1
|
Yang F, Ma Y. The application and prospects of antimicrobial peptides in antiviral therapy. Amino Acids 2024; 56:68. [PMID: 39630161 PMCID: PMC11618130 DOI: 10.1007/s00726-024-03427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/09/2024] [Indexed: 12/08/2024]
Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antimicrobial activity, enabling them to rapidly detect and eliminate targets. In addition, many AMPs are natural peptides, making them promising candidates for therapeutic drugs. This review discusses the basic properties and mechanisms of action of AMPs, highlighting their ability to disrupt microbial membranes and modulate host immune responses. It also reviews the current state of research into using AMPs against various viral infections, focusing on their therapeutic potential against viruses that contribute to the global health crisis. Despite promising developments, therapies based on AMPs still face challenges such as stability, toxicity, and production costs. In this text, we will discuss these challenges and the latest technological advances aimed at overcoming them. The combination of nanotechnology and bioengineering approaches offers new ways to enhance the delivery, efficacy, and safety of AMPs. We emphasize the importance of further research to fully exploit the potential of AMPs in antiviral therapy, advocating a multifaceted approach that includes optimizing clinical use and exploring synergies with existing antiviral drugs.
Collapse
Affiliation(s)
- Fei Yang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Eichberg J, Oberpaul M, Hartwig C, Geißler AH, Culmsee C, Vilcinskas A, Böttcher-Friebertshäuser E, Brückner H, Degenkolb T, Hardes K. Structural characterization and bioactivity profiling of the fungal peptaibiotic tolypin reveal protective effects against influenza viruses. Arch Pharm (Weinheim) 2024; 357:e2400384. [PMID: 39031917 DOI: 10.1002/ardp.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
In a bioprospection for new antivirals, we tested nonribosomally biosynthesized polypeptide antibiotics in MDCK II cells for their actions on influenza A and B viruses (IAV/IBV). Only tolypin, a mixture of closely related 16-residue peptaibiotics from the fungus Tolypocladium inflatum IE 1897, showed promising activity. It was selected for further investigation and structural characterization by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HR-MS/MS) and ultrahigh performance liquid chromatography coupled to in-source collision-induced dissociation tandem mass spectrometry (UHPLC-isCID-HR-MS/MS), revealing 12 partially co-eluting individual peptides that were fully sequenced. Since tolypin-related efrapeptins are potent inhibitors of F1/Fo-ATPase, we screened tolypin for its toxicity against MDCK II cells and larvae of the greater wax moth Galleria mellonella. We found that a nontoxic concentration of tolypin (1 µg/mL) reduced the titer of two IBV strains by 4-5 log values, and that of an H3N2 strain by 1-2 log values, but the H1N1pdm strain was not affected. The higher concentrations of tolypin were cytostatic to MDCK II cells, shifted their metabolism from oxidative phosphorylation to glycolysis, and induced paralysis in G. mellonella, supporting the inhibition of F1/Fo-ATPase as the mode of action. Our results lay the foundations for future work to investigate the interplay between viral replication and cellular energy metabolism, as well as the development of drugs that target host factors.
Collapse
Affiliation(s)
- Johanna Eichberg
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Giessen, Germany
| | - Markus Oberpaul
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Giessen, Germany
| | - Christoph Hartwig
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Andrea Helga Geißler
- Department of Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center Marburg, University of Marburg, Marburg, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Department of Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | | | - Hans Brückner
- Department of Food Sciences, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Thomas Degenkolb
- Department of Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Kornelia Hardes
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
3
|
Morovati S, Baghkheirati AA, Sekhavati MH, Razmyar J. A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin. Probiotics Antimicrob Proteins 2024; 16:1886-1905. [PMID: 38722550 DOI: 10.1007/s12602-024-10285-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 10/02/2024]
Abstract
Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide's activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide's antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide's interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.
Collapse
Affiliation(s)
- Solmaz Morovati
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Ziu T, Sambur E, Ruzsics Z, Hengel H, Grabherr R, Höfinger S, Harant H. In Vitro Profiling of the Antiviral Peptide TAT-I24. Int J Mol Sci 2024; 25:10463. [PMID: 39408791 PMCID: PMC11477294 DOI: 10.3390/ijms251910463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The synthetic peptide TAT-I24 (GRKKRRQRRRPPQCLAFYACFC) exerts antiviral activity against several double-stranded (ds) DNA viruses, including herpes simplex viruses, cytomegalovirus, some adenoviruses, vaccinia virus and SV40 polyomavirus. In the present study, in vitro profiling of this peptide was performed with the aim of characterizing and improving its properties for further development. As TAT-I24 contains three free cysteine residues, a potential disadvantageous feature, peptide variants with replacements or deletions of specific residues were generated and tested in various cell systems and by biochemical analyses. Some cysteine replacements had no impact on the antiviral activity, such as the deletion of cysteine 14, which also showed improved biochemical properties, while the cyclization of cysteines 14 and 20 had the most detrimental effect on antiviral activity. At concentrations below 20 µM, TAT-I24 and selected variants did not induce hemolysis in red blood cells (RBCs) nor modulated lipopolysaccharide (LPS)-induced release of cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), in human peripheral blood mononuclear cells (PBMCs). These data indicate that TAT-I24 or its peptide variants are not expected to cause unwanted effects on blood cells.
