1
|
Fu Y, Yu S, Li J, Lao Z, Yang X, Lin Z. DeepMineLys: Deep mining of phage lysins from human microbiome. Cell Rep 2024; 43:114583. [PMID: 39110597 DOI: 10.1016/j.celrep.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vast shotgun metagenomics data remain an underutilized resource for novel enzymes. Artificial intelligence (AI) has increasingly been applied to protein mining, but its conventional performance evaluation is interpolative in nature, and these trained models often struggle to extrapolate effectively when challenged with unknown data. In this study, we present a framework (DeepMineLys [deep mining of phage lysins from human microbiome]) based on the convolutional neural network (CNN) to identify phage lysins from three human microbiome datasets. When validated with an independent dataset, our method achieved an F1-score of 84.00%, surpassing existing methods by 20.84%. We expressed 16 lysin candidates from the top 100 sequences in E. coli, confirming 11 as active. The best one displayed an activity 6.2-fold that of lysozyme derived from hen egg white, establishing it as the most potent lysin from the human microbiome. Our study also underscores several important issues when applying AI to biology questions. This framework should be applicable for mining other proteins.
Collapse
Affiliation(s)
- Yiran Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuting Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Wang D, Liu L, Xu X, Wang C, Wang Y, Deng Y, Zhang T. Distributions, interactions, and dynamics of prokaryotes and phages in a hybrid biological wastewater treatment system. MICROBIOME 2024; 12:134. [PMID: 39039555 PMCID: PMC11265110 DOI: 10.1186/s40168-024-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.
Collapse
Affiliation(s)
- Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
3
|
Dantas CWD, Martins DT, Nogueira WG, Alegria OVC, Ramos RTJ. Tools and methodology to in silico phage discovery in freshwater environments. Front Microbiol 2024; 15:1390726. [PMID: 38881659 PMCID: PMC11176557 DOI: 10.3389/fmicb.2024.1390726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost-benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Carlos Willian Dias Dantas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - David Tavares Martins
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Wylerson Guimarães Nogueira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Oscar Victor Cardenas Alegria
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Simulation and Computational Biology - SIMBIC, High Performance Computing Center - CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
4
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Tan G, Qi S, Wang Y, Li X, Li X, Li M, Li L, Zhao L, Hu M. Uncovering differences in the composition and function of phage communities and phage-bacterium interactions in raw soy sauce. Front Microbiol 2023; 14:1328158. [PMID: 38188564 PMCID: PMC10766790 DOI: 10.3389/fmicb.2023.1328158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Although the composition and succession of microbial communities in soy sauce fermentation have been well-characterized, the understanding of phage communities in soy sauce remains limited. Methods This study determined the diversity, taxonomic composition, and predicted function of phage communities and the phage-host interactions in two types of raw soy sauce (Cantonese-type fermentation, NJ; Japanese-type fermentation, PJ) using shotgun metagenomics. Results and discussion These two raw soy sauces showed differences in phage composition (121 viral operational taxonomic units (vOTUs) in NJ and 387 vOTUs in PJ), with a higher abundance of the family Siphoviridae (58.50%) in the NJ phage community and a higher abundance of Myoviridae (33.01%) in PJ. Auxiliary metabolic functional annotation analyses showed that phages in the raw soy sauces mostly encoded genes with unknown functions (accounting for 66.33% of COG profiles), but the NJ sample contained genes mostly annotated to conventional functions related to carbohydrate metabolism (0.74%) and lipid metabolism (0.84%), while the PJ sample presented a higher level of amino acid metabolism functions (0.12%). Thirty auxiliary metabolism genes (AMGs) were identified in phage genomes, which were associated with carbohydrate utilization, cysteine and methionine metabolism, and aspartic acid biosynthesis for the host. To identify phage-host interactions, 30 host genomes (affiliated with 22 genera) were also recruited from the metagenomic dataset. The phage-host interaction analysis revealed a wide range of phage hosts, for which a total of 57 phage contigs were associated with 17 host genomes, with Shewanella fodinae and Weissella cibaria infected by the most phages. This study provides a comprehensive understanding of the phage community composition, auxiliary metabolic functions, and interactions with hosts in two different types of raw soy sauce.
Collapse
Affiliation(s)
- Guiliang Tan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, China
| | - Shaohan Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi Wang
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, China
| | - Xueyan Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, China
| | - Xiangli Li
- School of Health Industry, Zhongshan Torch Polytechnic, Zhongshan, China
| | - Mei Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, China
| | - Lin Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, China
| | - Lichao Zhao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Min Hu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
6
|
Sáenz JS, Rios-Galicia B, Rehkugler B, Seifert J. Dynamic Development of Viral and Bacterial Diversity during Grass Silage Preservation. Viruses 2023; 15:951. [PMID: 37112930 PMCID: PMC10146946 DOI: 10.3390/v15040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Ensilaging is one of the most common feed preservation processes using lactic acid bacteria to stabilize feed and save feed quality. The silage bacterial community is well known but the role of the virome and its relationship with the bacterial community is scarce. In the present study, metagenomics and amplicon sequencing were used to describe the composition of the bacterial and viral community during a 40-day grass silage preservation. During the first two days, we observed a rapid decrease in the pH and a shift in the bacterial and viral composition. The diversity of the dominant virus operational taxonomic units (vOTUs) decreased throughout the preservation. The changes in the bacterial community resembled the predicted putative host of the recovered vOTUs during each sampling time. Only 10% of the total recovered vOTUs clustered with a reference genome. Different antiviral defense mechanisms were found across the recovered metagenome-assembled genomes (MAGs); however, only a history of bacteriophage infection with Lentilactobacillus and Levilactobacillus was observed. In addition, vOTUs harbored potential auxiliary metabolic genes related to carbohydrate metabolism, organic nitrogen, stress tolerance, and transport. Our data suggest that vOTUs are enriched during grass silage preservation, and they could have a role in the establishment of the bacterial community.
Collapse
Affiliation(s)
- Johan S. Sáenz
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, 70593 Stuttgart, Germany
| | - Bibiana Rios-Galicia
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, 70593 Stuttgart, Germany
| | - Bianca Rehkugler
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, 70593 Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, 70593 Stuttgart, Germany
| |
Collapse
|
7
|
Achudhan AB, Kannan P, Saleena LM. CRISPR detection in metagenome-assembled genomes (MAGs) of coal mine. Funct Integr Genomics 2023; 23:122. [PMID: 37043060 DOI: 10.1007/s10142-023-01046-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Bacterial and archaeal CRISPR-Cas systems provide adaptive immune protection against foreign mobile genetic elements. When viruses infect bacteria, a small portion of the viral DNA is inserted into the bacterial DNA in a specific pattern to produce segments known as CRISPR arrays. Metagenome assembled genomes (MAGs) were used in our study to identify the CRISPR sequence for determining the interacted phage. Metagenomic data from a coal mine was used to perform a computational study. From raw reads, 206151 contigs were assembled. Then contigs were clustered into 150 Metagenome assembled genomes from which 78 non-redundant MAGs were selected. Using the CHECKM standard, seven MAGs were found to have >80 completeness and <20 contaminations. Those MAGs were analyzed for the presence of CRISPR elements. Out of seven MAGs, four MAGs have the CRISPR elements and are searched against the VIROblast database. CRISPR arrays have 4, 1, 3, and 7 spacer sequences in the MAGs of Burkholderia, Acinetobacter, Oxalobacteraceae, and Burkholderia multivorans respectively. The uncultured Caudovirales phage genomic regions were present in the genomes of Burkholderia, Oxalobacteriaceae, and Burkholderia multivorans. This study follows the unconventional metagenomics workflow to provide a better understanding of bacteria and phage interactions.
