1
|
Knutsen IS, Erkinharju T, Bøgwald J, Dalmo RA, Seternes T. Inflammatory responses in Atlantic lumpfish (Cyclopterus lumpus L.) after intraperitoneal injection of a vaccine against Aeromonas salmonicida and Vibrio salmonicida at different water temperatures. JOURNAL OF FISH DISEASES 2024; 47:e14001. [PMID: 39011626 DOI: 10.1111/jfd.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Studying inflammatory responses induced by vaccination can contribute to a more detailed understanding of underlying immune mechanisms in lumpfish (Cyclopterus lumpus). Tissue samples from lumpfish intraperitoneally immunized with a divalent oil-adjuvanted vaccine (Aeromonas salmonicida and Vibrio salmonicida) at water temperatures of 5, 10, and 15°C were collected at 630 day degrees and 18 weeks post injection. The relative amount of secretory and membrane-bound immunoglobulin M (IgM) gene transcripts in the head kidney was determined by qPCR. Vaccine-induced inflammatory lesions were assessed on histological sections of abdominal pancreatic/intestinal tissue from vaccinated fish in all three temperature groups. Inflammatory cells forming dense aggregations in lesions showed proliferative activity, many of which were identified as eosinophilic-granulocyte-like cells. IgM+ cells were scattered in inflammatory tissue dominated by connective tissue, showing no difference in numbers between lesions from fish vaccinated at 5, 10, and 15°C. Relative gene expression analysis of secretory and membrane-bound IgM revealed low overall expression in the head kidney of vaccinated fish at both 630 day-degrees and 18 weeks post injection. The results of this study indicate that the vaccine stimulated prolonged local inflammatory responses at the injection site, which were not influenced by temperature.
Collapse
Affiliation(s)
- Ingrid Svihus Knutsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Toni Erkinharju
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jarl Bøgwald
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tore Seternes
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
3
|
Gjøen T, Ruyter B, Østbye TK. Effects of eicosapentaneoic acid on innate immune responses in an Atlantic salmon kidney cell line in vitro. PLoS One 2024; 19:e0302286. [PMID: 38805503 PMCID: PMC11132502 DOI: 10.1371/journal.pone.0302286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Studies of the interplay between metabolism and immunity, known as immunometabolism, is steadily transforming immunological research into new understandings of how environmental cues like diet are affecting innate and adaptive immune responses. The aim of this study was to explore antiviral transcriptomic responses under various levels of polyunsaturated fatty acid. Atlantic salmon kidney cells (ASK cell line) were incubated for one week in different levels of the unsaturated n-3 eicosapentaneoic acid (EPA) resulting in cellular levels ranging from 2-20% of total fatty acid. These cells were then stimulated with the viral mimic and interferon inducer poly I:C (30 ug/ml) for 24 hours before total RNA was isolated and sequenced for transcriptomic analyses. Up to 200 uM EPA had no detrimental effects on cell viability and induced very few transcriptional changes in these cells. However, in combination with poly I:C, our results shows that the level of EPA in the cellular membranes exert profound dose dependent effects of the transcriptional profiles induced by this treatment. Metabolic pathways like autophagy, apelin and VEGF signaling were attenuated by EPA whereas transcripts related to fatty acid metabolism, ferroptosis and the PPAR signaling pathways were upregulated. These results suggests that innate antiviral responses are heavily influenced by the fatty acid profile of salmonid cells and constitute another example of the strong linkage between general metabolic pathways and inflammatory responses.