Collapse
Affiliation(s)
- Theodhora Ziu
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| | - Ezgi Sambur
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Reingard Grabherr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Siegfried Höfinger
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | - Hanna Harant
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| |
Collapse
|
5
|
Gholami S, Mafakher L, Fotouhi F, Bambai B, Cohan RA, Mehrbod P, Shokouhi H, Farahmand B. Computational peptide engineering approach for selection of the new C05 antibody-driven peptide with potency to blocking influenza a virus attachment; from in silico to in vivo. J Biomol Struct Dyn 2024; 42:7730-7746. [PMID: 37553776 DOI: 10.1080/07391102.2023.2241554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Antiviral drugs are currently used to prevent or treat viral infections like influenza A Virus (IAV). Nonetheless, annual genetic mutations of influenza viruses make them resistant to efficient treatment by current medications. Antiviral peptides have recently attracted researchers' attention and can potentially supplant the current medications. This study aimed to design peptides against IAV propagation. For this purpose, P2 and P3 peptides were computationally designed based on the HCDR3 region of the C05 antibody (a monoclonal antibody that neutralizes influenza HA protein and inhibits the virus attachment). The synthesized peptides were tested against the influenza A virus (A/Puerto Rico/8/34 (H1N1)) in vitro, and the most efficient peptide was selected for in vivo experiments. It was shown that the designed peptide shows much more prophylactic and therapeutic effects against the virus. These findings demonstrated that the designed peptide can control the virus infection without any cytotoxicity effect. Antiviral peptide design is acknowledged as a critical tactic to manage viral infections by preventing viral binding to the host cells.Communicated by Ramaswamy H. Sarma.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/chemistry
- Peptides/chemistry
- Peptides/pharmacology
- Animals
- Humans
- Virus Attachment/drug effects
- Influenza A virus/drug effects
- Influenza A virus/immunology
- Dogs
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Protein Engineering/methods
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Madin Darby Canine Kidney Cells
- Molecular Dynamics Simulation
- Mice
- Computer Simulation
- Amino Acid Sequence
- Molecular Docking Simulation
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/immunology
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Protein Binding
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/chemistry
Collapse
Affiliation(s)
- Shima Gholami
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Bijan Bambai
- Department of Systems Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Periwal N, Arora P, Thakur A, Agrawal L, Goyal Y, Rathore AS, Anand HS, Kaur B, Sood V. Antiprotozoal peptide prediction using machine learning with effective feature selection techniques. Heliyon 2024; 10:e36163. [PMID: 39247292 PMCID: PMC11380031 DOI: 10.1016/j.heliyon.2024.e36163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Background Protozoal pathogens pose a considerable threat, leading to notable mortality rates and the ongoing challenge of developing resistance to drugs. This situation underscores the urgent need for alternative therapeutic approaches. Antimicrobial peptides stand out as promising candidates for drug development. However, there is a lack of published research focusing on predicting antimicrobial peptides specifically targeting protozoal pathogens. In this study, we introduce a successful machine learning-based framework designed to predict potential antiprotozoal peptides effective against protozoal pathogens. Objective The primary objective of this study is to classify and predict antiprotozoal peptides using diverse negative datasets. Methods A comprehensive literature review was conducted to gather experimentally validated antiprotozoal peptides, forming the positive dataset for our study. To construct a robust machine learning classifier, multiple negative datasets were incorporated, including (i) non-antimicrobial, (ii) antiviral, (iii) antibacterial, (iv) antifungal, and (v) antimicrobial peptides excluding those targeting protozoal pathogens. Various compositional features of the peptides were extracted using the pfeature algorithm. Two feature selection methods, SVC-L1 and mRMR, were employed to identify highly relevant features crucial for distinguishing between the positive and negative datasets. Additionally, five popular classifiers i.e. Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, and XGBoost were used to build efficient decision models. Results XGBoost was the most effective in classifying antiprotozoal peptides from each negative dataset based on the features selected by the mRMR feature selection method. The proposed machine learning framework efficiently differentiate the antiprotozoal peptides from (i) non-antimicrobial (ii) antiviral (iii) antibacterial (iv) antifungal and (v) antimicrobial with accuracy of 97.27 %, 93.64 %, 86.36 %, 90.91 %, and 89.09 % respectively on the validation dataset. Conclusion The models are incorporated in a user-friendly web server (www.soodlab.com/appred) to predict the antiprotozoal activity of given peptides.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, India
| | | | | | - Yash Goyal
- Department of Computer Science, Hansraj College, University of Delhi, India
| | - Anand S Rathore
- Department of Zoology, Hansraj College, University of Delhi, India
| | | | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, India
| |
Collapse
|
7
|
Lopdell TJ, Trevarton AJ, Moody J, Prowse-Wilkins C, Knowles S, Tiplady K, Chamberlain AJ, Goddard ME, Spelman RJ, Lehnert K, Snell RG, Davis SR, Littlejohn MD. A common regulatory haplotype doubles lactoferrin concentration in milk. Genet Sel Evol 2024; 56:22. [PMID: 38549172 PMCID: PMC11234695 DOI: 10.1186/s12711-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand.
| | - Alexander J Trevarton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Janelle Moody
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Claire Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Knowles
- Auckland War Memorial Museum, Victoria Street West, Auckland, New Zealand
| | - Kathryn Tiplady
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J Spelman
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Stephen R Davis
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Mathew D Littlejohn
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
- AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Guan J, Yao L, Xie P, Chung CR, Huang Y, Chiang YC, Lee TY. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Brief Bioinform 2024; 25:bbae208. [PMID: 38706321 PMCID: PMC11070730 DOI: 10.1093/bib/bbae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Antiviral peptides (AVPs) have shown potential in inhibiting viral attachment, preventing viral fusion with host cells and disrupting viral replication due to their unique action mechanisms. They have now become a broad-spectrum, promising antiviral therapy. However, identifying effective AVPs is traditionally slow and costly. This study proposed a new two-stage computational framework for AVP identification. The first stage identifies AVPs from a wide range of peptides, and the second stage recognizes AVPs targeting specific families or viruses. This method integrates contrastive learning and multi-feature fusion strategy, focusing on sequence information and peptide characteristics, significantly enhancing predictive ability and interpretability. The evaluation results of the model show excellent performance, with accuracy of 0.9240 and Matthews correlation coefficient (MCC) score of 0.8482 on the non-AVP independent dataset, and accuracy of 0.9934 and MCC score of 0.9869 on the non-AMP independent dataset. Furthermore, our model can predict antiviral activities of AVPs against six key viral families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight viruses (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). Finally, to facilitate user accessibility, we built a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼dbAMP/AVP/.
Collapse
Affiliation(s)
- Jiahui Guan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Lantian Yao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, 320317 Taoyuan, Taiwan
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Ying-Chih Chiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
9
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
10
|
Zhang HQ, Sun C, Xu N, Liu W. The current landscape of the antimicrobial peptide melittin and its therapeutic potential. Front Immunol 2024; 15:1326033. [PMID: 38318188 PMCID: PMC10838977 DOI: 10.3389/fimmu.2024.1326033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.
Collapse
Affiliation(s)
- Hai-Qian Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| | - Na Xu
- Academic Affairs Office, Jilin Medical University, Jilin, Jilin, China
| | - Wensen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, Jilin, China
| |
Collapse
|
11
|
Din GU, Hasham K, Amjad MN, Hu Y. Natural History of Influenza B Virus-Current Knowledge on Treatment, Resistance and Therapeutic Options. Curr Issues Mol Biol 2023; 46:183-199. [PMID: 38248316 PMCID: PMC10814056 DOI: 10.3390/cimb46010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Influenza B virus (IBV) significantly impacts the health and the economy of the global population. WHO global health estimates project 1 billion flu cases annually, with 3 to 5 million resulting in severe disease and 0.3 to 0.5 million influenza-related deaths worldwide. Influenza B virus epidemics result in significant economic losses due to healthcare expenses, reduced workforce productivity, and strain on healthcare systems. Influenza B virus epidemics, such as the 1987-1988 Yamagata lineage outbreak and the 2001-2002 Victoria lineage outbreak, had a significant global impact. IBV's fast mutation and replication rates facilitate rapid adaptation to the environment, enabling the evasion of existing immunity and the development of resistance to virus-targeting treatments. This leads to annual outbreaks and necessitates the development of new vaccination formulations. This review aims to elucidate IBV's evolutionary genomic organization and life cycle and provide an overview of anti-IBV drugs, resistance, treatment options, and prospects for IBV biology, emphasizing challenges in preventing and treating IBV infection.
