rsfs.2021.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
The SARS-CoV-2 pandemic has had a global impact and has put scientific endeavour in the spotlight, perhaps more than any previous viral outbreak. Fortuitously, the pandemic came at a time when decades of research in multiple scientific fields could be rapidly brought to bear, and a new generation of vaccine platforms was on the cusp of clinical maturity. SARS-CoV-2 also emerged at the inflection point of a technological revolution in macromolecular imaging by cryo-electron microscopy, fuelled by a confluence of major technological advances in sample preparation, optics, detectors and image processing software, that complemented pre-existing techniques. Together, these advances enabled us to visualize SARS-CoV-2 and its components more rapidly, in greater detail, and in a wider variety of biologically relevant contexts than would have been possible even a few years earlier. The resulting ultrastructural information on SARS-CoV-2 and how it interacts with the host cell has played a critical role in the much-needed accelerated development of COVID-19 vaccines and therapeutics. Here, we review key imaging modalities used to visualize SARS-CoV-2 and present select example data, which have provided us with an exceptionally detailed picture of this virus.
Collapse
Affiliation(s)
- Kendra E. Leigh
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| |
Collapse
|
16
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
17
|
Khalid H, Shahid S, Tariq S, Ijaz B, Ashfaq UA, Ahmad M. Discovery of Novel HCV NS5B polymerase inhibitor, 2-(3,4-dimethyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2]thiazin-2(4H)-yl)-N-(2-fluorobenzyl)acetamide via molecular docking and experimental approach. Clin Exp Pharmacol Physiol 2021; 48:1653-1661. [PMID: 34386985 DOI: 10.1111/1440-1681.13571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 11/27/2022]
Abstract
Hepatitis C Virus (HCV) is a viral infection posing a severe global threat that left untreated progresses to end-stage liver disease, including cirrhosis and hepatocellular carcinoma (HCC). Moreover, no prophylactic approach exists so far enabling its prevention. The NS5B polymerase holds special significance as the target of intervention against HCV infection. The current study kindles benzothiazine derivatives against HCV NS5B polymerase through in silico and experimental approaches. Following docking, the compound 2-(3,4-dimethyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2]thiazin-2(4H)-yl)-N-(2-fluorobenzyl)acetamide was revealed to form effective binding interaction in the proposed site of HCV NS5B with a score of -10 kcal/mol and subsequently was deciphered through molecular dynamics (MD) simulation study which indicated interaction of residues TYR_382, VAL_381 and HIS_467 through hydrophobic interaction and two residues such as GLU_202 and LYS_209 contributed in the formation of water bridges. The subsequent in silico pharmacological analysis revealed its safe drug profile. The cytotoxicity activity of compound 6c indicated to be non-toxic in HepG2 cells at concentration ranges from 0.001-1.0 µmol/L with >80% cell viability and diminished expression of the HCV NS5B to 98% at the dose of 1.0 µmol/L and 90% at 0.5µmol/L. Thus the hit compound 6c might be a potent NS5B polymerase inhibitor required to be validated further through in vivo and preclinical studies.
Collapse
Affiliation(s)
- Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Sana Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Somayya Tariq
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Ebenezer O, Damoyi N, Shapi M. Predicting New Anti-Norovirus Inhibitor With the Help of Machine Learning Algorithms and Molecular Dynamics Simulation-Based Model. Front Chem 2021; 9:753427. [PMID: 34869204 PMCID: PMC8636098 DOI: 10.3389/fchem.2021.753427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatitis C virus (HCV) inhibitors are essential in the treatment of human norovirus (HuNoV). This study aimed to map out HCV NS5B RNA-dependent RNA polymerase inhibitors that could potentially be responsible for the inhibitory activity of HuNoV RdRp. It is necessary to develop robust machine learning and in silico methods to predict HuNoV RdRp compounds. In this study, Naïve Bayesian and random forest models were built to categorize norovirus RdRp inhibitors from the non-inhibitors using their molecular descriptors and PubChem fingerprints. The best model observed had accuracy, specificity, and sensitivity values of 98.40%, 97.62%, and 97.62%, respectively. Meanwhile, an external test set was used to validate model performance before applicability to the screened HCV compounds database. As a result, 775 compounds were predicted as NoV RdRp inhibitors. The pharmacokinetics calculations were used to filter out the inhibitors that lack drug-likeness properties. Molecular docking and molecular dynamics simulation investigated the inhibitors' binding modes and residues critical for the HuNoV RdRp receptor. The most active compound, CHEMBL167790, closely binds to the binding pocket of the RdRp enzyme and depicted stable binding with RMSD 0.8-3.2 Å, and the RMSF profile peak was between 1.0-4.0 Å, and the conformational fluctuations were at 450-460 residues. Moreover, the dynamic residue cross-correlation plot also showed the pairwise correlation between the binding residues 300-510 of the HuNoV RdRp receptor and CHEMBL167790. The principal component analysis depicted the enhanced movement of protein atoms. Moreover, additional residues such as Glu510 and Asn505 interacted with CHEMBL167790 via water bridge and established H-bond interactions after the simulation. http://zinc15.docking.org/substances/ZINC000013589565.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban, South Africa
| | | | | |
Collapse
|
19
|
Abdel-Tawab MAH, Abd El-Moghny MG, El Nashar RM. Recent advances in the chromatographic determination of the most commonly used anti-hepatitis C drug sofosbuvir and its co-administered drugs in human plasma. Biomed Chromatogr 2021; 36:e5238. [PMID: 34469609 DOI: 10.1002/bmc.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Sofosbuvir is a direct-acting antiviral drug that inhibits hepatitis C virus (HCV) NS5B polymerase, which in turn affects the virus replication inside biological systems. The clinical importance of sofosbuvir is based not only on its effect on HCV but also on other lethal viruses such as Zika and severe acute respiratory syndrome coronavirus disease 2019 (SARS-COVID-19). Accordingly, there is a continuous shedding of light on the development and validation of accurate and fast analytical methods for the determination of sofosbuvir in different environments. This work critically reviews the recent advances in chromatographic methods for the analysis of sofosbuvir and/or its metabolites in pure samples, pharmaceutical dosage forms, and in the presence of other co-administered drugs to highlight the current status and future perspectives to enhance its determination in different matrixes.