Collapse
Affiliation(s)
- Arunmozhi Bharathi Achudhan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Priya Kannan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Lilly M Saleena
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
8
|
Pandolfo M, Telatin A, Lazzari G, Adriaenssens EM, Vitulo N. MetaPhage: an Automated Pipeline for Analyzing, Annotating, and Classifying Bacteriophages in Metagenomics Sequencing Data. mSystems 2022; 7:e0074122. [PMID: 36069454 PMCID: PMC9599279 DOI: 10.1128/msystems.00741-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Phages are the most abundant biological entities on the planet, and they play an important role in controlling density, diversity, and network interactions among bacterial communities through predation and gene transfer. To date, a variety of bacteriophage identification tools have been developed that differ in the phage mining strategies used, input files requested, and results produced. However, new users attempting bacteriophage analysis can struggle to select the best methods and interpret the variety of results produced. Here, we present MetaPhage, a comprehensive reads-to-report pipeline that streamlines the use of multiple phage miners and generates an exhaustive report. The report both summarizes and visualizes the key findings and enables further exploration of key results via interactive filterable tables. The pipeline is implemented in Nextflow, a widely adopted workflow manager that enables an optimized parallelization of tasks in different locations, from local server to the cloud; this ensures reproducible results from containerized packages. MetaPhage is designed to enable scalability and reproducibility; also, it can be easily expanded to include new miners and methods as they are developed in this continuously growing field. MetaPhage is freely available under a GPL-3.0 license at https://github.com/MattiaPandolfoVR/MetaPhage. IMPORTANCE Bacteriophages (viruses that infect bacteria) are the most abundant biological entities on earth and are increasingly studied as members of the resident microbiota community in many environments, from oceans to soils and the human gut. Their identification is of great importance to better understand complex bacterial dynamics and microbial ecosystem function. A variety of metagenome bacteriophage identification tools have been developed that differ in the phage mining strategies used, input files requested, and results produced. To facilitate the management and the execution of such a complex workflow, we developed MetaPhage (MP), a comprehensive reads-to-report pipeline that streamlines the use of multiple phage miners and generates an exhaustive report. The pipeline is implemented in Nextflow, a widely adopted workflow manager that enables an optimized parallelization of tasks. MetaPhage is designed to enable scalability and reproducibility and offers an installation-free, dependency-free, and conflict-free workflow execution.
Collapse
Affiliation(s)
- Mattia Pandolfo
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Gioele Lazzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
9
|
A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. mSystems 2022; 7:e0065122. [PMID: 36121163 PMCID: PMC9599454 DOI: 10.1128/msystems.00651-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome.
Collapse
|
10
|
Liu Z, Ding X, Haider MS, Ali F, Yu H, Chen X, Tan S, Zu Y, Liu W, Ding B, Zheng A, Zheng J, Qian Z, Ashfaq H, Yu D, Li K. A metagenomic insight into the Yangtze finless porpoise virome. Front Vet Sci 2022; 9:922623. [PMID: 36118360 PMCID: PMC9478467 DOI: 10.3389/fvets.2022.922623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) inhabiting the Yantze River, China is critically endangered because of the influences of infectious disease, human activity, and water contamination. Viral diseases are one of the crucial factors that threatening the health of Yangtze finless porpoise. However, there are few studies which elaborate the viral diversity of Yangtze finless. Therefore, this study was performed to investigate the viral diversity of Yangtze finless by metagenomics. Results indicated that a total of 12,686,252 high-quality valid sequences were acquired and 2,172 virus reads were recognized. Additionally, we also obtained a total of 10,600 contigs. Phages was the most abundant virus in the samples and the ratio of DNA and RNA viruses were 69.75 and 30.25%, respectively. Arenaviridae, Ackermannviridae and Siphoviridae were the three most predominant families in all the samples. Moreover, the majority of viral genus were Mammarenavirus, Limestonevirus and Lambdavirus. The results of gene prediction indicated that these viruses play vital roles in biological process, cellular component, molecular function, and disease. To the best of our knowledge, this is the first report on the viral diversity of Yangtze finless porpoise, which filled the gaps in its viral information. Meanwhile, this study can also provide a theoretical basis for the establishment of the prevention and protection system for virus disease of Yangtze finless porpoise.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Life Science, Anqing Normal University, Anqing, China
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing, China
- Zhigang Liu
| | - Xin Ding
- College of Life Science, Anqing Normal University, Anqing, China
| | | | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Han Yu
- College of Life Science, Anqing Normal University, Anqing, China
| | - Xin Chen
- College of Life Science, Anqing Normal University, Anqing, China
| | - Shuaishuai Tan
- College of Life Science, Anqing Normal University, Anqing, China
| | - Yuan Zu
- College of Life Science, Anqing Normal University, Anqing, China
| | - Wenlong Liu
- College of Life Science, Anqing Normal University, Anqing, China
| | - Bangzhi Ding
- College of Life Science, Anqing Normal University, Anqing, China
| | - Aifang Zheng
- College of Life Science, Anqing Normal University, Anqing, China
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Zhengyi Qian
- Hubei Yangtze River Ecological Protection Foundation, Wuhan, China
| | - Hassan Ashfaq
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Daoping Yu
- College of Life Science, Anqing Normal University, Anqing, China
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kun Li
| |
Collapse
|
11
|
Fang Z, Feng T, Zhou H, Chen M. DeePVP: Identification and classification of phage virion proteins using deep learning. Gigascience 2022; 11:giac076. [PMID: 35950840 PMCID: PMC9366990 DOI: 10.1093/gigascience/giac076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Many biological properties of phages are determined by phage virion proteins (PVPs), and the poor annotation of PVPs is a bottleneck for many areas of viral research, such as viral phylogenetic analysis, viral host identification, and antibacterial drug design. Because of the high diversity of PVP sequences, the PVP annotation of a phage genome remains a particularly challenging bioinformatic task. FINDINGS Based on deep learning, we developed DeePVP. The main module of DeePVP aims to discriminate PVPs from non-PVPs within a phage genome, while the extended module of DeePVP can further classify predicted PVPs into the 10 major classes of PVPs. Compared with the present state-of-the-art tools, the main module of DeePVP performs better, with a 9.05% higher F1-score in the PVP identification task. Moreover, the overall accuracy of the extended module of DeePVP in the PVP classification task is approximately 3.72% higher than that of PhANNs. Two application cases show that the predictions of DeePVP are more reliable and can better reveal the compact PVP-enriched region than the current state-of-the-art tools. Particularly, in the Escherichia phage phiEC1 genome, a novel PVP-enriched region that is conserved in many other Escherichia phage genomes was identified, indicating that DeePVP will be a useful tool for the analysis of phage genomic structures. CONCLUSIONS DeePVP outperforms state-of-the-art tools. The program is optimized in both a virtual machine with graphical user interface and a docker so that the tool can be easily run by noncomputer professionals. DeePVP is freely available at https://github.com/fangzcbio/DeePVP/.