Collapse
Affiliation(s)
- Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai 200031, China; (G.U.D.)
- University of Chinese Academy of Sciences, Beijing 100040, China
| | - Kinza Hasham
- Sundas Molecular Analysis Center, Sundas Foundation Gujranwala Punjab Pakistan, Gujranwala 50250, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai 200031, China; (G.U.D.)
- University of Chinese Academy of Sciences, Beijing 100040, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai 200031, China; (G.U.D.)
- University of Chinese Academy of Sciences, Beijing 100040, China
| |
Collapse
|
12
|
Yan R, Dai W, Mao Y, Yu G, Li W, Shu M, Xu B. Melittin inhibits tumor cell migration and enhances cisplatin sensitivity by suppressing IL-17 signaling pathway gene LCN2 in castration-resistant prostate cancer. Prostate 2023; 83:1430-1445. [PMID: 37517867 DOI: 10.1002/pros.24605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Melittin is a small molecule polypeptide extracted from the abdominal cavity of bees, which is used to treat inflammatory diseases and relieve pain. However, the antitumor effect of melittin and its mechanisms remain unclear, especially in castration-resistant prostate cancer (CRPC). METHODS Through CCK-8 assay, colony formation assay, wound healing assay and Transwell migration assay, we explored the effect of melittin on CRPC cell lines. In addition, with microarray analysis, gene ontology analysis and kyoto encyclopedia of genes and genomes analysis, this study identified key genes and signaling pathways that influence the growth of PC-3 cells. Meanwhile, the effect of melittin on CRPC was also verified through subcutaneous tumor formation experiments. Finally, we also tested the relevant indicators of human prostate cancer (PCa) specimens through immunohistochemistry and H&E stating. RESULTS Here, melittin was verified to inhibit the cell proliferation and migration of CPRC. Moreover, RNA-sequence analysis demonstrated that Interleukin-17 (IL-17) signaling pathway gene Lipocalin-2 (LCN2) was downregulated by melittin treatment in CRPC. Further investigation revealed that overexpression of LCN2 was able to rescue tumor suppression and cisplatin sensitivity which melittin mediated. Interestingly, the expression of LCN2 is highly related to metastasis in PCa. CONCLUSIONS In brief, our study indicates that LCN2 plays an oncogenic role in CRPC and melittin may be selected as an attractive candidate for CRPC therapy.
Collapse
Affiliation(s)
- Rucheng Yan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
13
|
Ayusso GM, da Silva Sanches PR, Carvalho T, Santos IA, Martins DOS, Lima MLD, da Conceição PJP, Bittar C, Merits A, Cilli EM, Jardim ACG, Rahal P, Calmon MF. The Synthetic Peptide GA-Hecate and Its Analogs Inhibit Multiple Steps of the Chikungunya Virus Infection Cycle In Vitro. Pharmaceuticals (Basel) 2023; 16:1389. [PMID: 37895860 PMCID: PMC10610090 DOI: 10.3390/ph16101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Chikungunya virus (CHIKV) belongs to the Alphavirus genus and is responsible for significant outbreaks worldwide. Currently, there is no approved antiviral therapy against CHIKV. Bioactive peptides have great potential for new drug development. Here, we evaluated the antiviral activity of the synthetic peptide GA-Hecate and its analogs PSSct1905 and PSSct1910 against CHIKV infection. Initial screening showed that all three peptides inhibited the CHIKV replication cycle in baby hamster kidney fibroblast cells (BHK-21) and human hepatocarcinoma epithelial cells (Huh-7). GA-Hecate and its analog PSSct1905 were the most active, demonstrating suppression of viral infection by more than 91%. The analog PSSct1905 exhibited a protective effect in cells against CHIKV infection. We also observed that the analogs PSSct1905 and PSSct1910 affected CHIKV entry into both cell lines, inhibiting viral attachment and internalization. Finally, all tested compounds presented antiviral activity on the post-entry steps of CHIKV infection in all cells evaluated. In conclusion, this study highlights the potential of the peptide GA-Hecate and its analogs as novel anti-CHIKV compounds targeting different stages of the viral replication cycle, warranting the development of GA-Hecate-based compounds with broad antiviral activity.
Collapse
Affiliation(s)
- Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | | | - Tamara Carvalho
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Daniel Oliveira Silva Martins
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Maria Letícia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Pâmela Jóyce Previdelli da Conceição
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Cíntia Bittar
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia;
| | - Eduardo Maffud Cilli
- Institute of Chemistry, São Paulo State University, Araraquara 14800-060, SP, Brazil;
| | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, MG, Brazil;
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| | - Marilia Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (G.M.A.); (T.C.); (D.O.S.M.); (M.L.D.L.); (P.J.P.d.C.); (C.B.); (A.C.G.J.); (P.R.)