Collapse
|
20
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
21
|
Winston DS, Boehr DD. Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity. Enzymes 2021; 49:149-193. [PMID: 34696831 DOI: 10.1016/bs.enz.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.
Collapse
Affiliation(s)
- Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
22
|
Choong YS, Lim TS, Liu H, Jiang R, Cai Z, Ge Y. Potential Inhibition of COVID-19 RNA-dependent RNA Polymerase by Hepatitis C Virus Non-nucleoside Inhibitors: An In-silico Perspective. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201104123750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a
novel member of the genus betacoronavirus in the Coronaviridae family. It has been identified as
the causative agent of coronavirus disease 2019 (COVID-19), spreading rapidly in Asia, America
and Europe. Like some other RNA viruses, RNA replication and transcription of SARS-CoV-2 rely
on its RNA-dependent RNA polymerase (RdRP), which is a therapeutic target of clinical
importance. Crystal structure of SARS-CoV-2 was solved recently (PDB ID 6M71) with some
missing residues.
Objective:
We used SARS-CoV-2 RdRP as a target protein to screen for possible chemical
molecules with potential anti-viral effects.
Methods:
Here we modelled the missing residues 896-905 via homology modelling and then
analysed the interactions of Hepatitis C virus allosteric non-nucleoside inhibitors (NNIs) in the
reported NNIs binding sites in SARS-CoV-2 RdRP.
Results:
We found that MK-3281, filibuvir, setrobuvir and dasabuvir might be able to inhibit
SARS-CoV-2 RdRP based on their binding affinities in the respective binding sites.
Conclusion:
Further in vitro and in vivo experimental research will be carried out to evaluate their
effectiveness in COVID-19 treatment in the near future.
Collapse
Affiliation(s)
- Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Hanyun Liu
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rubin Jiang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zimu Cai
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Yuan Ge
- College of Marine Life Science, Ocean University of China, Qingdao, China
| |
Collapse
|
23
|
Global Genomic Analysis of SARS-CoV-2 RNA Dependent RNA Polymerase Evolution and Antiviral Drug Resistance. Microorganisms 2021; 9:microorganisms9051094. [PMID: 34069681 PMCID: PMC8160703 DOI: 10.3390/microorganisms9051094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 01/18/2023] Open
Abstract
A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima’s D = −2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic.
Collapse
|
24
|
Han D, Wang H, Wujieti B, Zhang B, Cui W, Chen BZ. Insight into the drug resistance mechanisms of GS-9669 caused by mutations of HCV NS5B polymerase via molecular simulation. Comput Struct Biotechnol J 2021; 19:2761-2774. [PMID: 34093991 PMCID: PMC8134009 DOI: 10.1016/j.csbj.2021.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
GS-9669 is a non-nucleos(t)ide inhibitor (NNI) binding to the thumb site II of the Hepatitis C virus (HCV) NS5B polymerase and has advanced into phase II trials. To clarify the drug resistance mechanisms of GS-9669 caused by M423T/I/V, L419M, R422K, and I482L mutations of NS5B polymerase (GT1b) and the receptor-ligand interactions during the binding process, a series of molecular simulation methods including molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed for the wild-type (WT) and six mutant NS5B/GS-9669 complexes. The calculated results indicate that the binding free energies of the mutant systems are less negative than that of the WT system, indicating that these mutations will indeed cause NS5B to produce different degrees of resistance to GS-9669. The mutation-induced drug resistances are mainly caused by the loss of binding affinities of Leu419 and Trp528 with GS-9669 or the formation of multiple solvent bridges. Moreover, the ASMD calculations show that GS-9669 binds to the thumb II sites of the seven NS5B polymerases in distinct pathways without any obvious energy barriers. Although the recognition methods and binding pathways are distinct, the binding processes of GS-9669 with the WT and mutant NS5B polymerases are basically controlled thermodynamically. This study clearly reveals the resistance mechanisms of GS-9669 caused by M423T/I/V, L419M, R422K, and I482L mutations of HCV NS5B polymerase and provides some valuable clues for further optimization and design of novel NS5B inhibitors.