Collapse
Affiliation(s)
- Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Tone Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| |
Collapse
|
4
|
Jenberie S, van der Wal YA, Jensen I, Jørgensen JB. There and back again? A B cell's tale on responses and spatial distribution in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109479. [PMID: 38467322 DOI: 10.1016/j.fsi.2024.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Teleost B cells are of special interest due to their evolutionary position and involvement in vaccine-induced adaptive immune responses. While recent progress has revealed uneven distribution of B cell subsets across the various immune sites and that B cells are one of the early responders to infection, substantial knowledge gaps persist regarding their immunophenotypic profile, functional mechanisms, and what factors lead them to occupy different immune niches. This review aims to assess the current understanding of B cell diversity, their spatial distribution in various systemic and peripheral immune sites, how B cell responses initiate, the sites where these responses develop, their trafficking, and the locations where long-term B cell responses take place.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway.
| | | | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Turner SM, Kukk K, Sidor IF, Mason MD, Bouchard DA. Biocompatibility of intraperitoneally implanted TEMPO-oxidized cellulose nanofiber hydrogels for antigen delivery in Atlantic salmon (Salmo salar L.) vaccines. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109464. [PMID: 38412902 DOI: 10.1016/j.fsi.2024.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Disease outbreaks are a major impediment to aquaculture production, and vaccines are integral for disease management. Vaccines can be expensive, vary in effectiveness, and come with adjuvant-induced adverse effects, causing fish welfare issues and negative economic impacts. Three-dimensional biopolymer hydrogels are an appealing new technology for vaccine delivery in aquaculture, with the potential for controlled release of multiple immunomodulators and antigens simultaneously, action as local depots, and tunable surface properties. This research examined the intraperitoneal implantation of a cross-linked TEMPO cellulose nanofiber (TOCNF) hydrogel formulated with a Vibrio anguillarum bacterin in Atlantic salmon with macroscopic and microscopic monitoring to 600-degree days post-implantation. Results demonstrated a modified passive integrated transponder tagging (PITT) device allowed for implantation of the hydrogel. However, the Atlantic salmon implanted with TOCNF hydrogels exhibited a significant foreign body response (FBR) compared to sham-injected negative controls. The FBR was characterized by gross and microscopic external and visceral proliferative lesions, granulomas, adhesions, and fibrosis surrounding the hydrogel using Speilberg scoring of the peritoneum and histopathology of the body wall and coelom. Acutely, gross monitoring displayed rapid coagulation of blood in response to the implantation wound with development of fibrinous adhesions surrounding the hydrogel by 72 h post-implantation consistent with early stage FBR. While these results were undesirable for aquaculture vaccines, this work informs on the innate immune response to an implanted biopolymer hydrogel in Atlantic salmon and directs future research using cellulose nanomaterial formulations in Atlantic salmon for a new generation of aquaculture vaccine technology.
Collapse
Affiliation(s)
- Sarah M Turner
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA.
| | - Kora Kukk
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Inga F Sidor
- New Hampshire Veterinary Diagnostic Laboratory, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael D Mason
- Department of Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Deborah A Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA; Cooperative Extension, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
6
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
7
|
Li Q, Chi H, Shi X, Gan Q, Dalmo RA, Sun YY, Tang X, Xing J, Sheng X, Zhan W. Vaccine Adjuvants Induce Formation of Intraperitoneal Extracellular Traps in Flounder (Paralichthys olivaceus). Front Cell Infect Microbiol 2022; 12:875409. [PMID: 35433509 PMCID: PMC9005893 DOI: 10.3389/fcimb.2022.875409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/15/2023] Open
Abstract
