1
|
Saha A, Choudhary S, Walia P, Kumar P, Tomar S. Transformative approaches in SARS-CoV-2 management: Vaccines, therapeutics and future direction. Virology 2025; 604:110394. [PMID: 39889481 DOI: 10.1016/j.virol.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/03/2025]
Abstract
The global healthcare and economic challenges caused by the pandemic of COVID-19 reinforced the urgent demand for quick and effective therapeutic and preventative interventions. While vaccines served as the frontline of defense, antivirals emerged as adjunctive countermeasures, especially for people who developed infection, were immunocompromised, or were reluctant to be vaccinated. Beyond the serious complications of SARS-CoV-2 infection, the threats of long-COVID and the potential for zoonotic spillover continue to be significant health concerns that cannot be overlooked. Moreover, the incessant viral evolution, clinical safety issues, waning immune responses, and the emergence of drug-resistant variants pinpoint towards more severe viral threats in the future and call for broad-spectrum innovative therapies as a pre-pandemic preparedness measure. The present review provides a comprehensive up-to-date overview of the strategies utilized in the development of classical and next-generation vaccines against SARS-CoV-2, the clinical and experimental data obtained from clinical trials, while addressing safety risks that may arise. Besides vaccines, the review also covers recent breakthroughs in anti-SARS-CoV-2 drug discovery, emphasizing druggable viral and host targets, virus- and host-targeting antivirals, and highlighting mechanistically representative molecules that are either approved or are under clinical investigation. In conclusion, the integration of both vaccines and antiviral therapies, along with swift innovative strategies to address viral evolution and drug resistance is crucial to strengthen our preparedness against future viral outbreaks.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Priyanshu Walia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Kaplan B, Pavel STI, Uygut MA, Tunc M, Eroksuz Y, Celik I, Eren EE, Korukluoglu G, Kara A, Ozdarendeli A, Yetiskin H. Efficacy of Inactivated Bivalent SARS-CoV-2 Vaccines Targeting Ancestral Strain (ERAGEM), Delta, and Omicron Variants. Vaccines (Basel) 2025; 13:169. [PMID: 40006716 PMCID: PMC11861512 DOI: 10.3390/vaccines13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of variants with enhanced transmissibility and immune evasion, challenging existing vaccines. This study aimed to evaluate the immunogenicity and protective efficacy of inactivated bivalent vaccine formulations incorporating the ancestral SARS-CoV-2 strain (ERAGEM) with either Delta or Omicron (BA.5) variants. METHODS Bivalent vaccine formulations were prepared using beta-propiolactone-inactivated SARS-CoV-2 antigens and administered to K18-hACE2 transgenic mice. Following prime and booster immunizations, neutralizing antibody titers and viral loads were assessed through ELISA, microneutralization assays, and quantitative PCR. Mice were challenged with the respective variants, and the survival rates, temperature, and body weight changes were monitored for 21 days. RESULTS Both vaccine formulations elicited significant increases in neutralizing antibody titers post-booster immunization. The ERAGEM + Delta group demonstrated geometric mean titers (GMTs) of 6938.1 and 4935.0 for the ancestral and Delta variants, respectively, while the ERAGEM + Omicron (BA.5) group achieved GMTs of 16,280.7 and 24,215.9 for the ancestral and Omicron (BA.5) variants. Complete survival (100%) was observed in all the vaccinated groups post-challenge, with no detectable viral titers in the lungs and substantial reductions in the nasal turbinate viral loads compared to the unvaccinated controls. CONCLUSIONS The bivalent inactivated vaccines demonstrated strong immunogenicity and complete protection against severe disease in preclinical models. These findings indicate the potential of bivalent vaccine strategies in addressing antigenic diversity and preparing for future pandemics caused by rapidly evolving pathogens.