Collapse
Affiliation(s)
- Di Han
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298, USA
| | - Baerlike Wujieti
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China
| | - Beibei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China
| | - Bo-Zhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, China
| |
Collapse
|
25
|
Khani E, Khiali S, Entezari‐Maleki T. Potential COVID-19 Therapeutic Agents and Vaccines: An Evidence-Based Review. J Clin Pharmacol 2021; 61:429-460. [PMID: 33511638 PMCID: PMC8014753 DOI: 10.1002/jcph.1822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Since the early days of 2020, the severe acute respiratory syndrome coronavirus 2 pandemic has become a global health concern. Currently, some therapies and vaccines have received US Food and Drug Administration approval or emergency use authorization for the management of coronavirus disease 2019. According to the pathophysiology of the disease, several medications have been evaluated in different clinical conditions of the disease. Evidence-based reviewing and categorizing these medications can guide the clinicians to select the proper medications according to each patient's condition. Therefore, we performed this review to categorize the coronavirus disease 2019 potential therapeutics and vaccines.
Collapse
Affiliation(s)
- Elnaz Khani
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Sajad Khiali
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Taher Entezari‐Maleki
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
26
|
Lu L, Su S, Yang H, Jiang S. Antivirals with common targets against highly pathogenic viruses. Cell 2021; 184:1604-1620. [PMID: 33740455 DOI: 10.1016/j.cell.2021.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
28
|
Ibrahim N, Moussa AY. A comparative volatilomic characterization of Florence fennel from different locations: antiviral prospects. Food Funct 2021; 12:1498-1515. [PMID: 33481979 DOI: 10.1039/d0fo02897e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genus Foeniculum is known for its wide ethnobotanical use in the Mediterranean region. Herein, we explored the compositional differences of volatile oils and headspace aroma of Florence fennel (Foeniculum vulgare var. azoricum (Mill.) Thell.) based on its different organs and various geographical origins via gas chromatography coupled with mass spectrometry (GC-MS). Sixty-seven volatile components were detected with phenylpropenes and monoterpenes, including trans-anethole, limonene, α-pinene, trans-β-ocimene, fenchyl acetate, and fenchone, as major constituents. Phenylpropenes were dominant in fennel hydro-distilled oils, whereas monoterpenes were dominant in most of the headspace aroma. The infraspecific variability was assessed using the unsupervised multivariate data analysis tools PCA and HCA, resulting in segregate clustering of accessions from different organs and locations with trans-anethole, limonene, trans-β-ocimene, fenchone, myristicin, and apiole as major phytomarkers contributing to this segregation. The antiviral activities of samples against hepatitis A and C viruses were investigated using the plaque reduction assay, HAV 3C proteinase and HCV NS5B polymerase inhibitory assays with a percentage inhibition between 66% and 85% and IC50 values from 1.8 to 26.7 μg mL-1. In silico molecular docking scores in latter enzyme binding pockets revealed key allosteric interactions with trans-β-ocimene and β-fenchyl acetate showing the best Gibb's free energy. Florence fennel exhibited interesting new perspectives for medicinal and industrial applications.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Ashaimaa Y Moussa
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
29
|
Ramesh D, Vijayakumar BG, Kannan T. Advances in Nucleoside and Nucleotide Analogues in Tackling Human Immunodeficiency Virus and Hepatitis Virus Infections. ChemMedChem 2021; 16:1403-1419. [PMID: 33427377 DOI: 10.1002/cmdc.202000849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Nucleoside and nucleotide analogues are structurally similar antimetabolites and are promising small-molecule chemotherapeutic agents against various infectious DNA and RNA viruses. To date, these analogues have not been documented in-depth as anti-human immunodeficiency virus (HIV) and anti-hepatitis virus agents, these are at various stages of testing ranging from pre-clinical, to those withdrawn from trials, or those that are approved as drugs. Hence, in this review, the importance of these analogues in tackling HIV and hepatitis virus infections is discussed with a focus on the viral genome and the mechanism of action of these analogues, both in a mutually exclusive manner and their role in HIV/hepatitis coinfection. This review encompasses nucleoside and nucleotide analogues from 1987 onwards, starting with the first nucleoside analogue, zidovudine, and going on to those in current clinical trials and even the drugs that have been withdrawn. This review also sheds light on the prospects of these nucleoside analogues in clinical trials as a treatment option for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India
| | | | | |
Collapse
|
30
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
31
|
Picarazzi F, Vicenti I, Saladini F, Zazzi M, Mori M. Targeting the RdRp of Emerging RNA Viruses: The Structure-Based Drug Design Challenge. Molecules 2020; 25:E5695. [PMID: 33287144 PMCID: PMC7730706 DOI: 10.3390/molecules25235695] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses' story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.
Collapse
Affiliation(s)
- Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (I.V.); (F.S.); (M.Z.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
32
|
Ju J, Li X, Kumar S, Jockusch S, Chien M, Tao C, Morozova I, Kalachikov S, Kirchdoerfer RN, Russo JJ. Nucleotide analogues as inhibitors of SARS-CoV Polymerase. Pharmacol Res Perspect 2020; 8:e00674. [PMID: 33124786 PMCID: PMC7596664 DOI: 10.1002/prp2.674] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a member of the coronavirus family, has caused a global public health emergency. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously reasoned that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) should inhibit coronaviruses, including SARS-CoV-2. Here, using model polymerase extension experiments, we demonstrate that the active triphosphate form of Sofosbuvir is incorporated by low-fidelity polymerases and SARS-CoV RNA-dependent RNA polymerase (RdRp), and blocks further incorporation by these polymerases; the active triphosphate form of Sofosbuvir is not incorporated by a host-like high-fidelity DNA polymerase. Using the same molecular insight, we selected 3'-fluoro-3'-deoxythymidine triphosphate and 3'-azido-3'-deoxythymidine triphosphate, which are the active forms of two other anti-viral agents, Alovudine and AZT (an FDA-approved HIV/AIDS drug) for evaluation as inhibitors of SARS-CoV RdRp. We demonstrate the ability of two of these HIV reverse transcriptase inhibitors to be incorporated by SARS-CoV RdRp where they also terminate further polymerase extension. Given the 98% amino acid similarity of the SARS-CoV and SARS-CoV-2 RdRps, we expect these nucleotide analogues would also inhibit the SARS-CoV-2 polymerase. These results offer guidance to further modify these nucleotide analogues to generate more potent broad-spectrum anti-coronavirus agents.