Adjuvants are used to increase the strength, quality, and duration of the immune response of vaccines. Neutrophils are the first immune cells that arrive at the injection site and can release DNA fibers together with granular proteins, so-called neutrophil extracellular traps (NETs), to entrap microbes in a sticky matrix of extracellular chromatin and microbicidal agents. Similar extracellular structures were also released by macrophages, mast cells, and eosinophils and are now generalized as “ETs.” Here we demonstrated that Alum adjuvant stimulation led to peritoneal cells swarming and ET release in vitro. Moreover, compared to antigen stimulation alone, ET release was significantly increased after stimulation with antigen-mixed adjuvants and in a time- and dose-dependent manner. In vivo, we were able to monitor and quantify the continuous changes of the ET release in the same fish by using the small animal in vivo imaging instrument at different times during the early stages after intraperitoneal immunization. The results showed that the fluorescence signal of ETs in the peritoneum increased from 0 to 12 h after injection and then gradually decreased. The fluorescence signals came from extracellular DNA fibers, which are sensitive to DNase I and confirmed by microscopy of peritoneal fluid ex vivo. In summary, this study introduced a new method for detecting ETs in the peritoneum of fish in vivo and indicated that ET formation is involved in the immune response at the early stage after intraperitoneal immunization to vaccines.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Heng Chi,
| | - Xueyan Shi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Yuan-yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|
9
|
Soveral LDF, de Almeida PA, Kreutz Y, Ribeiro VA, Frandoloso R, Kreutz LC. Modulation of expression of proinflammatory genes and humoral immune response following immunization or infection with Aeromonas hydrophila in silver catfish (Rhamdia quelen). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100053. [DOI: 10.1016/j.fsirep.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
|
10
|
Andresen AMS, Gjøen T. Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100915. [PMID: 34634571 DOI: 10.1016/j.cbd.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Many vaccine formulations, in particular vaccines based on inactivated virus, needs adjuvants to boost immunogenicity. In aquaculture, mineral and plant oil are used as adjuvant in commercial vaccines, and the advent of oil-adjuvanted vaccines was crucial to aquaculture development. Nevertheless, some of these approved vaccines display suboptimal performance in the field compared to experimental conditions. Therefore, there is a need to improve adjuvants and delivery methods for fish vaccines against viruses. We used RNA sequencing of Atlantic salmon head kidney to analyse the difference in gene expression 24 h after injection of different experimental vaccine formulations. We compared five different formulations in addition to a PBS control: inactivated virus alone (group V), soluble poly (I:C) (group P), nanoparticles containing poly (I:C) (group N), soluble poly (I:C) + inactivated virus (group PV) and finally nanoparticles containing poly (I:C) + inactivated virus (group NV). Our results showed poly (I:C)'s ability as adjuvant and its capacity influence innate immune genes expression in Atlantic salmon. Soluble poly (I:C) upregulated multiple immune related genes and was more effective compared to poly (I:C) formulated into chitosan nanoparticles (more than 10 fold increase in differentially expressed genes, DEGs). However, inclusion of inactivated ISA virus in the nanoparticle vaccine, increased the number of DEGs fivefold suggesting a synergistic effect of adjuvant and antigen. Our results indicate that the way poly (I:C) is formulated and the presence of antigen is important for the magnitude of the innate immune response in Atlantic salmon.
Collapse
Affiliation(s)
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
van der Wal YA, Jenberie S, Nordli H, Greiner-Tollersrud L, Kool J, Jensen I, Jørgensen JB. The importance of the Atlantic salmon peritoneal cavity B cell response: Local IgM secreting cells are predominant upon Piscirickettsia salmonis infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104125. [PMID: 34087290 DOI: 10.1016/j.dci.2021.104125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The intraperitoneal route is favored for administration of inactivated and attenuated vaccines in Atlantic salmon. Nevertheless, the immune responses in the teleost peritoneal cavity (PerC) are still incompletely defined. In this study, we investigated the B cell responses after intraperitoneal Piscirickettsia salmonis (P. salmonis) challenge of Atlantic salmon, focusing on the local PerC response versus responses in the lymphatic organs: spleen and head kidney. We observed a major increase of leukocytes, total IgM antibody secreting cells (ASC), and P. salmonis-specific ASC in the PerC at 3- and 6-weeks post infection (wpi). The increase in ASC frequency was more prominent in the spleen and PerC compared to the head kidney during the observed 6 wpi. The serum antibody response included P. salmonis-specific antibodies and non-specific antibodies recognizing the non-related bacterial pathogen Yersinia ruckeri and the model antigen TNP-KLH. Finally, we present evidence that supports a putative role for the adipose tissue in the PerC immune response.