Collapse
Affiliation(s)
- Busra Kaplan
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Shaikh Terkis Islam Pavel
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Muhammet Ali Uygut
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Merve Tunc
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Yesari Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23100 Elazig, Türkiye;
| | - Ilhami Celik
- Department of Infectious Disease and Clinical Microbiology, University of Health Sciences, 38080 Kayseri, Türkiye;
| | - Esma Eryilmaz Eren
- Department of Infectious Diseases and Clinical Microbiology, Kayseri City Education and Research Hospital, 38080 Kayseri, Türkiye;
| | - Gulay Korukluoglu
- Department of Clinical Microbiology, University of Health Sciences, Ankara Bilkent City Hospital, 06800 Ankara, Türkiye
| | - Ates Kara
- Pediatric Infectious Department, Faculty of Medicine, Hacettepe University Hospitals, 06230 Ankara, Türkiye;
| | - Aykut Ozdarendeli
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, 38280 Kayseri, Türkiye
| | - Hazel Yetiskin
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| |
Collapse
|
3
|
Lundstrom K. Immunobiology and immunotherapy of COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:73-133. [PMID: 40246352 DOI: 10.1016/bs.pmbts.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The SARS-CoV-2 outbreak in late 2019 triggered a major increase in activities related to immunobiology and immunotherapy to cope with and find solutions to end the COVID-19 pandemic. The unprecedented approach to research and development of drugs and vaccines against SARS-CoV-2 has substantially improved the understanding of immunobiology for COVID-19, which can also be applied to other infectious diseases. Major efforts were dedicated to the repurposing of existing antiviral drugs and the development of novel ones. For this reason, numerous approaches to evaluating interferons, immunoglobulins, and cytokine inhibitors have been conducted. Antibody-based therapies, especially employing monoclonal antibodies have also been on the agenda. Cell-based therapies involving dendritic cells, macrophages, and CAR T-cell approaches have been evaluated. Many existing antiviral drugs have been repurposed for COVID-19 and novel formulations have been tested. The extraordinarily rapid development of efficient vaccines led to the breakthrough of novel vaccine approaches such as mRNA-based vaccines saving millions of lives. Waning immunity of existing vaccines and emerging SARS-CoV-2 variants have required additional booster vaccinations and re-engineering of new versions of COVID-19 vaccines.
Collapse
|
4
|
Durusu Tanriover M, Altuntas Aydin O, Guner R, Yildiz O, Celik I, Kose S, Akhan S, Akalin EH, Ozdarendeli A, Unal S, Ates I, Kara A, the TURKOVAC Study Group. The impact of previous SARS-CoV-2 infection on post-vaccine adverse events in individuals vaccinated with TURKOVAC or CoronaVac -inactivated COVID-19 vaccines. Hum Vaccin Immunother 2024; 20:2346388. [PMID: 38924774 PMCID: PMC11253700 DOI: 10.1080/21645515.2024.2346388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/19/2024] [Indexed: 06/28/2024] Open
Abstract
This study- a secondary analysis of data from a randomized, observer-blinded, non-inferiority study among volunteers between 18-55 y old in Türkiye- evaluated the impact of previous SARS-CoV-2 infection before the first dose of inactive TURKOVAC on post-vaccine local and systemic adverse events (AEs) comparing with CoronaVac. Of 1266 participants analyzed, 27.7% had a previous COVID-19 history. Local and systemic AEs were observed in 37.3% and 39% of the participants. The frequency of AEs was slightly higher in the first 30 minutes and 24 hours among participants with a COVID-19 history; none were severe. 1203 participants had a second dose vaccination, and 27.3% had a history of COVID-19. The frequencies of local and systemic AEs after the second dose were similar between those with and without a COVID-19 history. The TURKOVAC and CoronaVac showed similar frequencies of local and systemic AEs in the first 30 minutes after vaccination.