Collapse
Affiliation(s)
- Jingyue Ju
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
- Department of Molecular Pharmacology and TherapeuticsColumbia UniversityNew YorkNYUSA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Steffen Jockusch
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of ChemistryColumbia UniversityNew YorkNYUSA
| | - Minchen Chien
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Irina Morozova
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| | - Robert N. Kirchdoerfer
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Institute of Molecular VirologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - James J. Russo
- Center for Genome Technology and Biomolecular EngineeringColumbia UniversityNew YorkNew YorkUSA
- Department of Chemical EngineeringColumbia UniversityNew YorkNYUSA
| |
Collapse
|
33
|
Chien M, Anderson TK, Jockusch S, Tao C, Li X, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. J Proteome Res 2020; 19:4690-4697. [PMID: 32692185 PMCID: PMC7640960 DOI: 10.1021/acs.jproteome.0c00392] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 is responsible for the current COVID-19 pandemic. On the basis of our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues (the triphosphates of Sofosbuvir, Alovudine, and AZT) inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). We also demonstrated that a library of additional nucleotide analogues terminate RNA synthesis catalyzed by the SARS-CoV-2 RdRp, a well-established drug target for COVID-19. Here, we used polymerase extension experiments to demonstrate that the active triphosphate form of Sofosbuvir (an FDA-approved hepatitis C drug) is incorporated by SARS-CoV-2 RdRp and blocks further incorporation. Using the molecular insight gained from the previous studies, we selected the active triphosphate forms of six other antiviral agents, Alovudine, Tenofovir alafenamide, AZT, Abacavir, Lamivudine, and Emtricitabine, for evaluation as inhibitors of the SARS-CoV-2 RdRp and demonstrated the ability of these viral polymerase inhibitors to be incorporated by SARS-CoV-2 RdRp, where they terminate further polymerase extension with varying efficiency. These results provide a molecular basis for inhibition of the SARS-CoV-2 RdRp by these nucleotide analogues. If sufficient efficacy of some of these FDA-approved drugs in inhibiting viral replication in cell culture is established, they may be explored as potential COVID-19 therapeutics.
Collapse
Affiliation(s)
- Minchen Chien
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Thomas K. Anderson
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Steffen Jockusch
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Chuanjuan Tao
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoxu Li
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Shiv Kumar
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - James J. Russo
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jingyue Ju
- Center
for Genome Technology and Biomolecular Engineering, Departments of Chemical
Engineering, Pharmacology, and Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
Tawab MAHA, El-Moghny MGA, El Nashar RM. Computational design of molecularly imprinted polymer for electrochemical sensing and stability indicating study of sofosbuvir. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Jockusch S, Tao C, Li X, Chien M, Kumar S, Morozova I, Kalachikov S, Russo JJ, Ju J. Sofosbuvir terminated RNA is more resistant to SARS-CoV-2 proofreader than RNA terminated by Remdesivir. Sci Rep 2020; 10:16577. [PMID: 33024223 PMCID: PMC7538426 DOI: 10.1038/s41598-020-73641-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 is responsible for COVID-19, resulting in the largest pandemic in over a hundred years. After examining the molecular structures and activities of hepatitis C viral inhibitors and comparing hepatitis C virus and coronavirus replication, we previously postulated that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) might inhibit SARS-CoV-2. We subsequently demonstrated that Sofosbuvir triphosphate is incorporated by the relatively low fidelity SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases (RdRps), serving as an immediate polymerase reaction terminator, but not by a host-like high fidelity DNA polymerase. Other investigators have since demonstrated the ability of Sofosbuvir to inhibit SARS-CoV-2 replication in lung and brain cells; additionally, COVID-19 clinical trials with EPCLUSA and with Sofosbuvir plus Daclatasvir have been initiated in several countries. SARS-CoV-2 has an exonuclease-based proofreader to maintain the viral genome integrity. Any effective antiviral targeting the SARS-CoV-2 RdRp must display a certain level of resistance to this proofreading activity. We report here that Sofosbuvir terminated RNA resists removal by the exonuclease to a substantially higher extent than RNA terminated by Remdesivir, another drug being used as a COVID-19 therapeutic. These results offer a molecular basis supporting the current use of Sofosbuvir in combination with other drugs in COVID-19 clinical trials.