Collapse
Affiliation(s)
- Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tao Feng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
12
|
Kumar S, Kumar GS, Maitra SS, Malý P, Bharadwaj S, Sharma P, Dwivedi VD. Viral informatics: bioinformatics-based solution for managing viral infections. Brief Bioinform 2022; 23:6659740. [PMID: 35947964 DOI: 10.1093/bib/bbac326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Several new viral infections have emerged in the human population and establishing as global pandemics. With advancements in translation research, the scientific community has developed potential therapeutics to eradicate or control certain viral infections, such as smallpox and polio, responsible for billions of disabilities and deaths in the past. Unfortunately, some viral infections, such as dengue virus (DENV) and human immunodeficiency virus-1 (HIV-1), are still prevailing due to a lack of specific therapeutics, while new pathogenic viral strains or variants are emerging because of high genetic recombination or cross-species transmission. Consequently, to combat the emerging viral infections, bioinformatics-based potential strategies have been developed for viral characterization and developing new effective therapeutics for their eradication or management. This review attempts to provide a single platform for the available wide range of bioinformatics-based approaches, including bioinformatics methods for the identification and management of emerging or evolved viral strains, genome analysis concerning the pathogenicity and epidemiological analysis, computational methods for designing the viral therapeutics, and consolidated information in the form of databases against the known pathogenic viruses. This enriched review of the generally applicable viral informatics approaches aims to provide an overview of available resources capable of carrying out the desired task and may be utilized to expand additional strategies to improve the quality of translation viral informatics research.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India.,Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i., BIOCEV Research Center, Vestec, Czech Republic
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India.,Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| |
Collapse
|
13
|
Salih H, Karaynir A, Yalcin M, Oryasin E, Holyavkin C, Basbulbul G, Bozdogan B. Metagenomic analysis of wastewater phageome from a University Hospital in Turkey. Arch Microbiol 2022; 204:353. [DOI: 10.1007/s00203-022-02962-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022]
|
14
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Tochetto C, Cibulski SP, Muterle Varela AP, Cerva C, Alves de Lima D, Fumaco Teixeira T, Quoos Mayer F, Roehe PM. A variety of highly divergent eukaryotic ssDNA viruses in sera of pigs. J Gen Virol 2021; 102. [PMID: 34928204 DOI: 10.1099/jgv.0.001706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Over the last decade, viral metagenomics has been established as a non-targeted approach for identifying viruses in stock animals, including pigs. This has led to the identification of a vast diversity of small circular ssDNA viruses. The present study focuses on the investigation of eukaryotic circular Rep-encoding single-stranded (CRESS) DNA viral genomes present in serum of commercially reared pigs from southern Brazil. Several CRESS DNA viral genomes were detected, including representatives of the families Smacoviridae (n=5), Genomoviridae (n=3), Redondoviridae (n=1), Nenyaviridae (n=1) and other yet unclassified genomes (n=9), plus a circular DNA molecule, which probably belongs to the phylum Cressdnaviricota. A novel genus within the family Smacoviridae, tentatively named 'Suismacovirus', comprising 21 potential new species, is proposed. Although the reported genomes were recovered from pigs with clinical signs of respiratory disease, further studies should examine their potential role as pathogens. Nonetheless, these findings highlight the diversity of circular ssDNA viruses in serum of domestic pigs, expand the knowledge on CRESS DNA viruses' genetic diversity and distribution and contribute to the global picture of the virome of commercially reared pigs.
Collapse
Affiliation(s)
- Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Paulo Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Laboratório de Microbiologia do Centro Clínico Veterinário, Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Runa V, Wenk J, Bengtsson S, Jones BV, Lanham AB. Bacteriophages in Biological Wastewater Treatment Systems: Occurrence, Characterization, and Function. Front Microbiol 2021; 12:730071. [PMID: 34803947 PMCID: PMC8600467 DOI: 10.3389/fmicb.2021.730071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Phage bacteria interactions can affect structure, dynamics, and function of microbial communities. In the context of biological wastewater treatment (BWT), the presence of phages can alter the efficiency of the treatment process and influence the quality of the treated effluent. The active role of phages in BWT has been demonstrated, but many questions remain unanswered regarding the diversity of phages in these engineered environments, the dynamics of infection, the determination of bacterial hosts, and the impact of their activity in full-scale processes. A deeper understanding of the phage ecology in BWT can lead the improvement of process monitoring and control, promote higher influent quality, and potentiate the use of phages as biocontrol agents. In this review, we highlight suitable methods for studying phages in wastewater adapted from other research fields, provide a critical overview on the current state of knowledge on the effect of phages on structure and function of BWT bacterial communities, and highlight gaps, opportunities, and priority questions to be addressed in future research.
Collapse
Affiliation(s)
- Viviane Runa
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom.,Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | | | - Brian V Jones
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ana B Lanham
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom.,Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
17
|
Merges D, Dal Grande F, Greve C, Otte J, Schmitt I. Virus diversity in metagenomes of a lichen symbiosis (Umbilicaria phaea): complete viral genomes, putative hosts and elevational distributions. Environ Microbiol 2021; 23:6637-6650. [PMID: 34697892 DOI: 10.1111/1462-2920.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022]
Abstract
Viruses can play critical roles in symbioses by initiating horizontal gene transfer, affecting host phenotypes, or expanding their host's ecological niche. However, knowledge of viral diversity and distribution in symbiotic organisms remains elusive. Here we use deep-sequenced metagenomic DNA (PacBio Sequel II; two individuals), paired with a population genomics approach (Pool-seq; 11 populations, 550 individuals) to understand viral distributions in the lichen Umbilicaria phaea. We assess (i) viral diversity in lichen thalli, (ii) putative viral hosts (fungi, algae, bacteria) and (iii) viral distributions along two replicated elevation gradients. We identified five novel viruses, showing 28%-40% amino acid identity to known viruses. They tentatively belong to the families Caulimoviridae, Myoviridae, Podoviridae and Siphoviridae. Our analysis suggests that the Caulimovirus is associated with green algal photobionts (Trebouxia) of the lichen, and the remaining viruses with bacterial hosts. We did not detect viral sequences in the mycobiont. Caulimovirus abundance decreased with increasing elevation, a pattern reflected by a specific algal lineage hosting this virus. Bacteriophages showed population-specific patterns. Our work provides the first comprehensive insights into viruses associated with a lichen holobiont and suggests an interplay of viral hosts and environment in structuring viral distributions.
Collapse
Affiliation(s)
- Dominik Merges
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Ding W, Nayak J, Swapnarekha H, Abraham A, Naik B, Pelusi D. Fusion of intelligent learning for COVID-19: A state-of-the-art review and analysis on real medical data. Neurocomputing 2021; 457:40-66. [PMID: 34149184 PMCID: PMC8206574 DOI: 10.1016/j.neucom.2021.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
The unprecedented surge of a novel coronavirus in the month of December 2019, named as COVID-19 by the World Health organization has caused a serious impact on the health and socioeconomic activities of the public all over the world. Since its origin, the number of infected and deceased cases has been growing exponentially in almost all the affected countries of the world. The rapid spread of the novel coronavirus across the world results in the scarcity of medical resources and overburdened hospitals. As a result, the researchers and technocrats are continuously working across the world for the inculcation of efficient strategies which may assist the government and healthcare system in controlling and managing the spread of the COVID-19 pandemic. Therefore, this study provides an extensive review of the ongoing strategies such as diagnosis, prediction, drug and vaccine development and preventive measures used in combating the COVID-19 along with technologies used and limitations. Moreover, this review also provides a comparative analysis of the distinct type of data, emerging technologies, approaches used in diagnosis and prediction of COVID-19, statistics of contact tracing apps, vaccine production platforms used in the COVID-19 pandemic. Finally, the study highlights some challenges and pitfalls observed in the systematic review which may assist the researchers to develop more efficient strategies used in controlling and managing the spread of COVID-19.