Collapse
Affiliation(s)
- Yorick A van der Wal
- Vaxxinova Research & Development GmbH, Münster, Germany; Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Henriette Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jaap Kool
- Vaxxinova Research & Development GmbH, Münster, Germany
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
12
|
Wangkaghart E, Deville S, Wang B, Srisapoome P, Wang T, Secombes CJ. Immune response and protective efficacy of two new adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02, administered with a Streptococcus agalactiae ghost vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:19-29. [PMID: 34153428 DOI: 10.1016/j.fsi.2021.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Streptococcus agalactiae is one of the most important pathogens infecting tilapia worldwide and causes meningoencephalitis, septicemia and high mortalities with considerable losses. Various types of vaccines have been developed against S. agalactiae infection, such as inactivated vaccines, live attenuated vaccines and subunit vaccines. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and have been reported as novel vaccine candidates. Therefore, the main aims of this study were to develop an S. agalactiae ghost vaccine (SAGV) and to evaluate the immune response and protective effect of SAGV against S. agalactiae with two novel adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02. Nile tilapia, mean weight 50 g, were divided into four groups as follows; 1) fish injected with PBS as control, 2) fish injected with the SAGV alone; 3) fish injected with the SAGV+Montanide™ ISA 763B VG; and 4) fish injected with SAGV+Montanide™ GEL02. Following vaccination, innate immunity parameters including serum lysozyme, myeloperoxidase, catalase, and bactericidal activity were all significantly enhanced. Moreover, specific serum IgM antibodies were induced and reached their highest level 2-8 weeks post vaccination. Importantly, the relative percent survival of tilapia vaccinated against the SAGV formulated with both adjuvants was 80-93%. Furthermore, the transcription of immune-related genes (IgM, TCRβ, IL-1β, IL-8 and TNFα) were up-regulated in tilapia after vaccination, indicating that both cellular and humoral immune responses were induced by these adjuvanted vaccines. In summary, Montanide™ ISA 763B VG and Montanide™ GEL02 can enhance immunoprotection induced by the SAGV vaccine against streptococcosis, demonstrating that both have value as potential adjuvants of fish vaccines.
Collapse
Affiliation(s)
- Eakapol Wangkaghart
- Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand.
| | - Sebastien Deville
- SEPPIC, Paris La Défense, 50 Boulevard National, CS 90020, 92257, La Garenne Colombes Cedex, France.
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China.
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, 10900, Thailand.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
13
|
Aida V, Pliasas VC, Neasham PJ, North JF, McWhorter KL, Glover SR, Kyriakis CS. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front Vet Sci 2021; 8:654289. [PMID: 33937377 PMCID: PMC8083957 DOI: 10.3389/fvets.2021.654289] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.
Collapse
Affiliation(s)
- Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Kirklin L. McWhorter
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Sheniqua R. Glover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Adamek M, Davies J, Beck A, Jordan L, Becker AM, Mojzesz M, Rakus K, Rumiac T, Collet B, Brogden G, Way K, Bergmann SM, Zou J, Steinhagen D. Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination. Front Immunol 2021; 12:581786. [PMID: 33717065 PMCID: PMC7943847 DOI: 10.3389/fimmu.2021.581786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jonathan Davies
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,School of Life Sciences, Keele University, Keele, United Kingdom
| | - Alexander Beck
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Lisa Jordan
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Anna M Becker
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Typhaine Rumiac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Graham Brogden
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, United Kingdom
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
15
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
16
|
Microbiota Modulates the Immunomodulatory Effects of Filifolinone on Atlantic Salmon. Microorganisms 2020; 8:microorganisms8091320. [PMID: 32872599 PMCID: PMC7564783 DOI: 10.3390/microorganisms8091320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Filifolinone is an aromatic geranyl derivative, a natural compound isolated from Heliotropum sclerocarpum, which has immunomodulatory effects on Atlantic salmon, upregulating cytokines involved in Th1-type responses through a mechanism that remains unknown. In this work, we determined whether the immunomodulatory effects of filifolinone depend on the host microbiotic composition. We evaluated the effect of filifolinone on immune genes and intestinal microbiotic composition of normal fish and fish previously treated with bacitracin/neomycin. Filifolinone induced the early expression of IFN-α1 and TGF-β, followed by the induction of TNF-α, IL-1β, and IFN-γ. A pre-treatment with antibiotics modified this effect, mainly changing the expression of IL-1β and IFN-γ. The evaluation of microbial diversity shows that filifolinone modifies the composition of intestinal microbiota, increasing the abundance of immunostimulating organisms like yeast and firmicutes. We identified 69 operational taxonomic units (OTUs) associated with filifolinone-induced IFN-γ. Our results indicate that filifolinone stimulates the immune system in two ways, one dependent on fish microbiota and the other not. To our knowledge, this is the first report of microbiota-dependent immunostimulation in Salmonids.