Collapse
Affiliation(s)
- Mine Durusu Tanriover
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Türkiye
- Vaccine Institute, Hacettepe University, Ankara, Türkiye
| | - Ozlem Altuntas Aydin
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Türkiye
| | - Rahmet Guner
- Infectious Diseases and Clinical Microbiology Clinic, Ankara Yildirim Beyazit University, Ankara City Hospital, Ankara, Türkiye
| | - Orhan Yildiz
- Department of Infectious Diseases and Clinical Microbiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - Ilhami Celik
- Department of Infectious Diseases and Clinical Microbiology, Kayseri City Training and Research Hospital, Kayseri, Türkiye
| | - Sukran Kose
- Infectious Diseases Clinic, University of Health Sciences, Izmir Tepecik Training and Research Hospital, Izmir, Türkiye
| | - Sila Akhan
- Department of Infectious Diseases and Clinical Microbiology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Emin Halis Akalin
- Department of Infectious Diseases and Clinical Microbiology, Bursa Uludag University Faculty of Medicine, Bursa, Türkiye
| | - Aykut Ozdarendeli
- Department of Microbiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri, Türkiye
| | - Serhat Unal
- Vaccine Institute, Hacettepe University, Ankara, Türkiye
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Ihsan Ates
- Department of Internal Medicine, University of Health Sciences Ankara City Hospital, Ankara, Türkiye
- General Directorate of Health Services, Republic of Türkiye Ministry of Health, Ankara, Türkiye
| | - Ates Kara
- Department of Pediatrics, Pediatric Infectious Disease, Hacettepe University Faculty of Medicine, Ankara, Türkiye
- Turkiye Vaccine Institute, TUSEB Aziz Sancar Arastirma Merkezi, Ankara, Türkiye
| | | |
Collapse
|
5
|
Sezer Z, Pavel STI, Inal A, Yetiskin H, Kaplan B, Uygut MA, Aslan AF, Bayram A, Mazicioglu M, Kalin Unuvar G, Yuce ZT, Aydin G, Kaya RK, Ates I, Kara A, Ozdarendeli A. Long-Term Immunogenicity and Safety of a Homologous Third Dose Booster Vaccination with TURKOVAC: Phase 2 Clinical Study Findings with 32-Week Post-Booster Follow-Up. Vaccines (Basel) 2024; 12:140. [PMID: 38400124 PMCID: PMC10893411 DOI: 10.3390/vaccines12020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine-induced immunity wanes over time and warrants booster doses. We investigated the long-term (32 weeks) immunogenicity and safety of a third, homologous, open-label booster dose of TURKOVAC, administered 12 weeks after completion of the primary series in a randomized, controlled, double-blind, phase 2 study. Forty-two participants included in the analysis were evaluated for neutralizing antibodies (NAbs) (with microneutralization (MNT50) and focus reduction (FRNT50) tests), SARS-CoV-2 S1 RBD (Spike S1 Receptor Binding Domain), and whole SARS-CoV-2 (with ELISA) IgGs on the day of booster injection and at weeks 1, 2, 4, 8, 16, 24, and 32 thereafter. Antibody titers increased significantly from week 1 and remained higher than the pre-booster titers until at least week 4 (week 8 for whole SARS-CoV-2) (p < 0.05 for all). Seroconversion (titers ≥ 4-fold compared with pre-immune status) persisted 16 weeks (MNT50: 6-fold; FRNT50: 5.4-fold) for NAbs and 32 weeks for S1 RBD (7.9-fold) and whole SARS-CoV-2 (9.4-fold) IgGs. Nine participants (20.9%) tested positive for SARS-CoV-2 RT-PCR between weeks 8 and 32 of booster vaccination; none of them were hospitalized or died. These findings suggest that boosting with TURKOVAC can provide effective protection against COVID-19 for at least 8 weeks and reduce the severity of the disease.
Collapse
Affiliation(s)
- Zafer Sezer
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri 38280, Türkiye
| | - Shaikh Terkis Islam Pavel
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Ahmet Inal
- Department of Medical Pharmacology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
- Good Clinical Practise Centre (IKUM), Erciyes University, Kayseri 38280, Türkiye
| | - Hazel Yetiskin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Busra Kaplan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Muhammet Ali Uygut
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Ahmet Furkan Aslan
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Mumtaz Mazicioglu
- Department of Family Medicine, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Gamze Kalin Unuvar
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Zeynep Ture Yuce
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Gunsu Aydin
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | | | - Ihsan Ates
- Department of Internal Medicine, University of Health Sciences Ankara City Hospital, Ankara 06530, Türkiye
| | - Ates Kara
- Health Institutes of Türkiye (TUSEB), Istanbul 34718, Türkiye
- Department of Pediatrics, Pediatric Infectious Disease, Faculty of Medicine, Hacettepe University, Ankara 06430, Türkiye
| | - Aykut Ozdarendeli
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, Kayseri 38280, Türkiye
- Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| |
Collapse
|
6
|
Lundstrom K. COVID-19 Vaccines: Where Did We Stand at the End of 2023? Viruses 2024; 16:203. [PMID: 38399979 PMCID: PMC10893040 DOI: 10.3390/v16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccine development against SARS-CoV-2 has been highly successful in slowing down the COVID-19 pandemic. A wide spectrum of approaches including vaccines based on whole viruses, protein subunits and peptides, viral vectors, and nucleic acids has been developed in parallel. For all types of COVID-19 vaccines, good safety and efficacy have been obtained in both preclinical animal studies and in clinical trials in humans. Moreover, emergency use authorization has been granted for the major types of COVID-19 vaccines. Although high safety has been demonstrated, rare cases of severe adverse events have been detected after global mass vaccinations. Emerging SARS-CoV-2 variants possessing enhanced infectivity have affected vaccine protection efficacy requiring re-design and re-engineering of novel COVID-19 vaccine candidates. Furthermore, insight is given into preparedness against emerging SARS-CoV-2 variants.