Collapse
Affiliation(s)
- Weiping Ding
- School of Information Science and Technology, Nantong University, China
| | - Janmenjoy Nayak
- Aditya Institute of Technology and Management (AITAM), India
| | - H Swapnarekha
- Aditya Institute of Technology and Management (AITAM), India
- Veer Surendra Sai University of Technology, India
| | | | | | | |
Collapse
|
19
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
21
|
[Treatment of bone and periprosthetic infections with bacteriophages : A systematic review]. DER ORTHOPADE 2021; 51:138-145. [PMID: 34499212 PMCID: PMC8821479 DOI: 10.1007/s00132-021-04148-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 01/19/2023]
Abstract
Hintergrund Die Behandlung von Knochen- und Protheseninfektionen bleibt trotz moderner Behandlungskonzepte mit interdisziplinärem Therapieansatz schwierig und weitere Maßnahmen zur Verbesserung des Behandlungsergebnisses sind wünschenswert. Präklinischen Studien liefern ein vielversprechendes Bild der Wirksamkeit von Bakteriophagen zur Behandlung von Knochen- und Protheseninfektionen. Ziel der Arbeit Die vorliegende Arbeit gibt eine systematische Übersicht über die klinische Anwendung von Bakteriophagen zur Behandlung von Knochen- und Protheseninfektionen. Material und Methoden Eine systematische Suche wurde in PubMed zur Identifikation von primären klinischen Daten zur Anwendung der Phagentherapie bei Patienten mit Knochen- und Protheseninfektion durchgeführt. Ergebnisse Elf Studien wurden eingeschlossen, bestehend aus 8 Fallberichten und 3 Fallserien. Indikationen der Phagentherapie waren periprothetische Infektionen (n = 12, 52,2 %), frakturassoziierte Infektionen (n = 9, 39,1 %), Osteomyelitis (n = 1, 4,4 %) und eine Iliosakralgelenkinfektion nach Zementaugmentation einer Metastase (n = 1, 4,4 %). Die Interventionen waren heterogen, Phagen wurden intravenös verabreicht, intraoperativ ins Gelenk injiziert, intraoperativ lokal angewendet oder über Drainagen appliziert. In Kombination mit Antibiotikatherapie konnte eine vollständige Infekteradikation bei 18 Patienten (78,3 %) erreicht werden. Bei 91,3 % der Patienten wurden keine Nebenwirkungen berichtet. Schlussfolgerung Bakteriophagen sind eine vielversprechende Behandlungsmethode von Knochen- und Protheseninfektionen in Kombination mit einer Antibiotikatherapie. Zukünftige klinische Studien mit höherem Evidenzgrad werden benötigt, um eine erfolgreiche Translation der Bakteriophagentherapie in die klinische Praxis weiter zu etablieren.
Collapse
|
22
|
Wu S, Fang Z, Tan J, Li M, Wang C, Guo Q, Xu C, Jiang X, Zhu H. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Gigascience 2021; 10:giab056. [PMID: 34498685 PMCID: PMC8427542 DOI: 10.1093/gigascience/giab056] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Prokaryotic viruses referred to as phages can be divided into virulent and temperate phages. Distinguishing virulent and temperate phage-derived sequences in metavirome data is important for elucidating their different roles in interactions with bacterial hosts and regulation of microbial communities. However, there is no experimental or computational approach to effectively classify their sequences in culture-independent metavirome. We present a new computational method, DeePhage, which can directly and rapidly judge each read or contig as a virulent or temperate phage-derived fragment. FINDINGS DeePhage uses a "one-hot" encoding form to represent DNA sequences in detail. Sequence signatures are detected via a convolutional neural network to obtain valuable local features. The accuracy of DeePhage on 5-fold cross-validation reaches as high as 89%, nearly 10% and 30% higher than that of 2 similar tools, PhagePred and PHACTS. On real metavirome, DeePhage correctly predicts the highest proportion of contigs when using BLAST as annotation, without apparent preferences. Besides, DeePhage reduces running time vs PhagePred and PHACTS by 245 and 810 times, respectively, under the same computational configuration. By direct detection of the temperate viral fragments from metagenome and metavirome, we furthermore propose a new strategy to explore phage transformations in the microbial community. The ability to detect such transformations provides us a new insight into the potential treatment for human disease. CONCLUSIONS DeePhage is a novel tool developed to rapidly and efficiently identify 2 kinds of phage fragments especially for metagenomics analysis. DeePhage is freely available via http://cqb.pku.edu.cn/ZhuLab/DeePhage or https://github.com/shufangwu/DeePhage.
Collapse
Affiliation(s)
- Shufang Wu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Zhencheng Fang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Jie Tan
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Mo Li
- Peking University-Tsinghua University - National Institute of Biological Sciences (PTN) joint PhD program, School of Life Sciences, Peking University, Beijing 100871, Beijing, China
| | - Chunhui Wang
- Peking University-Tsinghua University - National Institute of Biological Sciences (PTN) joint PhD program, School of Life Sciences, Peking University, Beijing 100871, Beijing, China
| | - Qian Guo
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,
GA 30332, Atlanta, USA
| | - Congmin Xu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,
GA 30332, Atlanta, USA
| | - Xiaoqing Jiang
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing 100871, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,
GA 30332, Atlanta, USA
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, Beijing, China
| |
Collapse
|
23
|
Habibzadeh P, Mofatteh M, Silawi M, Ghavami S, Faghihi MA. Molecular diagnostic assays for COVID-19: an overview. Crit Rev Clin Lab Sci 2021; 58:385-398. [PMID: 33595397 PMCID: PMC7898297 DOI: 10.1080/10408363.2021.1884640] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the cardinal importance of rapid and accurate diagnostic assays. Since the early days of the outbreak, researchers with different scientific backgrounds across the globe have tried to fulfill the urgent need for such assays, with many assays having been approved and with others still undergoing clinical validation. Molecular diagnostic assays are a major group of tests used to diagnose COVID-19. Currently, the detection of SARS-CoV-2 RNA by reverse transcription polymerase chain reaction (RT-PCR) is the most widely used method. Other diagnostic molecular methods, including CRISPR-based assays, isothermal nucleic acid amplification methods, digital PCR, microarray assays, and next generation sequencing (NGS), are promising alternatives. In this review, we summarize the technical and clinical applications of the different COVID-19 molecular diagnostic assays and suggest directions for the implementation of such technologies in future infectious disease outbreaks.
Collapse
Affiliation(s)
- Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mohammad Silawi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Ramos-Barbero MD, Viver T, Zabaleta A, Senel E, Gomariz M, Antigüedad I, Santos F, Martínez-García M, Rosselló-Móra R, Antón J. Ancient saltern metagenomics: tracking changes in microbes and their viruses from the underground to the surface. Environ Microbiol 2021; 23:3477-3498. [PMID: 34110059 DOI: 10.1111/1462-2920.15630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Microbial communities in hypersaline underground waters derive from ancient organisms trapped within the evaporitic salt crystals and are part of the poorly known subterranean biosphere. Here, we characterized the viral and prokaryotic assemblages present in the hypersaline springs that dissolve Triassic-Keuper evaporite rocks and feed the Añana Salt Valley (Araba/Alava, Basque Country, Spain). Four underground water samples (around 23% total salinity) with different levels of exposure to the open air were analysed by means of microscopy and metagenomics. Cells and viruses in the spring water had lower concentrations than what are normally found in hypersaline environments and seemed to be mostly inactive. Upon exposure to the open air, there was an increase in activity of both cells and viruses as well as a selection of phylotypes. The underground water was inhabited by a rich community harbouring a diverse set of genes coding for retinal binding proteins. A total of 35 viral contigs from 15 to 104 kb, representing partial or total viral genomes, were assembled and their evolutionary changes through the spring system were followed by SNP analysis and metagenomic island tracking. Overall, both the viral and the prokaryotic assemblages changed quickly upon exposure to the open air conditions.