Collapse
Affiliation(s)
- Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
36
|
Decrease in Chitinase 3-Like Protein 1 Levels Reflects Improvement in Liver Fibrosis after HCV Eradication. DISEASE MARKERS 2020; 2020:8539804. [PMID: 33082884 PMCID: PMC7556050 DOI: 10.1155/2020/8539804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/20/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
Aim The success of direct-acting antivirals (DAAs) against hepatitis C virus is a major breakthrough in hepatology. Previous studies have shown that chitinase 3-like protein 1 (CHI3L1) was a marker for staging of liver fibrosis caused by HCV. In this investigation, we used CHI3L1 as a surrogate marker to compare dynamic hepatic fibrosis variations following the elimination of HCV among cases receiving sofosbuvir (SOF)-based regimens and pegylated interferon/ribavirin (PR) treatments. Methods The study enrolled 105 patients, including 46 SOF-based regimens treated patients, 34 PR-experienced patients, and 25 untreated patients. Serum samples and clinical data were obtained at the baseline, the end of treatment, and at weeks 24 and 48 after treatments. Results First, we found that serum level of CHI3L1 correlated moderately but significantly with LSM (r = 0.615, P < 0.001) at the baseline, and diagnosed liver cirrhosis at baseline with high accuracy (AUC = 0.939) by ROC analysis. So we explored CHI3L1 as a sensitive biomarker to monitor the regression of liver fibrosis after HCV eradication. We found that the serum CHI3L1 level of CHC cases receiving SOF-based regimen treatments was markedly reduced immediately after treatment compared with that at the baseline (123.79 (118.55) vs. 118.20 (103.68), P = 0.001). For cases undergoing PR treatment, the serum CHI3L1 decreased significantly at week 24 posttreatment compared with that at the baseline (69.98 (51.44) vs 89.15 (110.59), P = 0.016). For the untreated cirrhotic patients, CHI3L1 levels increased at week 96 follow-up compared with that at the baseline (194.73 (172.46) vs. 89.50 (242.97), P = 0.048), reflecting continued worsening of liver fibrosis. Conclusion CHI3L1 is suggested to be the sensitive marker to monitor fibrosis variations in weeks during treatments and after achieving SVR. It has the potential to allow the identification of early treatment failure for a timely switch to alternative treatment and to allow monitoring progression of fibrosis as a risk factor for liver cirrhosis.
Collapse
|
37
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
38
|
Li H, Yang L, Liu FF, Ma XN, He PL, Tang W, Tong XK, Zuo JP. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol Sin 2020; 41:1133-1140. [PMID: 32555446 PMCID: PMC7298161 DOI: 10.1038/s41401-020-0438-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Since the outbreak of novel coronavirus pneumonia (COVID-19) in December 2019, more than 2,500,000 people worldwide have been diagnosed with SARS-CoV-2 as of April 22. In response to this epidemic, China has issued seven trial versions of diagnosis and treatment protocol for COVID-19. According to the information that we have collected so far, this article provides an overview of potential therapeutic drugs and compounds with much attention, including favipiravir and hydroxychloroquine, as well as traditional Chinese medicine, which have been reported with good clinical treatment effects. Moreover, with further understanding of SARS-CoV-2 virus, new drugs targeting specific SARS-CoV-2 viral components arise and investigations on these novel anti-SARS-CoV-2 agents are also reviewed.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei-Fei Liu
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Na Ma
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei-Lan He
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xian-Kun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
39
|
Jockusch S, Tao C, Li X, Anderson TK, Chien M, Kumar S, Russo JJ, Kirchdoerfer RN, Ju J. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19. Antiviral Res 2020; 180:104857. [PMID: 32562705 PMCID: PMC7299870 DOI: 10.1016/j.antiviral.2020.104857] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2' or 3' modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base. The goal is to identify nucleotide analogues that not only terminate RNA synthesis catalyzed by these coronavirus RdRps, but also have the potential to resist the viruses' exonuclease activity. We examined these nucleotide analogues for their ability to be incorporated by the RdRps in the polymerase reaction and to prevent further incorporation. While all 11 molecules tested displayed incorporation, 6 exhibited immediate termination of the polymerase reaction (triphosphates of Carbovir, Ganciclovir, Stavudine and Entecavir; 3'-OMe-UTP and Biotin-16-dUTP), 2 showed delayed termination (Cidofovir diphosphate and 2'-OMe-UTP), and 3 did not terminate the polymerase reaction (2'-F-dUTP, 2'-NH2-dUTP and Desthiobiotin-16-UTP). The coronaviruses possess an exonuclease that apparently requires a 2'-OH at the 3'-terminus of the growing RNA strand for proofreading. In this study, all nucleoside triphosphate analogues evaluated form Watson-Crick-like base pairs. The nucleotide analogues demonstrating termination either lack a 2'-OH, have a blocked 2'-OH, or show delayed termination. Thus, these nucleotide analogues are of interest for further investigation to evaluate whether they can evade the viral exonuclease activity. Prodrugs of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine and Entecavir) are FDA-approved medications for treatment of other viral infections, and their safety profiles are well established. After demonstrating potency in inhibiting viral replication in cell culture, candidate molecules can be rapidly evaluated as potential therapies for COVID-19.