Collapse
|
17
|
Pulpipat T, Maekawa S, Wang PC, Chen SC. Immune Responses and Protective Efficacy of a Formalin-Killed Francisella Noatunensis Subsp. Orientalis Vaccine Evaluated through Intraperitoneal and Immersion Challenge Methods in Oreochromis Niloticus. Vaccines (Basel) 2020; 8:vaccines8020163. [PMID: 32260212 PMCID: PMC7348880 DOI: 10.3390/vaccines8020163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Francisella noatunensis subsp. orientalis (Fno), an intracellular bacterium, causes systemic granulomatous diseases, resulting in high mortality and huge economic losses in Taiwanese tilapia farming. In this study, we tested the efficacy of a formalin-killed Fno vaccine in cultured tilapia. Fno was isolated from diseased tilapia, inactivated with formalin, and mixed with the mineral oil base adjuvant (MontanideTM ISA 763 AVG). A total of 300 tilapia were divided into two groups. The experimental group was intraperitoneally injected with 0.1 mL of vaccine, which was substituted with phosphate-buffered saline (PBS) in the control group. A booster was administered at 2 weeks post-immunization. Tilapia were challenged at 6 weeks post primary immunization by intraperitoneal (IP) injection and immersion methods. Mortality was recorded at 21 and 60 days. The results revealed that the vaccine induced a greater antibody titer and led to 71% and 76% of relative percent survival (RPS) after the IP and immersion challenge. The transcripts of proinflammatory cytokines and immune-related genes, including interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα), C-X-C motif chemokine ligand 8 (CXCL8), and interleukin-17C (IL-17C), were significantly upregulated after vaccination. Additionally, vaccinated fish had lower bacterial loads in the blood and lower granuloma intensities in the kidney, spleen, liver, and gill than control fish. The results in this study demonstrate that the inactivated Fno vaccine could be an essential resource in Taiwanese tilapia farming.
Collapse
Affiliation(s)
- Theeraporn Pulpipat
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
| | - Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (T.P.); (S.M.); (P.-C.W.)
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-770-3202 (ext. 5076 or 5095)
| |
Collapse
|
18
|
Boutier M, Gao Y, Donohoe O, Vanderplasschen A. Current knowledge and future prospects of vaccines against cyprinid herpesvirus 3 (CyHV-3). FISH & SHELLFISH IMMUNOLOGY 2019; 93:531-541. [PMID: 31369858 DOI: 10.1016/j.fsi.2019.07.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Aquaculture is one of the world's most important and fastest growing food production sectors, with an average annual growth of 5.8% during the period 2001-2016. Common carp (Cyprinus carpio) is one of the main aquatic species produced for human consumption and is the world's third most produced finfish. Koi carp, on the other hand, are grown as a popular ornamental fish. In the late 1990s, both of these sectors were threatened by the emergence of a deadly disease caused by cyprinid herpesvirus 3 (CyHV-3; initially called koi herpesvirus or KHV). Since then, several research groups have focused their work on developing methods to fight this disease. Despite increasing knowledge about the pathobiology of this virus, there are currently no efficient and cost-effective therapeutic methods available to fight this disease. Facing the lack of efficient treatments, safe and efficacious prophylactic methods such as the use of vaccines represent the most promising approach to the control of this virus. The common carp production sector is not a heavily industrialized production sector and the fish produced have low individual value. Therefore, development of vaccine methods adapted to mass vaccination are more suitable. Multiple vaccine candidates against CyHV-3 have been developed and studied, including DNA, bacterial vector, inactivated, conventional attenuated and recombinant attenuated vaccines. However, there is currently only one vaccine commercially available in limited regions. The present review aims to summarize and evaluate the knowledge acquired from the study of these vaccines against CyHV-3 and provide discussion on future prospects.