Collapse
Affiliation(s)
- Mª Dolores Ramos-Barbero
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicent del Raspeig, Alicante, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (IMEDEA; CSIC-UIB), Esporles, Illes Balears, 07190, Spain
| | - Ane Zabaleta
- Hydro-Environmental Processes Group, Geology Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Ece Senel
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicent del Raspeig, Alicante, Spain.,Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Yunusemre Campus, Eskisehir, 26470, Turkey
| | - María Gomariz
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicent del Raspeig, Alicante, Spain
| | - Iñaki Antigüedad
- Hydro-Environmental Processes Group, Geology Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicent del Raspeig, Alicante, Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicent del Raspeig, Alicante, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Diversity, Mediterranean Institute of Advanced Studies (IMEDEA; CSIC-UIB), Esporles, Illes Balears, 07190, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 San Vicent del Raspeig, Alicante, Spain
| |
Collapse
|
25
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
26
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
27
|
Kumar N, Gupta AK, Sudan SK, Pal D, Randhawa V, Sahni G, Mayilraj S, Kumar M. Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. Microb Drug Resist 2021; 27:1336-1354. [PMID: 33913739 DOI: 10.1089/mdr.2020.0431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments.
Collapse
Affiliation(s)
- Narender Kumar
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Sarabjeet Kour Sudan
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Vinay Randhawa
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Girish Sahni
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Shanmugam Mayilraj
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
28
|
Maske BL, de Melo Pereira GV, da Silva Vale A, Marques Souza DS, De Dea Lindner J, Soccol CR. Viruses in fermented foods: are they good or bad? Two sides of the same coin. Food Microbiol 2021; 98:103794. [PMID: 33875222 PMCID: PMC7992106 DOI: 10.1016/j.fm.2021.103794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/21/2021] [Indexed: 12/23/2022]
Abstract
The emergence of Coronavirus disease 2019 as a global pandemic has increased popular concerns about diseases caused by viruses. Fermented foods containing high loads of viable fungi and bacteria are potential sources for virus contamination. The most common include viruses that infect bacteria (bacteriophage) and yeasts reported in fermented milks, sausages, vegetables, wine, sourdough, and cocoa beans. Recent molecular studies have also associated fermented foods as vehicles for pathogenic human viruses. Human noroviruses, rotavirus, and hepatitis virus have been identified in different fermented foods through multiple routes. No severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) virus or close members were found in fermented foods to date. However, the occurrence/persistence of other pathogenic viruses reveals a potential vulnerability of fermented foods to SARS-CoV-2 contamination. On the other side of the coin, some bacteriophages are being suggested for improving the fermentation process and food safety, as well as owing potential probiotic properties in modern fermented foods. This review will address the diversity and characteristics of viruses associated with fermented foods and what has been changed after a short introduction to the most common next-generation sequencing platforms. Also, the risk of SARS-CoV-2 transmission via fermented foods and preventive measures will be discussed.
Collapse
Affiliation(s)
- Bruna Leal Maske
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Doris Sobral Marques Souza
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Applied Virology Laboratory, UFSC, Florianópolis, SC, Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
29
|
Alsaadi A, Beamud B, Easwaran M, Abdelrahman F, El-Shibiny A, Alghoribi MF, Domingo-Calap P. Learning From Mistakes: The Role of Phages in Pandemics. Front Microbiol 2021; 12:653107. [PMID: 33815346 PMCID: PMC8010138 DOI: 10.3389/fmicb.2021.653107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
The misuse of antibiotics is leading to the emergence of multidrug-resistant (MDR) bacteria, and in the absence of available treatments, this has become a major global threat. In the middle of the recent severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic, which has challenged the whole world, the emergence of MDR bacteria is increasing due to prophylactic administration of antibiotics to intensive care unit patients to prevent secondary bacterial infections. This is just an example underscoring the need to seek alternative treatments against MDR bacteria. To this end, phage therapy has been proposed as a promising tool. However, further research in the field is mandatory to assure safety protocols and to develop appropriate regulations for its use in clinics. This requires investing more in such non-conventional or alternative therapeutic approaches, to develop new treatment regimens capable of reducing the emergence of MDR and preventing future global public health concerns that could lead to incalculable human and economic losses.
Collapse
Affiliation(s)
- Ahlam Alsaadi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Beatriz Beamud
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, Paterna, Spain
- FISABIO-Salud Pública, Generalitat Valenciana, Valencia, Spain
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Rajapalayam, India
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, Paterna, Spain
- Department of Genetics, Universitat de València, Paterna, Spain
| |
Collapse
|
30
|
Francius G, Cervulle M, Clément E, Bellanger X, Ekrami S, Gantzer C, Duval JFL. Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity. ACS APPLIED BIO MATERIALS 2021; 4:2614-2627. [PMID: 35014378 DOI: 10.1021/acsabm.0c01595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The elaboration of efficient hydrogel-based materials with antimicrobial properties requires a refined control of defining their physicochemical features, which includes mechanical stiffness, so as to properly mediate their antibacterial activity. In this work, we design hydrogels consisting of polyelectrolyte multilayer films for the loading of T4 and φX174 bacteria-killing viruses, also called bacteriophages. We investigate the antiadhesion and bactericidal performances of this biomaterial against Escherichia coli, with a specific focus on the effects of chemical cross-linking of the hydrogel matrix, which, in turn, mediates the hydrogel stiffness. Depending on the latter and on phage replication features, it is found that the hydrogels loaded with the bacteria-killing viruses make both contact killing (targeted bacteria are those adhered at the hydrogel surface) and release killing (planktonic bacteria are the targets) possible with ca. 20-80% efficiency after only 4 h of incubation at 25 °C as compared to cases where hydrogels are free of viruses. We further demonstrate the lack of dependence of virus diffusion within the hydrogel and of the maximal viral storage capacity on the hydrogel mechanical properties. In addition to the evidenced bacteriolytic activity of the phages loaded in the hydrogels, the antimicrobial property of the phage-loaded materials is shown to be partly controlled by the chemistry of the hydrogel skeleton and, more specifically, by the mobility of the peripheral free polycationic components, known for their ability to weaken and permeabilize membranes of bacteria, the latter then becoming "easier" targets for the viruses.
Collapse
Affiliation(s)
| | - Manon Cervulle
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Eloïse Clément
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Saeid Ekrami
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | |
Collapse
|
31
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
32
|
Jin T, Yin J. Patterns of virus growth across the diversity of life. Integr Biol (Camb) 2021; 13:44-59. [PMID: 33616184 DOI: 10.1093/intbio/zyab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Although viruses in their natural habitats add up to less than 10% of the biomass, they contribute more than 90% of the genome sequences [1]. These viral sequences or 'viromes' encode viruses that populate the Earth's oceans [2, 3] and terrestrial environments [4, 5], where their infections impact life across diverse ecological niches and scales [6, 7], including humans [8-10]. Most viruses have yet to be isolated and cultured [11-13], and surprisingly few efforts have explored what analysis of available data might reveal about their nature. Here, we compiled and analyzed seven decades of one-step growth and other data for viruses from six major families, including their infections of archaeal, bacterial and eukaryotic hosts [14-191]. We found that the use of host cell biomass for virus production was highest for archaea at 10%, followed by bacteria at 1% and eukarya at 0.01%, highlighting the degree to which viruses of archaea and bacteria exploit their host cells. For individual host cells, the yield of virus progeny spanned a relatively narrow range (10-1000 infectious particles per cell) compared with the million-fold difference in size between the smallest and largest cells. Furthermore, healthy and infected host cells were remarkably similar in the time they needed to multiply themselves or their virus progeny. Specifically, the doubling time of healthy cells and the delay time for virus release from infected cells were not only correlated (r = 0.71, p < 10-10, n = 101); they also spanned the same range from tens of minutes to about a week. These results have implications for better understanding the growth, spread and persistence of viruses in complex natural habitats that abound with diverse hosts, including humans and their associated microbes.