Collapse
Affiliation(s)
- Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Thomas K Anderson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Robert N Kirchdoerfer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA; Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA; Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA; Department of Pharmacology, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
40
|
Min JS, Kim GW, Kwon S, Jin YH. A Cell-Based Reporter Assay for Screening Inhibitors of MERS Coronavirus RNA-Dependent RNA Polymerase Activity. J Clin Med 2020; 9:E2399. [PMID: 32727069 PMCID: PMC7465106 DOI: 10.3390/jcm9082399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19) are emerging zoonotic diseases caused by coronavirus (CoV) infections. The viral RNA-dependent RNA polymerase (RdRp) has been suggested as a valuable target for antiviral therapeutics because the sequence homology of CoV RdRp is highly conserved. We established a cell-based reporter assay for MERS-CoV RdRp activity to test viral polymerase inhibitors. The cell-based reporter system was composed of the bicistronic reporter construct and the MERS-CoV nsp12 plasmid construct. Among the tested nine viral polymerase inhibitors, ribavirin, sofosbuvir, favipiravir, lamivudine, zidovudine, valacyclovir, vidarabine, dasabuvir, and remdesivir, only remdesivir exhibited a dose-dependent inhibition. Meanwhile, the Z-factor and Z'-factor of this assay for screening inhibitors of MERS-CoV RdRp activity were 0.778 and 0.782, respectively. Ribavirin and favipiravir did not inhibit the MERS-CoV RdRp activity, and non-nucleoside HCV RdRp inhibitor, dasabuvir, partially inhibited MERS-CoV RdRp activity. Taken together, the cell-based reporter assay for MERS-CoV RdRp activity confirmed remdesivir as a direct inhibitor of MERS-CoV RdRp in cells. A cell-based MERS-CoV RdRp activity reporter assay is reliable and accurate for screening MERS-CoV RdRp-specific inhibitors. It may provide a valuable platform for developing antiviral drugs for emerging CoV infections.
Collapse
Affiliation(s)
- Jung Sun Min
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea; (J.S.M.); (G.-W.K.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Geon-Woo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea; (J.S.M.); (G.-W.K.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sunoh Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea; (J.S.M.); (G.-W.K.)
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Young-Hee Jin
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| |
Collapse
|
41
|
Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. SLAS DISCOVERY 2020; 25:1141-1151. [PMID: 32660307 PMCID: PMC7684788 DOI: 10.1177/2472555220942123] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
COVID-19 respiratory disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global health issue since it emerged in December 2019. While great global efforts are underway to develop vaccines and to discover or repurpose therapeutic agents for this disease, as of this writing only the nucleoside drug remdesivir has been approved under Emergency Use Authorization to treat COVID-19. The RNA-dependent RNA polymerase (RdRP), a viral enzyme for viral RNA replication in host cells, is one of the most intriguing and promising drug targets for SARS-CoV-2 drug development. Because RdRP is a viral enzyme with no host cell homologs, selective SARS-CoV-2 RdRP inhibitors can be developed that have improved potency and fewer off-target effects against human host proteins and thus are safer and more effective therapeutics for treating COVID-19. This review focuses on biochemical enzyme and cell-based assays for RdRPs that could be used in high-throughput screening to discover new and repurposed drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Alam A, Siddiqui MF, Imam N, Ali R, Mushtaque M, Ishrat R. Covid-19: current knowledge, disease potential, prevention and clinical advances. Turk J Biol 2020; 44:121-131. [PMID: 32595349 PMCID: PMC7314501 DOI: 10.3906/biy-2005-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The top priority of any nation is to lead the nation towards prosperity, progress, and economic growth, confronting several challenges and concerns arisen from global situations. The sudden outbreak of any disease defies the health care systems and economy of nations. COVID-19 is one of the viral diseases which broke out in Wuhan city of China in 2019. COVID-19 outbreak intermittently prevailed all over the world. It exposes the fragility of the established health care systems across the world in spite of comprising modern science and technology. Unfortunately, there is no chemotherapeutic agent in the regimen of antiviral drugs or no vaccine available to curb this infectious disease. As a consequence, this deadly infection has prevailed all over the world. The antiviral drugs used for viral diseases excluding COVID-19 infection are Ramdesvir, Favipiravir, and Ribavarin, and antimalarial agents (Chloroquine & Hydroxychloroquine) are being administered to the patients for redemption of this infection. Fortunately, these existing drugs have been found clinically active and are being used. In this review, we present the current scenario and status of epidemiology, diagnosis, treatment, vaccine development for COVID-19, and its impact on the socio-economic structure.
Collapse
Affiliation(s)
- Aftab Alam
- Center for Interdisciplinary Research in Basic Sciences, JMI University, New Delhi India
| | - Mohd Faizan Siddiqui
- International Medical Faculty, Osh State University, Osh City, Kyrgyz Republic Kyrgyzstan
| | - Nikhat Imam
- Institute of Computer Science & Information Technology, Department of Mathematics, Magadh University, Bodh Gaya, Bihar India
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, JMI University, New Delhi India
| | - Md Mushtaque
- Department of Chemistry, School of Physical and Molecular Sciences, Al-Falah University, Dhauj, Faridabad, Haryana India
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, JMI University, New Delhi India
| |
Collapse
|
43
|
Villalba B, Li J, Johnson KA. Resistance to excision determines efficiency of hepatitis C virus RNA-dependent RNA polymerase inhibition by nucleotide analogs. J Biol Chem 2020; 295:10112-10124. [PMID: 32457046 DOI: 10.1074/jbc.ra120.013422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
NS5B is the RNA-dependent RNA polymerase that catalyzes the replication of the hepatitis C virus genome. It is a major target for antiviral drugs including nucleoside analogs, such as the prodrugs mericitabine and sofosbuvir, which get metabolized to 2'-fluoro-2'C-methylcytidine-5'-triphosphate and 2'-fluoro-2'C-methyluridine-5'-triphosphate, respectively. These analogs act as chain terminators after they are incorporated during RNA synthesis. Recently, it has been shown that NS5B can efficiently remove chain terminators by a nucleotide-mediated excision reaction that rescues RNA synthesis. In this study, we use transient-state kinetics to understand the efficiency of inhibition for five nucleoside analogs. We show that CTP analogs are readily incorporated into a growing primer by NS5B but are also efficiently excised. In contrast, although UMP analogs are more slowly incorporated, the excision of UMP is slow and inefficient, and modifications to the 2'-carbon of the UTP ribose ring further decreased rates of excision to an undetectable level. Taken together, these data suggest that the clinical effectiveness of sofosbuvir is largely a function of being intractable to nucleotide-mediated excision compared with similar nucleoside analogs.