Collapse
Affiliation(s)
- Maxime Boutier
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Owen Donohoe
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; Bioscience Research Institute, Athlone Institute of Technology, Athlone, Co Westmeath, Ireland
| | - Alain Vanderplasschen
- Department of Parasitic and Infectious Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
19
|
Alkie TN, de Jong J, Jenik K, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep 2019; 9:13619. [PMID: 31541160 PMCID: PMC6754369 DOI: 10.1038/s41598-019-49931-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jondavid de Jong
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.,Glysantis Inc., Guelph, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
20
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
21
|
Galindo-Villegas J, García-Alcazar A, Meseguer J, Mulero V. Aluminum adjuvant potentiates gilthead seabream immune responses but induces toxicity in splenic melanomacrophage centers. FISH & SHELLFISH IMMUNOLOGY 2019; 85:31-43. [PMID: 29510253 DOI: 10.1016/j.fsi.2018.02.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
A key goal of a successful vaccine formulation is the strong induction of persistent protective immune responses without producing side-effects. Adjuvants have been proved to be successful in several species at inducing increased immune responses against poorly immunogenic antigens. Fish are not the exception and promising results of adjuvanted vaccine formulations in many species are needed. In this study, over a period of 300 days, we characterized the apparent damage and immune response in gilthead seabream immunized by intraperitoneal injection with the model antigen keyhole limpet hemocyanin (KLH) alone or formulated with Montanide ISA water-in-oil (761 or 763), or Imject™ aluminum hydroxide (aluminium), as adjuvants. Throughout the trial, external tissue damage was examined visually, but no change was observed. Internally, severe adhesions, increased fat tissue, and hepatomegaly were recorded, but, without impairing animal health. At 120 days post priming (dpp), histopathological evaluations of head-kidney, spleen and liver revealed the presence of altered melanomacrophage centers (MMC) in HK and spleen, but not in liver. Surprisingly, in all aluminium treated fish, classical stains unmasked a toxic effect on splenic-MMC, unequivocally characterized by a strong cell depletion. Furthermore, at 170 dpp transmission electron microscopy confirmed this data. Paradoxically, at the same time powerful immune responses were recorded in most vaccinated groups, including the aluminium treatment. Whatever the case, despite the observed adhesions and MMC depletion, fish physiology was not affected, and most side-effects were resolved after 300 dpp. Therefore, our data support adjuvant inclusion, but strongly suggest that use of aluminium must be further explored in detail before it might benefit the rational design of new vaccination strategies in aquaculture.
Collapse
Affiliation(s)
- Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100 Murcia, Spain.
| | | | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
22
|
Sanchez M, Sepahi A, Casadei E, Salinas I. Symbiont-derived sphingolipids regulate inflammatory responses in rainbow trout ( Oncorhynchus mykiss). AQUACULTURE (AMSTERDAM, NETHERLANDS) 2018; 495:932-939. [PMID: 30666068 PMCID: PMC6338430 DOI: 10.1016/j.aquaculture.2018.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Farmed fish live in association with diverse bacterial communities that produce wide arrays of metabolites. In rainbow trout, the skin and the gills are colonized by Flectobacillus major, a bacterium known to produce sphingolipids (SLs). The goal of this study is to evaluate the ability of F. major SLs to regulate rainbow trout inflammatory responses. F. major SLs were delivered by themselves or in combination with Freund's Complete Adjuvant (FCA), an oil-based adjuvant known to cause severe abdominal inflammation when injected to fish. Trout injected with SL + FCA showed decreased severity of FCA toxic effects including necrosis, granuloma formation and presence of oil droplets. However, inclusion of SLs in the FCA preparation did not decrease infiltration of immune cells intramuscularly at the site of injection. Intraperitoneal or intravenous delivery of F. major SLs resulted in increased expression of IgT, IgM and TGFβ transcripts in the gills but not the head-kidney and had no effects on IL-10 expression. These results indicate the F. major SLs regulate rainbow trout inflammatory responses and indicate that this compound can have important applications in farmed fish health management.