Collapse
Affiliation(s)
- Tianyi Jin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
33
|
Fang Z, Zhou H. VirionFinder: Identification of Complete and Partial Prokaryote Virus Virion Protein From Virome Data Using the Sequence and Biochemical Properties of Amino Acids. Front Microbiol 2021; 12:615711. [PMID: 33613485 PMCID: PMC7894196 DOI: 10.3389/fmicb.2021.615711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Viruses are some of the most abundant biological entities on Earth, and prokaryote virus are the dominant members of the viral community. Because of the diversity of prokaryote virus, functional annotation cannot be performed on a large number of genes from newly discovered prokaryote virus by searching the current database; therefore, the development of an alignment-free algorithm for functional annotation of prokaryote virus proteins is important to understand the viral community. The identification of prokaryote virus proteins (PVVPs) is a critical step for many viral analyses, such as species classification, phylogenetic analysis and the exploration of how prokaryote virus interact with their hosts. Although a series of PVVP prediction tools have been developed, the performance of these tools is still not satisfactory. Moreover, viral metagenomic data contains fragmented sequences, leading to the existence of some incomplete genes. Therefore, a tool that can identify partial prokaryote virus proteins is also needed. In this work, we present a novel algorithm, called VirionFinder, to identify the complete and partial PVVPs from non-prokaryote virus virion proteins (non-PVVPs). VirionFinder uses the sequence and biochemical properties of 20 amino acids as the mathematical model to encode the protein sequences and uses a deep learning technique to identify whether a given protein is a PVVP. Compared with the state-of-the-art tools using artificial benchmark datasets, the results show that under the same specificity (Sp), the sensitivity (Sn) of VirionFinder is approximately 10-34% much higher than the Sn of these tools on both complete and partial proteins. When evaluating related tools using real virome data, the recognition rate of PVVP-like sequences of VirionFinder is also much higher than that of the other tools. We expect that VirionFinder will be a powerful tool for identifying novel virion proteins from both complete prokaryote virus genomes and viral metagenomic data. VirionFinder is freely available at https://github.com/zhenchengfang/VirionFinder.
Collapse
Affiliation(s)
- Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Lafferty KD, Garcia-Vedrenne AE, McLaughlin JP, Childress JN, Morse MF, Jerde CL. At Palmyra Atoll, the fish-community environmental DNA signal changes across habitats but not with tides. JOURNAL OF FISH BIOLOGY 2021; 98:415-425. [PMID: 32441343 PMCID: PMC9300262 DOI: 10.1111/jfb.14403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 05/24/2023]
Abstract
At Palmyra Atoll, the environmental DNA (eDNA) signal on tidal sand flats was associated with fish biomass density and captured 98%-100% of the expected species diversity there. Although eDNA spilled over across habitats, species associated with reef habitat contributed more eDNA to reef sites than to sand-flat sites, and species associated with sand-flat habitat contributed more eDNA to sand-flat sites than to reef sites. Tides did not disrupt the sand-flat habitat signal. At least 25 samples give a coverage >97.5% at this diverse, tropical, marine system.
Collapse
Affiliation(s)
- Kevin D. Lafferty
- Western Ecological Research Center, U.S. Geological Survey, Reston, Virginia
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California
| | - Ana E. Garcia-Vedrenne
- Ecology, Evolution and Marine Biology, University of California, Los Angeles, Los Angeles, California
| | - John P. McLaughlin
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Jasmine N. Childress
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Marisa F. Morse
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Christopher L. Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California
| |
Collapse
|
35
|
Strange JES, Leekitcharoenphon P, Møller FD, Aarestrup FM. Metagenomics analysis of bacteriophages and antimicrobial resistance from global urban sewage. Sci Rep 2021; 11:1600. [PMID: 33452346 PMCID: PMC7810828 DOI: 10.1038/s41598-021-80990-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages, or phages, are ubiquitous bacterial and archaeal viruses with an estimated total global population of 1031. It is well-known that wherever there are bacteria, their phage counterparts will be found, aiding in shaping the bacterial population. The present study used metagenomic data from global influent sewage in 79 cities in 60 countries to identify phages associated with bacteria and to explore their potential role in antimicrobial resistance gene (ARG) dissemination. The reads were mapped to known databases for bacteriophages and their abundances determined and correlated to geographic origin and the countries socio-economic status, as well as the abundances of bacterial species and ARG. We found that some phages were not equally distributed on a global scale, but their distribution was rather dictated by region and the socioeconomic status of the specific countries. This study provides a preliminary insight into the global and regional distribution of phages and their potential impact on the transmission of ARGs between bacteria. Moreover, the findings may indicate that phages in sewage could have adopted a lytic lifestyle, meaning that most may not be associated with bacteria and instead may be widely distributed as free-living phages, which are known to persist longer in the environment than their hosts. In addition, a significant correlation between phages and ARGs was obtained, indicating that phages may play a role in ARG dissemination. However, further analyses are needed to establish the true relationship between phages and ARGs due to a low abundance of the phages identified.
Collapse
Affiliation(s)
- Josephine E S Strange
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Building 204, 2800, Kemitorvet, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Building 204, 2800, Kemitorvet, Kgs. Lyngby, Denmark.
| | - Frederik Duus Møller
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Building 204, 2800, Kemitorvet, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Building 204, 2800, Kemitorvet, Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Kassa T. Bacteriophages Against Pathogenic Bacteria and Possibilities for Future Application in Africa. Infect Drug Resist 2021; 14:17-31. [PMID: 33442273 PMCID: PMC7797301 DOI: 10.2147/idr.s284331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages (phages) are viruses that infect prokaryotic cells. Phages exist in many shapes and sizes with the majority of them being less than 100 nm in size. Essentially, the majority of phages identified are double-stranded DNA virions with the remaining few being found as RNA or single-stranded DNA viruses. These biological entities are plentiful in different environments, especially in wet sources. Treatment of a bacterial disease using phage application has been documented in the pre-antibiotic era. Different studies have emerging to value the efficacy of phage use in in-vitro and in-vivo based systems against specific bacterial agents of humans, animals or plant diseases. The process represents a natural and nontoxic framework to avert infections due to pathogenic and antimicrobial-resistant bacteria. Most of the published researches on the usefulness of phages against disease-causing bacteria (including antimicrobial-resistant strains) of humans, animals or plants are emerging from the US and European countries with very few studies available from Africa. This review assesses published articles in the area of phage applications against pathogenic or antimicrobial-resistant bacteria from experimental, clinical and field settings. The knowledge and skill of isolating lytic phages against bacteria can be operational for its simpler procedures and economic benefit. Future studies in Africa and other emerging countries may consider in-house phage preparations for effective control and eradication of pathogenic and multidrug resistant bacteria of humans, animals and plants.
Collapse
Affiliation(s)
- Tesfaye Kassa
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
37
|
Abstract
The microbial communities that inhabit the gingival crevice are responsible for the pathological processes that affect the periodontium. The changes in composition and function of subgingival bacteria as disease develops have been extensively studied. Subgingival communities, however, also contain fungi, Archaea, and viruses, which could contribute to the dysbiotic processes associated with periodontal diseases. High-throughput DNA sequencing has facilitated a better understanding of the mycobiome, archaeome, and virome. However, the number of studies available on the nonbacterial components of the subgingival microbiome remains limited in comparison with publications focusing on bacteria. Difficulties in characterizing fungal, archaeal, and viral populations arise from the small portion of the total metagenome mass they occupy and lack of comprehensive reference genome databases. In addition, specialized approaches potentially introducing bias are required to enrich for viral particles, while harsh methods of cell lysis are needed to recover nuclei acids from certain fungi. While the characterization of the subgingival diversity of fungi, Archaea and viruses is incomplete, emerging evidence suggests that they could contribute in different ways to subgingival dysbiosis. Certain fungi, such as Candida albicans are suggested to facilitate colonization of bacterial pathogens. Methanogenic Archaea are associated with periodontitis severity and are thought to partner synergistically with bacterial fermenters, while viruses may affect immune responses or shape microbial communities in ways incompletely understood. This review describes the manner in which omics approaches have improved our understanding of the diversity of fungi, Archaea, and viruses within subgingival communities. Further characterization of these understudied components of the subgingival microbiome is required, together with mechanistic studies to unravel their ecological role and potential contributions to dysbiosis.