| |
Collapse
|
14
|
Low ZY, Wong KH, Wen Yip AJ, Choo WS. The convergent evolution of influenza A virus: Implications, therapeutic strategies and what we need to know. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100202. [PMID: 37700857 PMCID: PMC10493511 DOI: 10.1016/j.crmicr.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Influenza virus infection, more commonly known as the 'cold flu', is an etiological agent that gives rise to recurrent annual flu and many pandemics. Dated back to the 1918- Spanish Flu, the influenza infection has caused the loss of many human lives and significantly impacted the economy and daily lives. Influenza virus can be classified into four different genera: influenza A-D, with the former two, influenza A and B, relevant to humans. The capacity of antigenic drift and shift in Influenza A has given rise to many novel variants, rendering vaccines and antiviral therapies useless. In light of the emergence of a novel betacoronavirus, the SARS-CoV-2, unravelling the underpinning mechanisms that support the recurrent influenza epidemics and pandemics is essential. Given the symptom similarities between influenza and covid infection, it is crucial to reiterate what we know about the influenza infection. This review aims to describe the origin and evolution of influenza infection. Apart from that, the risk factors entail the implication of co-infections, especially regarding the COVID-19 pandemic is further discussed. In addition, antiviral strategies, including the potential of drug repositioning, are discussed in this context. The diagnostic approach is also critically discussed in an effort to understand better and prepare for upcoming variants and potential influenza pandemics in the future. Lastly, this review encapsulates the challenges in curbing the influenza spread and provides insights for future directions in influenza management.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ka Heng Wong
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
15
|
Tate P, Mastrodomenico V, Cunha C, McClure J, Barron AE, Diamond G, Mounce BC, Kirshenbaum K. Peptidomimetic Oligomers Targeting Membrane Phosphatidylserine Exhibit Broad Antiviral Activity. ACS Infect Dis 2023; 9:1508-1522. [PMID: 37530426 PMCID: PMC10425984 DOI: 10.1021/acsinfecdis.3c00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/03/2023]
Abstract
The development of durable new antiviral therapies is challenging, as viruses can evolve rapidly to establish resistance and attenuate therapeutic efficacy. New compounds that selectively target conserved viral features are attractive therapeutic candidates, particularly for combating newly emergent viral threats. The innate immune system features a sustained capability to combat pathogens through production of antimicrobial peptides (AMPs); however, these AMPs have shortcomings that can preclude clinical use. The essential functional features of AMPs have been recapitulated by peptidomimetic oligomers, yielding effective antibacterial and antifungal agents. Here, we show that a family of AMP mimetics, called peptoids, exhibit direct antiviral activity against an array of enveloped viruses, including the key human pathogens Zika, Rift Valley fever, and chikungunya viruses. These data suggest that the activities of peptoids include engagement and disruption of viral membrane constituents. To investigate how these peptoids target lipid membranes, we used liposome leakage assays to measure membrane disruption. We found that liposomes containing phosphatidylserine (PS) were markedly sensitive to peptoid treatment; in contrast, liposomes formed exclusively with phosphatidylcholine (PC) showed no sensitivity. In addition, chikungunya virus containing elevated envelope PS was more susceptible to peptoid-mediated inactivation. These results indicate that peptoids mimicking the physicochemical characteristics of AMPs act through a membrane-specific mechanism, most likely through preferential interactions with PS. We provide the first evidence for the engagement of distinct viral envelope lipid constituents, establishing an avenue for specificity that may enable the development of a new family of therapeutics capable of averting the rapid development of resistance.
Collapse
Affiliation(s)
- Patrick
M. Tate
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Vincent Mastrodomenico
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | - Christina Cunha
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | | | - Annelise E. Barron
- Maxwell
Biosciences, Austin, Texas 78738, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Gill Diamond
- Department
of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40292, United States
| | - Bryan C. Mounce
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | - Kent Kirshenbaum
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Maxwell
Biosciences, Austin, Texas 78738, United States
| |
Collapse
|
16
|
Prasertsuk K, Prongfa K, Suttiwanich P, Harnkit N, Sangkhawasi M, Promta P, Chumnanpuen P. Computer-Aided Screening for Potential Coronavirus 3-Chymotrypsin-like Protease (3CLpro) Inhibitory Peptides from Putative Hemp Seed Trypsinized Peptidome. Molecules 2022; 28:50. [PMID: 36615263 PMCID: PMC9822321 DOI: 10.3390/molecules28010050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
To control the COVID-19 pandemic, antivirals that specifically target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently required. The 3-chymotrypsin-like protease (3CLpro) is a promising drug target since it functions as a catalytic dyad in hydrolyzing polyprotein during the viral life cycle. Bioactive peptides, especially food-derived peptides, have a variety of functional activities, including antiviral activity, and also have a potential therapeutic effect against COVID-19. In this study, the hemp seed trypsinized peptidome was subjected to computer-aided screening against the 3CLpro of SARS-CoV-2. Using predictive trypsinized products of the five major proteins in hemp seed (i.e., edestin 1, edestin 2, edestin 3, albumin, and vicilin), the putative hydrolyzed peptidome was established and used as the input dataset. To select the Cannabis sativa antiviral peptides (csAVPs), a predictive bioinformatic analysis was performed by three webserver screening programs: iAMPpred, AVPpred, and Meta-iAVP. The amino acid composition profile comparison was performed by COPid to screen for the non-toxic and non-allergenic candidates, ToxinPred and AllerTOP and AllergenFP, respectively. GalaxyPepDock and HPEPDOCK were employed to perform the molecular docking of all selected csAVPs to the 3CLpro of SARS-CoV-2. Only the top docking-scored candidate (csAVP4) was further analyzed by molecular dynamics simulation for 150 nanoseconds. Molecular docking and molecular dynamics revealed the potential ability and stability of csAVP4 to inhibit the 3CLpro catalytic domain with hydrogen bond formation in domain 2 with short bonding distances. In addition, these top ten candidate bioactive peptides contained hydrophilic amino acid residues and exhibited a positive net charge. We hope that our results may guide the future development of alternative therapeutics against COVID-19.
Collapse
Affiliation(s)
- Kansate Prasertsuk
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Kasidit Prongfa
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Piyapach Suttiwanich
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Promta
- Pibulwitthayalai School, 777 Naraimaharach, Talaychoopsorn, Lopburi District, Lopburi 15000, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
17
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022; 11:antibiotics11101417. [PMID: 36290075 PMCID: PMC9598582 DOI: 10.3390/antibiotics11101417] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host's first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marijana Neuberg
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (J.T.); (I.Š.)