Collapse
Affiliation(s)
- Brian Villalba
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Jiawen Li
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| |
Collapse
|
44
|
Shaw TA, Ablenas CJ, Desrochers GF, Powdrill MH, Bilodeau DA, Vincent-Rocan JF, Niu M, Monette A, Mouland AJ, Beauchemin AM, Pezacki JP. A Bifunctional Nucleoside Probe for the Inhibition of the Human Immunodeficiency Virus-Type 1 Reverse Transcriptase. Bioconjug Chem 2020; 31:1537-1544. [DOI: 10.1021/acs.bioconjchem.0c00191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher J. Ablenas
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Geneviève F. Desrochers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Megan H. Powdrill
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-François Vincent-Rocan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1E2, Canada
| | - Anne Monette
- Lady Davis Institute at the Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, 3999 Côte-Ste-Catherine Road, Montréal, Québec H3T 1E2, Canada
| | - André M. Beauchemin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
45
|
Chien M, Anderson TK, Jockusch S, Tao C, Kumar S, Li X, Russo JJ, Kirchdoerfer RN, Ju J. Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.18.997585. [PMID: 32511320 PMCID: PMC7239050 DOI: 10.1101/2020.03.18.997585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 pandemic. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). Here, using polymerase extension experiments, we have demonstrated that the active triphosphate form of Sofosbuvir (a key component of the FDA approved hepatitis C drug EPCLUSA), is incorporated by SARS-CoV-2 RdRp, and blocks further incorporation. Using the same molecular insight, we selected the active triphosphate forms of three other anti-viral agents, Alovudine, AZT (an FDA approved HIV/AIDS drug) and Tenofovir alafenamide (TAF, an FDA approved drug for HIV and hepatitis B) for evaluation as inhibitors of SARS-CoV-2 RdRp. We demonstrated the ability of these three viral polymerase inhibitors, 3'-fluoro-3'-deoxythymidine triphosphate, 3'-azido-3'-deoxythymidine triphosphate and Tenofovir diphosphate (the active triphosphate forms of Alovudine, AZT and TAF, respectively) to be incorporated by SARS-CoV-2 RdRp, where they also terminate further polymerase extension. These results offer a strong molecular basis for these nucleotide analogues to be evaluated as potential therapeutics for COVID-19.
Collapse
Affiliation(s)
- Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Thomas K. Anderson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - James J. Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
- Department of Pharmacology, Columbia University, New York, NY 10027
| |
Collapse
|
46
|
de Albuquerque PPLF, Santos LHS, Antunes D, Caffarena ER, Figueiredo AS. Structural insights into NS5B protein of novel equine hepaciviruses and pegiviruses complexed with polymerase inhibitors. Virus Res 2020; 278:197867. [PMID: 31972246 DOI: 10.1016/j.virusres.2020.197867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Infections produced by hepaciviruses have been associated with liver disease in horses. Currently, at least three viruses belonging to the Flaviviridae family are capable of producing a chronic infection in equines: non-primate hepacivirus (NPHV), Theiler's disease-associated virus (TDAV), and equine pegivirus (EPgV). The RNA-dependent RNA polymerases of viruses (RdRp) (NS5 protein), from the flavivirus family, use de novo RNA synthesis to initiate synthesis. The two antiviral drugs currently used to treat hepatitis C (HCV), sofosbuvir and dasabuvir, act on the viral NS5B polymerase as nucleoside and non-nucleoside inhibitors, respectively. Both drugs have shown significant clinical inhibition of viral response. In this work, we aimed to model the NS5B polymerase of the equine hepacivirus (EHCV) subtypes 1 and 2, TDAV and EPgV, to assess whether current direct-acting antiviral drugs against HCV interact with these proteins. Crystal structures of HCV-NS5B were used as templates for modeling target sequences in both conformations (open and closed). Also, molecular docking of sofosbuvir and dasabuvir were performed to predict their possible binding modes at the modeled NS5B polymerase binding sites. We observed that the NS5B models of the EHCV and EPgV shared well-conserved 3D structures to HCV-NS5B and other RdRps, suggesting functional conservation. Interactions of EHCV subtypes 1, 2 and TDAV polymerases with sofosbuvir showed a similar molecular interaction pattern compared to HCV-NS5B, while interactions with dasabuvir were less conserved. In silico studies of molecular interactions between these modeled structures and sofosbuvir suggest that this compound could be efficient in combating equine pathogens, thus contributing to animal welfare.