Collapse
Affiliation(s)
- Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY
| |
Collapse
|
38
|
Zrelovs N, Dislers A, Kazaks A. Motley Crew: Overview of the Currently Available Phage Diversity. Front Microbiol 2020; 11:579452. [PMID: 33193205 PMCID: PMC7658105 DOI: 10.3389/fmicb.2020.579452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
The first complete genome that was sequenced at the beginning of the sequencing era was that of a phage, since then researchers throughout the world have been steadily describing and publishing genomes from a wide array of phages, uncovering the secrets of the most abundant and diverse biological entities known to man. Currently, we are experiencing an unprecedented rate of novel bacteriophage discovery, which can be seen from the fact that the amount of complete bacteriophage genome entries in public sequence repositories has more than doubled in the past 3 years and is steadily growing without showing any sign of slowing down. The amount of publicly available phage genome-related data can be overwhelming and has been summarized in literature before but quickly becomes out of date. Thus, the aim of this paper is to briefly outline currently available phage diversity data for public acknowledgment that could possibly encourage and stimulate future “depth” studies of particular groups of phages or their gene products.
Collapse
Affiliation(s)
- Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
39
|
Rohde C, Wittmann J. Phage Diversity for Research and Application. Antibiotics (Basel) 2020; 9:antibiotics9110734. [PMID: 33114578 PMCID: PMC7693090 DOI: 10.3390/antibiotics9110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
|
40
|
Yan A, Butcher J, Mack D, Stintzi A. Virome Sequencing of the Human Intestinal Mucosal-Luminal Interface. Front Cell Infect Microbiol 2020; 10:582187. [PMID: 33194818 PMCID: PMC7642909 DOI: 10.3389/fcimb.2020.582187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
While the human gut virome has been increasingly explored in recent years, nearly all studies have been limited to fecal sampling. The mucosal-luminal interface has been established as a viable sample type for profiling the microbial biogeography of the gastrointestinal tract. We have developed a protocol to extract nucleic acids from viruses at the mucosal-luminal interface of the proximal and distal colon. Colonic viromes from pediatric patients with Crohn's disease demonstrated high interpatient diversity and low but significant intrapatient variation between sites. Whole metagenomics was also performed to explore virome-bacteriome interactions and to compare the viral communities observed in virome and whole metagenomic sequencing. A site-specific study of the human gut virome is a necessary step to advance our understanding of virome-bacteriome-host interactions in human diseases.
Collapse
Affiliation(s)
- Austin Yan
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - David Mack
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Inflammatory Bowel Disease Centre and CHEO Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Ledormand P, Desmasures N, Dalmasso M. Phage community involvement in fermented beverages: an open door to technological advances? Crit Rev Food Sci Nutr 2020; 61:2911-2920. [PMID: 32649837 DOI: 10.1080/10408398.2020.1790497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteriophages (phages) are considered the most abundant biological entities on Earth. An increasing interest in understanding phage communities, also called viromes or phageomes, has arisen over the past decade especially thanks to the development and the accessibility of Next Generation Sequencing techniques. Despite the increasing amount of available metagenomic data on microbial communities in various habitats, viromes remain poorly described in the scientific literature particularly when it comes to fermented food and beverages such as wine and cider. In this review, a particular attention is paid to the current knowledge on phage communities, with a special focus on fermented food viromes and the methodological tools available to undertake their study. There is a striking lack of available data on the fermented foods and beverages viromes. As far as we know, and although a number of phages have been isolated from wine, no general study has to date been carried out to assess the diversity of viromes in fermented beverages and their possible interactions with microbiota throughout the fermentation process. With the aim of establishing connections between the currently used technologies to carry out the analysis of viromes, possible applications of current knowledge to fermented beverages are examined.
Collapse
|
42
|
Bouwens A, Deen J, Vitale R, D’Huys L, Goyvaerts V, Descloux A, Borrenberghs D, Grussmayer K, Lukes T, Camacho R, Su J, Ruckebusch C, Lasser T, Van De Ville D, Hofkens J, Radenovic A, Frans Janssen KP. Identifying microbial species by single-molecule DNA optical mapping and resampling statistics. NAR Genom Bioinform 2020; 2:lqz007. [PMID: 33575560 PMCID: PMC7671359 DOI: 10.1093/nargab/lqz007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Single-molecule DNA mapping has the potential to serve as a powerful complement to high-throughput sequencing in metagenomic analysis. Offering longer read lengths and forgoing the need for complex library preparation and amplification, mapping stands to provide an unbiased view into the composition of complex viromes and/or microbiomes. To fully enable mapping-based metagenomics, sensitivity and specificity of DNA map analysis and identification need to be improved. Using detailed simulations and experimental data, we first demonstrate how fluorescence imaging of surface stretched, sequence specifically labeled DNA fragments can yield highly sensitive identification of targets. Second, a new analysis technique is introduced to increase specificity of the analysis, allowing even closely related species to be resolved. Third, we show how an increase in resolution improves sensitivity. Finally, we demonstrate that these methods are capable of identifying species with long genomes such as bacteria with high sensitivity.
Collapse
Affiliation(s)
- Arno Bouwens
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jochem Deen
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Raffaele Vitale
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- LASIR CNRS, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Laurens D’Huys
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Vince Goyvaerts
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Adrien Descloux
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Kristin Grussmayer
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tomas Lukes
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rafael Camacho
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jia Su
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cyril Ruckebusch
- LASIR CNRS, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Theo Lasser
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Department of Radiology and Medical Informatics, Université de Genève, 1205 Genève, Switzerland
| | - Johan Hofkens
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Aleksandra Radenovic
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
43
|
Abstract
The discovery of bacteria in the female urinary bladder has fundamentally changed current dogma regarding the urinary tract and related urinary disorders. Previous research characterized many of the bacterial components of the female urinary tract, but the viral fraction of this community is largely unknown. Viruses within the human microbiota far outnumber bacterial cells, with the most abundant viruses being those that infect bacteria (bacteriophages). Similar to observations within the microbiota of the gut and oral cavity, preliminary surveys of the urinary tract and bladder microbiota indicate a rich diversity of uncharacterized bacteriophage (phage) species. Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections.
Collapse
|
44
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
45
|
Zrelovs N, Cernooka E, Dislers A, Kazaks A. Isolation and characterization of the novel Virgibacillus-infecting bacteriophage Mimir87. Arch Virol 2019; 165:737-741. [PMID: 31875246 DOI: 10.1007/s00705-019-04516-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
The novel bacterial virus Mimir87, infecting the salt-tolerant bacterium Virgibacillus halotolerans, was isolated from worker honey bees. Mimir87 has an elongated head and a long non-contractile tail consistent with members of the Siphoviridae phage family. The phage genome comprises 48,016 base pairs and encodes 68 predicted proteins, to 34 of which a function could be assigned from homology analysis. The phage encodes two metabolism-related transporter proteins previously not observed in bacteriophage genomes. Mimir87 displays some relatedness to several Bacillus and Paenibacillus viruses; however, the overall sequence dissimilarity suggests Mimir87 to be a representative of a new phage genus.