Collapse
|
7
|
Luvira V, Pitisuttithum P. Effect of homologous or heterologous vaccine booster over two initial doses of inactivated COVID-19 vaccine. Expert Rev Vaccines 2024; 23:283-293. [PMID: 38369699 DOI: 10.1080/14760584.2024.2320861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Inactivated vaccines were delivered to low- and middle-income countries during the early pandemics of COVID-19. Currently, more than 10 inactivated COVID-19 vaccines have been developed. Most inactivated vaccines contain an inactivated whole-cell index SARS-CoV-2 strain that is adjuvant. Whole virions inactivated with aluminum hydroxide vaccines were among the most commonly used. However, with the emerging of COVID-19 variants and waning of the immunity of two doses of after 3 months, WHO and many local governments have recommended the booster-dose program especially with heterologous platform vaccine. AREA COVERED This review was conducted through a literature search of the MEDLINE database to identify articles published from 2020 to 2023 covered the inactivated COVID-19 vaccines primary series with homologous and heterologous booster focusing on safety, immunogenicity, efficacy, and effectiveness. EXPERT OPINION The inactivated vaccines, especially whole virion inactivated in aluminum hydroxide appeared to be safe and had good priming effects. Immune responses generated after one dose of heterologous boost were high and able to preventing severity of disease and symptomatic infection. A new approach to inactivated vaccine has been developed using inactivating recombinant vector virus-NDV-HXP-S vaccine.
Collapse
Affiliation(s)
- Viravarn Luvira
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Ghanem H, Ghanem S, AlMutawa E. An Outline of the Immunogenic Potential of Progressing SARSCoV- 2 Vaccine Technologies among Children and Adolescents. Recent Pat Biotechnol 2024; 18:180-189. [PMID: 38528666 DOI: 10.2174/1872208317666230612141930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 03/27/2024]
Abstract
BACKGROUND SARS-CoV-2, a highly dynamic beta-coronavirus, can afflict all age groups. Notably, over 16100 mortalities have been recorded among children as yet. In this regard, many vaccine projects are operational to assess immuno-potency among young cohorts. A bulk of reports have evidenced the efficacy of these immunization technologies in the elderly population, though the impact is yet to be determined among children. OBJECTIVES This review is envisioned to outline the current efficacy of contributing vaccine technologies and examine the dose-dependent impact of immunization regimens in lowering the risks of SARS-CoV-2 infections among children and adolescents. Furthermore, the current review exclusively estimated the vaccine impact at current doses. METHODS A total of 52 research papers extracted from PubMed, Pubmed Central, Science Direct, Research Gate, Google Scholar and Semantic Scholar were screened along with an emphasis on patents. Inclusion criteria involved all published reports directly or indirectly linked to the contributing vaccine candidates that are operational among the young cohort. Unrelated research papers were excluded from the study. Key search terminologies included information on vaccine identifiers, such as name, type and clinical trial ID, and successively restricted to children and adolscents age groups. RESULTS Several vaccine designs, such as mRNA-based vaccinations, viral vector vaccines, DNA vaccines, inactivated vaccines, recombinant vaccines, and protein-based immunizations, are being examined at various stages of clinical trials to gauge the effects on children and adolescents. With reference to the published reports, the mRNA 1273 (1610 GMT; 6-10 yrs, 1401 GMT; 12-15 yrs), BNT162b2 (1407 GMT; 6 months- <2 yrs, 1535 GMT; 2-4 yrs, 4583 GMT; 5-11 yrs, 1239.5 GMT; 12-15 yrs) and Ad5 nCoV (1037.5 GMT; 6-17 yrs) offered relatively high neutralization titers with sharp seroconversion rates compared to MVC-COV1901 (648.5 GMT; 12-17 yrs) and ZyCoV-D (133.49 GMT; 12-17 yrs), which produced modest immune responses. CONCLUSION Currently, the WHO is analyzing emerging evidence to issue an emergency use list of vaccines for vaccinating children and adolescents.