Collapse
Affiliation(s)
| | - Lucianna H S Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brazil
| | - Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X, Andres EL, Bluemling GR, Lockwood MA, Sheahan TP, Sims AC, Natchus MG, Saindane M, Kolykhalov AA, Painter GR, Baric RS, Denison MR. Small-Molecule Antiviral β-d- N4-Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance. J Virol 2019; 93:e01348-19. [PMID: 31578288 PMCID: PMC6880162 DOI: 10.1128/jvi.01348-19] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). β-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 μM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 μM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, β-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.
Collapse
Affiliation(s)
- Maria L Agostini
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Erica L Andres
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Gregory R Bluemling
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Mark A Lockwood
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amy C Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | - Manohar Saindane
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
| | | | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
48
|
Liu W, Caglar MU, Mao Z, Woodman A, Arnold JJ, Wilke CO, Cameron CE. More than efficacy revealed by single-cell analysis of antiviral therapeutics. SCIENCE ADVANCES 2019; 5:eaax4761. [PMID: 31692968 PMCID: PMC6821460 DOI: 10.1126/sciadv.aax4761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/16/2019] [Indexed: 05/11/2023]
Abstract
Because many aspects of viral infection dynamics and inhibition are governed by stochastic processes, single-cell analysis should provide more information than approaches using population averaging. We have developed a microfluidic device composed of ~6000 wells, with each well containing a microstructure to capture single, infected cells replicating an enterovirus expressing a fluorescent reporter protein. We have used this system to characterize enterovirus inhibitors with distinct mechanisms of action. Single-cell analysis reveals that each class of inhibitor interferes with the viral infection cycle in a manner that can be distinguished by principal component analysis. Single-cell analysis of antiviral candidates not only reveals efficacy but also facilitates clustering of drugs with the same mechanism of action and provides some indication of the ease with which resistance will develop.
Collapse
Affiliation(s)
- Wu Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Mehmet U. Caglar
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, and Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Woodman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Claus O. Wilke
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, and Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
49
|
Hayes CN, Imamura M, Chayama K. Management of HCV patients in cases of direct-acting antiviral failure. Expert Rev Gastroenterol Hepatol 2019; 13:839-848. [PMID: 31392907 DOI: 10.1080/17474124.2019.1651642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Over 70 million people are infected with hepatitis C virus (HCV), increasing the risk of cirrhosis and hepatocellular carcinoma. Areas covered: Since the approval of the first interferon-free direct-acting antiviral (DAA) therapy in 2011, a number of DAAs have been approved, and HCV is now considered curable. Until recently, however, there were no clear guidelines on how to re-treat patients who fail DAA therapy. Current protease inhibitors (PIs) are generally unaffected by earlier resistance-associated variants (RAVs), but many NS5A inhibitors continue to have overlapping resistance profiles, and NS5A RAVs can persist even in the absence of DAAs. Expert opinion: Fortunately, RAVs affecting NS5B polymerase inhibitors are rare, making sofosbuvir a safe choice as the backbone of re-treatment therapies. Recent re-treatment guidelines that take into account genotype, fibrosis, treatment history, and RAV suggest that >90% of patients with prior treatment failures can be successfully re-treated with sofosbuvir/velpatasvir, sofosbuvir/velpatasvir/voxilaprevir or glecaprevir/pibrentasvir.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,Liver Research Project Center, Hiroshima University , Hiroshima , Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,Liver Research Project Center, Hiroshima University , Hiroshima , Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,Liver Research Project Center, Hiroshima University , Hiroshima , Japan
| |
Collapse
|
50
|
Netzler NE, Enosi Tuipulotu D, Vasudevan SG, Mackenzie JM, White PA. Antiviral Candidates for Treating Hepatitis E Virus Infection. Antimicrob Agents Chemother 2019; 63:e00003-19. [PMID: 30885901 PMCID: PMC6535575 DOI: 10.1128/aac.00003-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Globally, hepatitis E virus (HEV) causes significant morbidity and mortality each year. Despite this burden, there are no specific antivirals available to treat HEV patients, and the only licensed vaccine is not available outside China. Ribavirin and alpha interferon are used to treat chronic HEV infections; however, severe side effects and treatment failure are commonly reported. Therefore, this study aimed to identify potential antivirals for further development to combat HEV infection. We selected 16 compounds from the nucleoside and nonnucleoside antiviral classes that range in developmental status from late preclinical to FDA approved and evaluated them as potential antivirals for HEV infection, using genotype 1 replicon luminescence studies and replicon RNA quantification. Two potent inhibitors of HEV replication included NITD008 (half-maximal effective concentration [EC50], 0.03 μM; half-maximal cytotoxic concentration [CC50], >100 μM) and GPC-N114 (EC50, 1.07 μM, CC50, >100 μM), and both drugs reduced replicon RNA levels in cell culture (>50% reduction with either 10 μM GPC-N114 or 2.50 μM NITD008). Furthermore, GPC-N114 and NITD008 were synergistic in combinational treatment (combination index, 0.4) against HEV replication, allowing for dose reduction indices of 20.42 and 8.82 at 50% inhibition, respectively. Sofosbuvir has previously exhibited mixed results against HEV as an antiviral, both in vitro and in a few clinical applications; however, in this study it was effective against the HEV genotype 1 replicon (EC50, 1.97 μM; CC50, >100 μM) and reduced replicon RNA levels (47.2% reduction at 10 μM). Together these studies indicate drug repurposing may be a promising pathway for development of antivirals against HEV infection.
Collapse
Affiliation(s)
- Natalie E Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | | | - Jason M Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|