| |
Collapse
|
19
|
Lishchynskyi O, Shymborska Y, Stetsyshyn Y, Raczkowska J, Skirtach AG, Peretiatko T, Budkowski A. Passive antifouling and active self-disinfecting antiviral surfaces. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 446:137048. [PMID: 35601363 PMCID: PMC9113772 DOI: 10.1016/j.cej.2022.137048] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 05/15/2023]
Abstract
Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Taras Peretiatko
- Ivan Franko National University of Lviv, Universytetska 1, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
20
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
21
|
Harnkit N, Khongsonthi T, Masuwan N, Prasartkul P, Noikaew T, Chumnanpuen P. Virtual Screening for SARS-CoV-2 Main Protease Inhibitory Peptides from the Putative Hydrolyzed Peptidome of Rice Bran. Antibiotics (Basel) 2022; 11:antibiotics11101318. [PMID: 36289976 PMCID: PMC9598432 DOI: 10.3390/antibiotics11101318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the loss of life and has affected the life quality, economy, and lifestyle. The SARS-CoV-2 main protease (Mpro), which hydrolyzes the polyprotein, is an interesting antiviral target to inhibit the spreading mechanism of COVID-19. Through predictive digestion, the peptidomes of the four major proteins in rice bran, albumin, glutelin, globulin, and prolamin, with three protease enzymes (pepsin, trypsin, and chymotrypsin), the putative hydrolyzed peptidome was established and used as the input dataset. Then, the prediction of the antiviral peptides (AVPs) was performed by online bioinformatics tools, i.e., AVPpred, Meta-iAVP, AMPfun, and ENNAVIA programs. The amino acid composition and cytotoxicity of candidate AVPs were analyzed by COPid and ToxinPred, respectively. The ten top-ranked antiviral peptides were selected and docked to the SARS-CoV-2 main protease using GalaxyPepDock. Only the top docking scored candidate (AVP4) was further analyzed by molecular dynamics simulation for one nanosecond. According to the bioinformatic analysis results, the candidate SARS-CoV-2 main protease inhibitory peptides were 7–33 amino acid residues and formed hydrogen bonds at Thr22–24, Glu154, and Thr178 in domain 2 with short bonding distances. In addition, these top-ten candidate bioactive peptides contain hydrophilic amino acid residues and have a positive net charge. We hope that this study will provide a potential starting point for peptide-based therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Nathaphat Harnkit
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Thanakamol Khongsonthi
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Noprada Masuwan
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Pornpinit Prasartkul
- Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Tipanart Noikaew
- Department of Biology and Health Science, Mahidol Wittayanusorn School, 364 Salaya, Phuttamonthon District, Nakhon Prathom 73170, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
22
|
Wang J, Jiang B, Wang K, Dai J, Dong C, Wang Y, Zhang P, Li M, Xu W, Wei L. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor. J Biol Chem 2022; 298:102471. [PMID: 36089062 PMCID: PMC9530963 DOI: 10.1016/j.jbc.2022.102471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) is a re-emerging flavivirus that causes conditions such as microcephaly and testis damage. The spread of ZIKV has become a major public health concern. Recent studies indicated that antimicrobial peptides are an ideal source for screening antiviral candidates with broad-spectrum antiviral activities, including against ZIKV. We herein found that Hc-CATH, a cathelicidin antimicrobial peptide identified from the sea snake Hydrophis cyanocinctus in our previous work, conferred protection against ZIKV infection in host cells and showed preventative efficacy and therapeutic efficacy in C57BL/6J mice, Ifnar1−/− mice, and pregnant mice. Intriguingly, we revealed that Hc-CATH decreased the susceptibility of host cells to ZIKV by downregulating expression of AXL, a TAM (TYRO3, AXL and MERTK) family kinase receptor that mediates ZIKV infection, and subsequently reversed the negative regulation of AXL on host’s type I interferon response. Furthermore, we showed that the cyclo-oxygenase-2/prostaglandin E2/adenylyl cyclase/protein kinase A pathway was involved in Hc-CATH-mediated AXL downregulation, and Hc-CATH in addition directly inactivated ZIKV particles by disrupting viral membrane. Finally, while we found Hc-CATH did not act on the late stage of ZIKV infection, structure–function relationship studies revealed that α-helix and phenylalanine residues are key structural requirements for its protective efficacy against initial ZIKV infection. In summary, we demonstrate that Hc-CATH provides prophylactic and therapeutic efficacy against ZIKV infection via downregulation of AXL, as well as inactivating the virion. Our findings reveal a novel mechanism of cathelicidin against viral infection and highlight the potential of Hc-CATH to prevent and treat ZIKV infection.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Bingyan Jiang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kezhen Wang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianfeng Dai
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
23
|
Todorov P, Georgieva S, Staneva D, Peneva P, Grozdanov P, Nikolova I, Vasileva-Tonkova E, Grabchev I. Study of Novel Peptides for Antimicrobial Protection in Solution and on Cotton Fabric. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154770. [PMID: 35897948 PMCID: PMC9332204 DOI: 10.3390/molecules27154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Some new N- and C-modified biomolecular peptide analogues of both VV-hemorphin-5 and VV-hemorphin-7 with varied amino acids (Cys, Glu, His), 1-adamantanecarboxylic acid, and niacin (nicotinic acid) were synthesized by solid-phase peptide synthesis-Fmoc (9-fluorenylmethoxy-carbonyl) chemistry and were characterized in water solutions with different pH using spectroscopic and electrochemical techniques. Basic physicochemical properties related to the elucidation of the peptide structure at physiological pH have been also studied. The results showed that the interaction of peptide compounds with light and electricity preserves the structural and conformational integrity of the compounds in the solutions. Moreover, textile cotton fibers were modified with the new compounds and the binding of the peptides to the surface of the material was proved by FTIR and SEM analysis. Washing the material with an alkaline soap solution did not show a violation of the modified structure of the cotton. Antiviral activity against the human respiratory syncytial virus (HRSV-S2) and human adenovirus serotype 5 (HAdV-5), the antimicrobial activity against B. cereus and P. aeruginosa used as model bacterial strains and cytotoxic effect of the peptide derivatives and modified cotton textile material has been evaluated. Antimicrobial tests showed promising activity of the newly synthesized compounds against the used Gram-positive and Gram-negative bacteria. The compounds C-V, H-V, AC-V, and AH-V were found slightly more active than NH7C and NCH7. The activity has been retained after the deposition of the compounds on cotton fibers.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163423
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.G.); (I.N.); (E.V.-T.)
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.G.); (I.N.); (E.V.-T.)
| | - Evgenia Vasileva-Tonkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.G.); (I.N.); (E.V.-T.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kl. Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
24
|
Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 2022; 167:1763-1772. [PMID: 35723756 DOI: 10.1007/s00705-022-05494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.
Collapse
|
25
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
26
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
27
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
28
|
León-López A, Pérez-Marroquín XA, Estrada-Fernández AG, Campos-Lozada G, Morales-Peñaloza A, Campos-Montiel RG, Aguirre-Álvarez G. Milk Whey Hydrolysates as High Value-Added Natural Polymers: Functional Properties and Applications. Polymers (Basel) 2022; 14:polym14061258. [PMID: 35335587 PMCID: PMC8955172 DOI: 10.3390/polym14061258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
There are two types of milk whey obtained from cheese manufacture: sweet and acid. It retains around 55% of the nutrients of the milk. Milk whey is considered as a waste, creating a critical pollution problem, because 9 L of whey are produced from every 10 L of milk. Some treatments such as hydrolysis by chemical, fermentation process, enzymatic action, and green technologies (ultrasound and thermal treatment) are successful in obtaining peptides from protein whey. Milk whey peptides possess excellent functional properties such as antihypertensive, antiviral, anticancer, immunity, and antioxidant, with benefits in the cardiovascular, digestive, endocrine, immune, and nervous system. This review presents an update of the applications of milk whey hydrolysates as a high value-added peptide based on their functional properties.