Collapse
Affiliation(s)
- Hytham Ghanem
- Department of Paediatric Emergency Medicine, Royal Medical Services Hospital, Rifaa, Bahrain
| | - Shehab Ghanem
- Department of Surgery, Royal Medical Services Hospital, Rifaa, Bahrain
| | - Ehsan AlMutawa
- Department of Surgery, Royal Medical Services Hospital, Rifaa, Bahrain
| |
Collapse
|
9
|
Zasada AA, Darlińska A, Wiatrzyk A, Woźnica K, Formińska K, Czajka U, Główka M, Lis K, Górska P. COVID-19 Vaccines over Three Years after the Outbreak of the COVID-19 Epidemic. Viruses 2023; 15:1786. [PMID: 37766194 PMCID: PMC10536649 DOI: 10.3390/v15091786] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The outbreak of COVID-19 started in December 2019 and spread rapidly all over the world. It became clear that the development of an effective vaccine was the only way to stop the pandemic. It was the first time in the history of infectious diseases that the process of the development of a new vaccine was conducted on such a large scale and accelerated so rapidly. At the end of 2020, the first COVID-19 vaccines were approved for marketing. At the end of March 2023, over three years after the outbreak of the COVID-19 pandemic, 199 vaccines were in pre-clinical development and 183 in clinical development. The candidate vaccines in the clinical phase are based on the following platforms: protein subunit, DNA, RNA, non-replication viral vector, replicating viral vector, inactivated virus, virus-like particles, live attenuated virus, replicating viral vector combined with an antigen-presenting cell, non-replication viral vector combined with an antigen-presenting cell, and bacterial antigen-spore expression vector. Some of the new vaccine platforms have been approved for the first time for human application. This review presents COVID-19 vaccines currently available in the world, procedures for assurance of the quality and safety of the vaccines, the vaccinated population, as well as future perspectives for the new vaccine platforms in drug and therapy development for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Aleksandra Anna Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (A.D.); (A.W.); (K.W.); (K.F.); (U.C.); (M.G.); (K.L.); (P.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hoang TNA, Quach HL, Hoang VN, Tran VT, Pham QT, Vogt F. Assessing the robustness of COVID-19 vaccine efficacy trials: systematic review and meta-analysis, January 2023. Euro Surveill 2023; 28:2200706. [PMID: 37261728 PMCID: PMC10236928 DOI: 10.2807/1560-7917.es.2023.28.22.2200706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
BackgroundVaccines play a crucial role in the response to COVID-19 and their efficacy is thus of great importance.AimTo assess the robustness of COVID-19 vaccine efficacy (VE) trial results using the fragility index (FI) and fragility quotient (FQ) methodology.MethodsWe conducted a Cochrane and PRISMA-compliant systematic review and meta-analysis of COVID-19 VE trials published worldwide until 22 January 2023. We calculated the FI and FQ for all included studies and assessed their associations with selected trial characteristics using Wilcoxon rank sum tests and Kruskal-Wallis H tests. Spearman correlation coefficients and scatter plots were used to quantify the strength of correlation of FIs and FQs with trial characteristics.ResultsOf 6,032 screened records, we included 40 trials with 54 primary outcomes, comprising 909,404 participants with a median sample size per outcome of 13,993 (interquartile range (IQR): 8,534-25,519). The median FI and FQ was 62 (IQR: 22-123) and 0.50% (IQR: 0.24-0.92), respectively. FIs were positively associated with sample size (p < 0.001), and FQs were positively associated with type of blinding (p = 0.023). The Spearman correlation coefficient for FI with sample size was moderately strong (0.607), and weakly positive for FI and FQ with VE (0.138 and 0.161, respectively).ConclusionsThis was the largest study on trial robustness to date. Robustness of COVID-19 VE trials increased with sample size and varied considerably across several other important trial characteristics. The FI and FQ are valuable complementary parameters for the interpretation of trial results and should be reported alongside established trial outcome measures.