Collapse
Affiliation(s)
- Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| | - Elina Cernooka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, LV-1067, Latvia.
| |
Collapse
|
46
|
Bekliz M, Brandani J, Bourquin M, Battin TJ, Peter H. Benchmarking protocols for the metagenomic analysis of stream biofilm viromes. PeerJ 2019; 7:e8187. [PMID: 31879573 PMCID: PMC6927355 DOI: 10.7717/peerj.8187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Viruses drive microbial diversity, function and evolution and influence important biogeochemical cycles in aquatic ecosystems. Despite their relevance, we currently lack an understanding of their potential impacts on stream biofilm structure and function. This is surprising given the critical role of biofilms for stream ecosystem processes. Currently, the study of viruses in stream biofilms is hindered by the lack of an optimized protocol for their extraction, concentration and purification. Here, we evaluate a range of methods to separate viral particles from stream biofilms, and to concentrate and purify them prior to DNA extraction and metagenome sequencing. Based on epifluorescence microscopy counts of viral-like particles (VLP) and DNA yields, we optimize a protocol including treatment with tetrasodium pyrophosphate and ultra-sonication to disintegrate biofilms, tangential-flow filtration to extract and concentrate VLP, followed by ultracentrifugation in a sucrose density gradient to isolate VLP from the biofilm slurry. Viromes derived from biofilms sampled from three different streams were dominated by Siphoviridae, Myoviridae and Podoviridae and provide first insights into the viral diversity of stream biofilms. Our protocol optimization provides an important step towards a better understanding of the ecological role of viruses in stream biofilms.
Collapse
Affiliation(s)
- Meriem Bekliz
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Jade Brandani
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Massimo Bourquin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Tom J. Battin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Cryptic-Prophage-Encoded Small Protein DicB Protects Escherichia coli from Phage Infection by Inhibiting Inner Membrane Receptor Proteins. J Bacteriol 2019; 201:JB.00475-19. [PMID: 31527115 PMCID: PMC6832061 DOI: 10.1128/jb.00475-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Temperate bacteriophages can integrate their genomes into the bacterial host chromosome and exist as prophages whose gene products play key roles in bacterial fitness and interactions with eukaryotic host organisms. Most bacterial chromosomes contain “cryptic” prophages that have lost genes required for production of phage progeny but retain genes of unknown function that may be important for regulating bacterial host physiology. This study provides such an example, where a cryptic-prophage-encoded product can perform multiple roles in the bacterial host and influence processes, including metabolism, cell division, and susceptibility to phage infection. Further functional characterization of cryptic-prophage-encoded functions will shed new light on host-phage interactions and their cellular physiological implications. Bacterial genomes harbor cryptic prophages that have lost genes required for induction, excision from host chromosomes, or production of phage progeny. Escherichia coli K-12 strains contain a cryptic prophage, Qin, that encodes a small RNA, DicF, and a small protein, DicB, that have been implicated in control of bacterial metabolism and cell division. Since DicB and DicF are encoded in the Qin immunity region, we tested whether these gene products could protect the E. coli host from bacteriophage infection. Transient expression of the dicBF operon yielded cells that were ∼100-fold more resistant to infection by λ phage than control cells, and the phenotype was DicB dependent. DicB specifically inhibited infection by λ and other phages that use ManYZ membrane proteins for cytoplasmic entry of phage DNA. In addition to blocking ManYZ-dependent phage infection, DicB also inhibited the canonical sugar transport activity of ManYZ. Previous studies demonstrated that DicB interacts with MinC, an FtsZ polymerization inhibitor, causing MinC localization to midcell and preventing Z ring formation and cell division. In strains producing mutant MinC proteins that do not interact with DicB, both DicB-dependent phenotypes involving ManYZ were lost. These results suggest that DicB is a pleiotropic regulator of bacterial physiology and cell division and that these effects are mediated by a key molecular interaction with the cell division protein MinC. IMPORTANCE Temperate bacteriophages can integrate their genomes into the bacterial host chromosome and exist as prophages whose gene products play key roles in bacterial fitness and interactions with eukaryotic host organisms. Most bacterial chromosomes contain “cryptic” prophages that have lost genes required for production of phage progeny but retain genes of unknown function that may be important for regulating bacterial host physiology. This study provides such an example, where a cryptic-prophage-encoded product can perform multiple roles in the bacterial host and influence processes, including metabolism, cell division, and susceptibility to phage infection. Further functional characterization of cryptic-prophage-encoded functions will shed new light on host-phage interactions and their cellular physiological implications.
Collapse
|
48
|
Dávila-Ramos S, Castelán-Sánchez HG, Martínez-Ávila L, Sánchez-Carbente MDR, Peralta R, Hernández-Mendoza A, Dobson ADW, Gonzalez RA, Pastor N, Batista-García RA. A Review on Viral Metagenomics in Extreme Environments. Front Microbiol 2019; 10:2403. [PMID: 31749771 PMCID: PMC6842933 DOI: 10.3389/fmicb.2019.02403] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Viruses are the most abundant biological entities in the biosphere, and have the ability to infect Bacteria, Archaea, and Eukaryotes. The virome is estimated to be at least ten times more abundant than the microbiome with 107 viruses per milliliter and 109 viral particles per gram in marine waters and sediments or soils, respectively. Viruses represent a largely unexplored genetic diversity, having an important role in the genomic plasticity of their hosts. Moreover, they also play a significant role in the dynamics of microbial populations. In recent years, metagenomic approaches have gained increasing popularity in the study of environmental viromes, offering the possibility of extending our knowledge related to both virus diversity and their functional characterization. Extreme environments represent an interesting source of both microbiota and their virome due to their particular physicochemical conditions, such as very high or very low temperatures and >1 atm hydrostatic pressures, among others. Despite the fact that some progress has been made in our understanding of the ecology of the microbiota in these habitats, few metagenomic studies have described the viromes present in extreme ecosystems. Thus, limited advances have been made in our understanding of the virus community structure in extremophilic ecosystems, as well as in their biotechnological potential. In this review, we critically analyze recent progress in metagenomic based approaches to explore the viromes in extreme environments and we discuss the potential for new discoveries, as well as methodological challenges and perspectives.
Collapse
Affiliation(s)
- Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hugo G. Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Raúl Peralta
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ramón A. Gonzalez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
49
|
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. ENVIRONMENT INTERNATIONAL 2019; 129:488-496. [PMID: 31158595 DOI: 10.1016/j.envint.2019.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The emerging contamination of pathogenic bacteria in the soil has caused a serious threat to public health and environmental security. Therefore, effective methods to inactivate pathogenic bacteria and decrease the environmental risks are urgently required. As a century-old technique, bacteriophage (phage) therapy has a high efficiency in targeting and inactivating pathogenic bacteria in different environmental systems. This review provides an update on the status of bacteriophage therapy for the inactivation of pathogenic bacteria in the soil environment. Specifically, the applications of phage therapy in soil-plant and soil-groundwater systems are summarized. In addition, the impact of phage therapy on soil functioning is described, including soil function gene transmission, soil microbial community stability, and soil nutrient cycling. Soil factors, such as soil temperature, pH, clay mineral, water content, and nutrient components, influence the survival and activity of phages in the soil. Finally, the future research prospects of phage therapy in soil environments are described.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wentao Jiao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
50
|
Trubl G, Roux S, Solonenko N, Li YF, Bolduc B, Rodríguez-Ramos J, Eloe-Fadrosh EA, Rich VI, Sullivan MB. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 2019; 7:e7265. [PMID: 31309007 PMCID: PMC6612421 DOI: 10.7717/peerj.7265] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.
Collapse
Affiliation(s)
- Gareth Trubl
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Simon Roux
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Yueh-Fen Li
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Josué Rodríguez-Ramos
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Current affiliation: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Emiley A Eloe-Fadrosh
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, United States of America
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|