Collapse
Affiliation(s)
- Arely León-López
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Xóchitl Alejandra Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Ana Guadalupe Estrada-Fernández
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco Km 3.5, Colonia Las Peñitas, Apan C.P. 43900, Hidalgo, Mexico;
| | - Gieraldin Campos-Lozada
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Alejandro Morales-Peñaloza
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan s/n, Colonia Chimalpa Tlalayote, Apan C.P. 43920, Hidalgo, Mexico;
| | - Rafael G. Campos-Montiel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Tulancingo C.P. 43600, Hidalgo, Mexico; (A.L.-L.); (X.A.P.-M.); (G.C.-L.); (R.G.C.-M.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
- Correspondence: ; Tel.: +52-775-145-9265
| |
Collapse
|
29
|
Marques MC, Lousa D, Silva PM, Faustino AF, Soares CM, Santos NC. The Importance of Lipid Conjugation on Anti-Fusion Peptides against Nipah Virus. Biomedicines 2022; 10:biomedicines10030703. [PMID: 35327503 PMCID: PMC8945041 DOI: 10.3390/biomedicines10030703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/23/2023] Open
Abstract
Nipah virus (NiV) is a recently emerging zoonotic virus that belongs to the Paramyxoviridae family and the Henipavirus genus. It causes a range of conditions, from asymptomatic infection to acute respiratory illness and fatal encephalitis. The high mortality rate of 40 to 90% ranks these viruses among the deadliest viruses known to infect humans. Currently, there is no antiviral drug available for Nipah virus disease and treatment is only supportive. Thus, there is an urgent demand for efficient antiviral therapies. NiV F protein, which catalyzes fusion between the viral and host membranes, is a potential target for antiviral drugs, as it is a key protein in the initial stages of infection. Fusion inhibitor peptides derived from the HRC-domain of the F protein are known to bind to their complementary domain in the protein’s transient intermediate state, preventing the formation of a six-helix bundle (6HB) thought to be responsible for driving the fusion of the viral and cell membranes. Here, we evaluated the biophysical and structural properties of four different C-terminal lipid-tagged peptides. Different compositions of the lipid tags were tested to search for properties that might promote efficacy and broad-spectrum activity. Fluorescence spectroscopy was used to study the interaction of the peptides with biomembrane model systems and human blood cells. In order to understand the structural properties of the peptides, circular dichroism measurements and molecular dynamics simulations were performed. Our results indicate a peptide preference for cholesterol-enriched membranes and a lipid conjugation-driven stabilization of the peptide α-helical secondary structure. This work may contribute for the development of highly effective viral fusion against NiV inhibitors.
Collapse
Affiliation(s)
- Marta C. Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Patrícia M. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - André F. Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
- Correspondence:
| |
Collapse
|
30
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 604] [Impact Index Per Article: 201.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
31
|
Gao B, Zhao D, Li L, Cheng Z, Guo Y. Antiviral Peptides with in vivo Activity: Development and Modes of Action. Chempluschem 2021; 86:1547-1558. [PMID: 34755499 DOI: 10.1002/cplu.202100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Indexed: 12/25/2022]
Abstract
The viral pandemic has resulted in a growing demand for antiviral drugs. The existing small-molecule antiviral drugs are limited, due to their incidence of drug resistance and adverse side effects. As potential drugs, antiviral peptides have the benefits of high activity, high stability, and few side effects. Furthermore, the diversity of acquisition methods allows antiviral peptides to be quickly designed and yielded. The drug properties (such as high bioavailability and in vivo stability) of antiviral peptides can be improved by the developed modifications. Currently, two peptide antiviral drugs have been approved for the treatment of acquired immunodeficiency syndrome (AIDS). Many antiviral peptides have entered clinical trials for the treatment of diseases caused by viruses. In addition, new antiviral peptides are continuously being identified and validated against virus infections. Given the benefits of antiviral peptides, they will become major antiviral drugs to combat new outbreaks caused by unknown viruses in the future. This review provides an overview of recent developments in antiviral peptides with in vivo activity.
Collapse
Affiliation(s)
- Bing Gao
- School of Public Health, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Dongdong Zhao
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Lingmu Li
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Zhigang Cheng
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Ye Guo
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| |
Collapse
|
32
|
Todorov P, Georgieva S, Staneva D, Peneva P, Grozdanov P, Nikolova I, Grabchev I. Synthesis of New Modified with Rhodamine B Peptides for Antiviral Protection of Textile Materials. Molecules 2021; 26:molecules26216608. [PMID: 34771015 PMCID: PMC8587962 DOI: 10.3390/molecules26216608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Here we report on the synthesis and characterization of three new N-modified analogues of hemorphin-4 with rhodamine B. Modified with chloroacetyl, chloride cotton fabric has been dyed and color coordinates of the obtained textile materials were determined. Antiviral and virucidal activities of both the peptide-rhodamine B compounds and the dyed textile material were studied. Basic physicochemical properties (acid-base behavior, solvent influence, kinetics) related to the elucidation of structural activity of the new modified peptides based on their steric open/closed ring effect were studied. The obtained results lead to the conclusion that in protic solvent with change in pH of the environment, direct control over the dyeing of textiles can be achieved. Both the new hybrid peptide compounds and the modification of functionalized textile materials with these bioactive hemorphins showed virucidal activity against the human respiratory syncytial virus (HRSV-S2) and human adenovirus serotype 5 (HAdV-5) for different time intervals (30 and 60 min) and the most active compound was Rh-3.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163423
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.G.); (I.N.)
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.G.); (I.N.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kl. Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
33
|
Prediction for understanding the effectiveness of antiviral peptides. Comput Biol Chem 2021; 95:107588. [PMID: 34655913 DOI: 10.1016/j.compbiolchem.2021.107588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
The low efficacy of current antivirals in conjunction with the resistance of viruses against existing antiviral drugs has resulted in the demand for the development of novel antiviral agents. Antiviral peptides (AVPs) are those bioactive peptides having virucidal activity and they can be developed into promising antiviral drugs. They are shorter length peptides having the ability to cease the progression of viral infections. The use of antiviral peptides in therapeutics has recently attracted the attention of the research community. The development and identification of AVPs is imperative for the discovery of novel therapeutics for viral infections. In the present work, a meta classifier (stacking) based approach is implemented for the prediction of IC50 (half maximal inhibitory concentration) and pIC50 (negative log of half maximal inhibitory concentration) values. The best prediction model with evolutionary information and local alignment scores as features achieved a correlation coefficient values of 0.670 and 0.753 on the training and testing sets respectively for IC50. Further, the prediction of pIC50 reached a correlation coefficient value of 0.797 and 0.789 for training and testing sets respectively. For the development of machine learning models involved in the prediction of IC50, the use of pIC50 over IC50 is recommended as the target variable. Further on a systematic comparison of AVPs with high IC50 values and Low IC50 values, it is revealed that higher mean charge and tiny amino acids are preferred and higher length and consecutive hydrophilic amino acids are avoided in the former.