Collapse
Affiliation(s)
- Thi Ngoc Anh Hoang
- Faculty of Medicine, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, Vietnam
| | - Ha-Linh Quach
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- Department of Communicable Diseases Control and Prevention, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- Centre for Ageing Research and Education (CARE), Duke-NUS Medical School, Singapore, Singapore
| | - Van Ngoc Hoang
- The General Department of Preventive Medicine, Ministry of Health, Hanoi, Vietnam
| | | | - Quang Thai Pham
- Department of Communicable Diseases Control and Prevention, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Florian Vogt
- National Centre for Epidemiology and Population Health, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Kara A, Coskun A, Temel F, Özelci P, Topal S, Ates İ. Self-Reported Allergic Adverse Events Following Inactivated SARS-CoV-2 Vaccine (TURKOVAC™) among General and High-Risk Population. Vaccines (Basel) 2023; 11:vaccines11020437. [PMID: 36851314 PMCID: PMC9958953 DOI: 10.3390/vaccines11020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
TURKOVAC™ is a whole-virion inactivated COVID-19 vaccine which was developed and granted emergency use and conditional marketing authorization in December 2021 in Türkiye. The objective of this study is to assess the distribution and the severity of allergic adverse events following the administration of the vaccine as the primary or the booster dose in 15 provinces in Türkiye. In this cohort study, between February and May 2022, in the selected 15 provinces having an adequate number of health care personnel in the community health centers to conduct the study, 32,300 people having the first, the second, or the booster dose of the vaccine were invited to the survey. A total of 29,584 people voluntarily agreed to participate to the survey and were given a structured questionnaire after a minimum of 10 days following the vaccination. In our study, only 0.5% of the participants (142 persons) reported to experience any allergic reaction, and 12 of them (8.5%) reported to be given medical treatment in a health center. Male predominance (55.6%) was observed among participants reported to experience any allergic reaction. No hospitalization was recorded. Of the participants, 4.4% (1315 people) reported to have a history of allergy. The most reported allergens were drugs. Among the participants without a known history of allergy (n = 28,269), 0.4% of them (110 people) reported to experience an allergic reaction following the vaccination, and 5.4% of the allergic reactions (six people) were reported to be treated in a health center. The percentage of the participants given any medical treatment among the participants without a known history of allergy is 0.02%. No immediate or anaphylactic reaction was reported. Among the participants with a known history of allergy (n = 1315), 32 people (2.4% of them) reported to experience an allergic reaction following the vaccination, and 18.7% of the allergic reactions (six people) were reported to be prescribed a medical treatment. The percentage of the participants given any medical treatment among the participants with a known history of allergy is 0.4%. A known history of allergy increased the risk of having an allergic experience by approximately six times following vaccination. As a whole-virion inactivated SARS-CoV-2 vaccine, the TURKOVAC™ vaccine, with a low allergic reaction-related adverse event profile, can be an alternative to other COVID-19 vaccines.
Collapse
Affiliation(s)
- Ateş Kara
- Department of Pediatrics, Pediatric Infectious Disease Unit, Hacettepe University Faculty of Medicine, Health Institutes of Türkiye, Türkiye Vaccine Institute, Ankara 06100, Türkiye
- Correspondence:
| | - Aslihan Coskun
- Health Institutes of Türkiye, Türkiye Vaccine Institute, Ankara 06260, Türkiye
| | - Fehminaz Temel
- Türkiye Ministry of Health, General Directorate of Public Health, Department of Communicable Diseases and Early Warning, Field Epidemiology Unit, Ankara 06430, Türkiye
| | - Pervin Özelci
- Health Institutes of Türkiye, Türkiye Vaccine Institute, Ankara 06260, Türkiye
| | - Selmur Topal
- Türkiye Ministry of Health, General Directorate of Public Health, Department of Communicable Diseases and Early Warning, Field Epidemiology Unit, Ankara 06430, Türkiye
| | - İhsan Ates
- University of Health Science, Ankara City Hospital, Department of Internal Medicine, Ankara 06610, Türkiye
| |
Collapse
|
12
|
Wang Y, Jin Y, Yang H. Intensive Care during the COVID-19 Pandemic. Vaccines (Basel) 2023; 11:vaccines11010125. [PMID: 36679970 PMCID: PMC9864290 DOI: 10.3390/vaccines11010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a sudden sharp rise in hospitalizations for pneumonia with multiorgan disease [...].
Collapse
|