Collapse
Affiliation(s)
- Mariah Sanchez
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Ali Sepahi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
23
|
Yadav SK, Dash P, Sahoo PK, Garg LC, Dixit A. Modulation of immune response and protective efficacy of recombinant outer-membrane protein F (rOmpF) of Aeromonas hydrophila in Labeo rohita. FISH & SHELLFISH IMMUNOLOGY 2018; 80:563-572. [PMID: 29958980 DOI: 10.1016/j.fsi.2018.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The outer-membrane proteins (OMPs) of Aeromonas hydrophila, an imperative fish pathogen accountable for massive economic losses to aquaculture industry, are found to be immunogenic and considered as potential vaccine candidates. In spite of development in the formulation of vaccine candidates against Aeromonas infection, no commercial preparation has been done so far; in addition, the molecular mechanisms of immunoprotection induced by various vaccine formulations in Indian major carp, Labeo rohita, are little known. The present study was undertaken to evaluate the modulation of immunity and expression of immune-related genes post-rOmpF (recombinant outer-membrane protein of A. hydrophila, a novel vaccine candidate) immunization and protective efficacy after A. hydrophila challenge. The rOmpF-immunized fish showed a variable expression of the immune-related genes, viz. toll-like receptor 22 (TLR), complement component 3 (C3), chemokine (CXCa), tumor necrosis factor-α (TNFα), interleukin 1β (IL-1β), manganese superoxide dismutase (MnSOD) and natural killer enhancing factor (NKEF) in the head kidney tissues, when compared to the control group at different time intervals post-vaccination. A significant increase in serum hemolysin titer, ceruloplasmin level and myeloperoxidase activity was observed on day 140 post immunization. Also, bacterial agglutination titer and antiprotease activity were significantly increased on day 42 post immunization. No significant change was observed in lysozyme activity. Challenge studies with live A. hydrophila on day 140 post-immunization of L. rohita significantly increased the relative percentage survival (∼44%) in the vaccinated group. The results suggest that the rOmpF could be used as a potential vaccine candidate to combat A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Sunita Kumari Yadav
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pujarini Dash
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Pradhan PK, Sood N, Yadav MK, Arya P, Chaudhary DK, Kumar U, Kumar CB, Swaminathan TR, Rathore G. Effect of immunization of rohu Labeo rohita with inactivated germinated zoospores in providing protection against Aphanomyces invadans. FISH & SHELLFISH IMMUNOLOGY 2018; 78:195-201. [PMID: 29684607 DOI: 10.1016/j.fsi.2018.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Infection with Aphanomyces invadans is one of the most destructive diseases of freshwater fishes. Indian major carps, the dominant cultured species in the Indian sub-continent are highly susceptible to this disease. Till date, there is no effective treatment for control of this disease and immunization can be one of the strategies to reduce disease-related losses. In the present study, inactivated germinated zoospores of A. invadans were evaluated as antigen in conjunction with and without adjuvant Montanide™ ISA 763 A VG, for assessing their efficacy in rendering protection against A. invadans infection. For the experiment, rohu Labeo rohita, (n = 160, 74 ± 12 g) were divided into 4 groups (C, A, G and GA) with 40 fish in each group. The fish in groups i.e., C, A, G and GA were injected intraperitoneally with PBS, adjuvant emulsified with PBS, inactivated germinated zoospores, and inactivated germinated zoospores emulsified with adjuvant, respectively. After 21 days of immunization, the fish were given a booster dose as above. After 7 days of the booster dose, the fish were challenged with zoospores of A. invadans to determine the relative percent survival (RPS). The results revealed that all the fish in C, A and G group succumbed to infection (0% RPS), although there was delayed mortality in fish from A and G groups in comparison to the C group. However, the fish in GA group showed significantly higher (P < 0.05) protection (66.7% RPS). In addition, following booster immunization (before challenge), the antibody level in the GA group was significantly higher (P < 0.05) than the control group. In western blotting, sera from G and GA groups showed reactivity with peptides of about 54 KDa. Following challenge (on 14th day), the antibody level as well as total antiprotease activity in fish of all the groups was significantly decreased in comparison to pre-challenge, except fish in GA group not exhibiting any gross lesions. In addition, sera of surviving fish of GA group showed significant inhibition of germination of zoospores and germlings growth in comparison to other groups (P < 0.05). Further, histopathological examination of the muscle tissue revealed that, in fish of GA group without any gross lesions, there were well developed granulomas and extensive mononuclear cell infiltration restricted to the site of injection, whereas in other groups, there was extensive myonecrosis with proliferating hyphae. These preliminary findings indicate that inactivated germinated zoospores of A. invadans in combination with adjuvant could stimulate good immune response and confer remarkable protection in rohu.