Collapse
|
34
|
Sumon TA, Hussain MA, Hasan M, Rashid A, Abualreesh MH, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736783. [PMID: 33883784 PMCID: PMC8049179 DOI: 10.1016/j.aquaculture.2021.736783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muyassar Hamid Abualreesh
- Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher Lyon Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
35
|
De Angelis M, Casciaro B, Genovese A, Brancaccio D, Marcocci ME, Novellino E, Carotenuto A, Palamara AT, Mangoni ML, Nencioni L. Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB J 2021; 35:e21358. [PMID: 33538061 DOI: 10.1096/fj.202001885rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
Treatment of respiratory viral infections remains a global health concern, mainly due to the inefficacy of available drugs. Therefore, the discovery of novel antiviral compounds is needed; in this context, antimicrobial peptides (AMPs) like temporins hold great promise. Here, we discovered that the harmless temporin G (TG) significantly inhibited the early life-cycle phases of influenza virus. The in vitro hemagglutinating test revealed the existence of TG interaction with the viral hemagglutinin (HA) protein. Furthermore, the hemolysis inhibition assay and the molecular docking studies confirmed a TG/HA complex formation at the level of the conserved hydrophobic stem groove of HA. Remarkably, these findings highlight the ability of TG to block the conformational rearrangements of HA2 subunit, which are essential for the viral envelope fusion with intracellular endocytic vesicles, thereby neutralizing the virus entry into the host cell. In comparison, in the case of parainfluenza virus, which penetrates host cells upon a membrane-fusion process, addition of TG to infected cells provoked ~1.2 log reduction of viral titer released in the supernatant. Nevertheless, at the same condition, an immunofluorescent assay showed that the expression of viral hemagglutinin/neuraminidase protein was not significantly reduced. This suggested a peptide-mediated block of some late steps of viral replication and therefore the impairment of the extracellular release of viral particles. Overall, our results are the first demonstration of the ability of an AMP to interfere with the replication of respiratory viruses with a different mechanism of cell entry and will open a new avenue for the development of novel therapeutic approaches against a large variety of respiratory viruses, including the recent SARS-CoV2.
Collapse
Affiliation(s)
- M De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - B Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - A Genovese
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - M E Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - E Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - A Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - A T Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - M L Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - L Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Dabbagh Moghaddam F, Akbarzadeh I, Marzbankia E, Farid M, khaledi L, Reihani AH, Javidfar M, Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00085-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done.
Results
This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups.
Conclusions
Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.
Collapse
|
37
|
The Peptide TAT-I24 with Antiviral Activity against DNA Viruses Binds Double-Stranded DNA with High Affinity. Biologics 2021. [DOI: 10.3390/biologics1010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The peptide TAT-I24, composed of the 9-mer peptide I24 and the TAT (48-60) peptide, exerts broad-spectrum antiviral activity against several DNA viruses. The current model of the mode of action suggests a reduction of viral entry and also a possible interaction with the viral DNA upon virus entry. To further support this model, the present study investigates the DNA binding properties of TAT-I24. DNA binding was analysed by gel retardation of a peptide-complexed DNA, fluorescence reduction of DNA labelled with intercalating dyes and determination of binding kinetics by surface plasmon resonance. Molecular dynamics simulations of DNA-peptide complexes predict high-affinity binding and destabilization of the DNA by TAT-I24. The effect on viral DNA levels of infected cells were studied by real-time PCR and staining of viral DNA by bromodeoxyuridine. TAT-I24 binds double-stranded DNA with high affinity, leading to inhibition of polymerase binding and thereby blocking of de novo nucleic acid synthesis. Analysis of early steps of virus entry using a bromodeoxyuridine-labelled virus as well as quantification of viral genomes in the cells indicate direct binding of the peptide to the viral DNA. Saturation of the peptide with exogenous DNA can fully neutralize the inhibitory effect. The antiviral activity of TAT-I24 is linked to its ability to bind DNA with high affinity. This mechanism could be the basis for the development of novel antiviral agents.
Collapse
|
38
|
de Castro KC, Costa JM. Polymeric surfaces with biocidal action: challenges imposed by the SARS-CoV-2, technologies employed, and future perspectives. JOURNAL OF POLYMER RESEARCH 2021. [PMCID: PMC8165346 DOI: 10.1007/s10965-021-02548-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
40
|
Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021; 19:1205-1217. [PMID: 33844613 PMCID: PMC8054488 DOI: 10.1080/14787210.2021.1912593] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19. Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained. Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Madanchi
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
41
|
Wong FC, Ong JH, Kumar DT, Chai TT. In Silico Identification of Multi-target Anti-SARS-CoV-2 Peptides from Quinoa Seed Proteins. Int J Pept Res Ther 2021; 27:1837-1847. [PMID: 33867899 PMCID: PMC8034280 DOI: 10.1007/s10989-021-10214-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/23/2022]
Abstract
Peptides are promising antagonists against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). To expedite drug discovery, a computational approach is widely employed for the initial screening of anti-SARS-CoV-2 candidates. This study aimed to investigate the potential of peptides from quinoa seed proteins as multi-target antagonists against SARS-CoV-2 spike glycoprotein receptor-binding domain, main protease, and papain-like protease. Five quinoa proteins were hydrolyzed in silico by papain and subtilisin. Among the 1465 peptides generated, seven could interact stably with the key binding residues and catalytic residues of the viral targets, mainly via hydrogen bonds and hydrophobic interactions. The seven peptides were comparable or superior to previously reported anti-SARS-CoV-2 peptides based on docking scores. Key residues in the seven peptides contributing to binding to viral targets were determined by computational alanine scanning. The seven peptides were predicted in silico to be non-toxic and non-allergenic. The peptides ranged between 546.66 and 3974.87 g/mol in molecular mass, besides exhibiting basic and cationic properties (isoelectric points: 8.26-12.10; net charges: 0.1-4.0). Among the seven peptides, VEDKGMMHQQRMMEKAMNIPRMCGTMQRKCRMS was found to bind the largest number of key residues on the targets. In conclusion, seven putative non-toxic, non-allergenic, multi-target anti-SARS-CoV-2 peptides were identified from quinoa seed proteins. The in vitro and in vivo efficacies of the seven peptides against SARS-CoV-2 deserve attention in future bench-top testing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10214-y.
Collapse
Affiliation(s)
- Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Joe-Hui Ong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - D. Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105 Tamil Nadu India
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| |
Collapse
|
42
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
43
|
Dube T, Ghosh A, Mishra J, Kompella UB, Panda JJ. Repurposed Drugs, Molecular Vaccines, Immune-Modulators, and Nanotherapeutics to Treat and Prevent COVID-19 Associated with SARS-CoV-2, a Deadly Nanovector. ADVANCED THERAPEUTICS 2021; 4:2000172. [PMID: 33173808 PMCID: PMC7645867 DOI: 10.1002/adtp.202000172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 02/07/2023]
Abstract
The deadly pandemic, coronavirus disease 2019 (COVID-19), caused due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has paralyzed the world. Although significant methodological advances have been made in the field of viral detection/diagnosis with 251 in vitro diagnostic tests receiving emergency use approval by the US-FDA, little progress has been made in identifying curative or preventive therapies. This review discusses the current trends and potential future approaches for developing COVID-19 therapeutics, including repurposed drugs, vaccine candidates, immune-modulators, convalescent plasma therapy, and antiviral nanoparticles/nanovaccines/combinatorial nanotherapeutics to surmount the pandemic viral strain. Many potent therapeutic candidates emerging via drug-repurposing could significantly reduce the cost and duration of anti-COVID-19 drug development. Gene/protein-based vaccine candidates that could elicit both humoral and cell-based immunity would be on the frontlines to prevent the disease. Many emerging nanotechnology-based interventions will be critical in the fight against the deadly virus by facilitating early detection and enabling target oriented multidrug therapeutics. The therapeutic candidates discussed in this article include remdesivir, dexamethasone, hydroxychloroquine, favilavir, lopinavir/ritonavir, antibody therapeutics like gimsilumab and TJM2, anti-viral nanoparticles, and nanoparticle-based DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Taru Dube
- Institute of Nano Science and TechnologyMohaliPunjab160062India
| | - Amrito Ghosh
- Institute of Nano Science and TechnologyMohaliPunjab160062India
| | - Jibanananda Mishra
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjab144411India
| | - Uday B. Kompella
- Nanomedicine and Drug Delivery LaboratoryDepartment of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Jiban Jyoti Panda
- Institute of Nano Science and TechnologyMohaliPunjab160062India
- Nanomedicine and Drug Delivery LaboratoryDepartment of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| |
Collapse
|
44
|
Shoji M, Sugimoto M, Matsuno K, Fujita Y, Mii T, Ayaki S, Takeuchi M, Yamaji S, Tanaka N, Takahashi E, Noda T, Kido H, Tokuyama T, Tokuyama T, Tokuyama T, Kuzuhara T. A novel aqueous extract from rice fermented with Aspergillus oryzae and Saccharomyces cerevisiae possesses an anti-influenza A virus activity. PLoS One 2021; 16:e0244885. [PMID: 33449947 PMCID: PMC7810313 DOI: 10.1371/journal.pone.0244885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.
Collapse
Affiliation(s)
- Masaki Shoji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| | - Minami Sugimoto
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Kosuke Matsuno
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Yoko Fujita
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Mii
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Satomi Ayaki
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Misa Takeuchi
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Saki Yamaji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Narue Tanaka
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Kido
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takaaki Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | | | - Takashi Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| |
Collapse
|
45
|
Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021; 26:molecules26010205. [PMID: 33401580 PMCID: PMC7795860 DOI: 10.3390/molecules26010205] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lactoferrin is an iron binding glycoprotein with multiple roles in the body. Its participation in apoptotic processes in cancer cells, its ability to modulate various reactions of the immune system, and its activity against a broad spectrum of pathogenic microorganisms, including respiratory viruses, have made it a protein of broad interest in pharmaceutical and food research and industry. In this review, we have focused on describing the most important functions of lactoferrin and the possible mechanisms of action that lead to its function.
Collapse
|
46
|
Murugan NA, Raja KMP, Saraswathi NT. Peptide-Based Antiviral Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:261-284. [PMID: 34258744 DOI: 10.1007/978-981-16-0267-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - K Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India.
| | - N T Saraswathi
- School of Chemical & Biotechnology, Sastra Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
47
|
Lee BW, Quy Ha TK, Park EJ, Cho HM, Ryu B, Doan TP, Lee HJ, Oh WK. Melicopteline A-E, Unusual Cyclopeptide Alkaloids with Antiviral Activity against Influenza A Virus from Melicope pteleifolia. J Org Chem 2020; 86:1437-1447. [PMID: 33369410 DOI: 10.1021/acs.joc.0c02137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the search for antiviral cyclopeptides against influenza A virus, five unprecedented Caryophyllaceae-type cyclopeptides (1-5) were isolated from the leaves of Melicope pteleifolia. Their chemical structures and absolute configurations were unambiguously determined by means of advanced Marfey's analysis and comprehensive spectroscopic analyses including two-dimensional nuclear magnetic resonance and MS/MS fragmentation. Interestingly, compounds 3-5 contain an unusual heterocycle, a 3a-hydroxypyrroloindole moiety, which was biosynthetically formed by a nucleophilic cyclization from the least abundant amino acid, tryptophan, precursor and has aroused a great interest in the aspect of chemical diversity and biological activity. All isolates (1-5) were evaluated for their protective effects against influenza A viruses H1N1 and H9N2 in MDCK cells. All isolated cyclopeptides exhibited strong anti-influenza activity, especially against H1N1. Compound 3 showed the most potent CPE inhibition effect, which was stronger than that of the positive control ribavirin against H1N1, with an EC50 (μM) of 2.57 ± 0.45 along with higher selectivity.
Collapse
Affiliation(s)
- Ba Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Cantho University, Campus II, Cantho City 900000, Vietnam
| | - Eun Jin Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeol Ryu
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thi Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Ju Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Ninyio NN, Ho KL, Omar AR, Tan WS, Iqbal M, Mariatulqabtiah AR. Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic. Vaccines (Basel) 2020; 8:E694. [PMID: 33227887 PMCID: PMC7712863 DOI: 10.3390/vaccines8040694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023] Open
Abstract
Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
49
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
50
|
Mahendran ASK, Lim YS, Fang CM, Loh HS, Le CF. The Potential of Antiviral Peptides as COVID-19 Therapeutics. Front Pharmacol 2020; 11:575444. [PMID: 33041819 PMCID: PMC7522797 DOI: 10.3389/fphar.2020.575444] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/28/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Arun Suria Karnan Mahendran
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Cheng Foh Le
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|