Collapse
Affiliation(s)
- Pravata K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| | - Manoj K Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Pooja Arya
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Dharmendra K Chaudhary
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Uday Kumar
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - T R Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-NBFGR, CMFRI Campus, Kochi, 682 018, Kerala, India
| | - Gaurav Rathore
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
25
|
Angulo C, Alamillo E, Hirono I, Kondo H, Jirapongpairoj W, Perez-Urbiola JC, Reyes-Becerril M. Class B CpG-ODN2006 is highly associated with IgM and antimicrobial peptide gene expression through TLR9 pathway in yellowtail Seriola lalandi. FISH & SHELLFISH IMMUNOLOGY 2018; 77:71-82. [PMID: 29567135 DOI: 10.1016/j.fsi.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to characterize the TLR9 gene from yellowtail (Seriola lalandi) and evaluate its functional activity using the class B Cytosine-phosphate-guanine-oligodeoxynucleotide2006 (CpG-ODN2006) in an in vivo experiment after one-week immunostimulation. The gene expressions of TLR9, Immunoglobulin M (IgM), antimicrobial peptides and cytokines were evaluated by real time PCR, and humoral immune parameters were analyzed in serum. The TLR9 nucleotide sequence from yellowtail was obtained using the whole-genome shotgun sequencing method and bioinformatics tools. The yellowtail full-length cDNA sequence of SlTLR9 was 3789 bp in length, including a 66-bp 5'-untranslated region (UTR), a 3'-UTR of 528 bp, and an open reading frame (ORF) of 3192 bp translatable to 1064 amino acid showing a high degree of similarity with the counterparts of other fish species and sharing common structural architecture of the TLR family, including LRR domains, one C-terminal LRR region, and a TIR domain. Gene expression studies revealed the constitutive expression of TLR9 mRNA in all analyzed tissues; the highest levels were observed in intestine, liver and spleen where they play an important role in the fish immune system. The expression levels of TLR9 after B class CpG-ODN2006 (the main TLR9-agonist) was significantly up-regulated in all analyzed tissues, with the high expression observed in spleen followed by intestine and skin. The CpG-B has been shown as a potent B cell mitogen, and interestingly, IgM mRNA transcript was up-regulated in spleen and intestine, which was highly correlated with TLR9 after CpG-ODN2006 stimulation. The antimicrobial peptides, piscidin and NK-lysine, were up-regulated in spleen and gill after CpG-ODN2006 injection with a high correlation (r ≥ 0.82) with TLR9 gene expression. Cytokine genes were up-regulated in spleen, intestine and skin after CpG-ODN was compared with the control group. No significant correlation was observed between TLR9 and IL-1β, TNF-α and Mx gene expressions. The results showed that CpG-ODN2006 intraperitoneal injection enhanced lysozyme, peroxidase and superoxide dismutase activities in serum and demonstrated that CpG-ODN2006 can induce a specific immune response via TLR9 in which IgM and antimicrobial peptides must have an important role in the defense mechanisms against infections in yellowtail.
Collapse
Affiliation(s)
- Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Erika Alamillo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Juan Carlos Perez-Urbiola
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Martha Reyes-Becerril
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
26
|
Jenberie S, Thim HL, Sunyer JO, Skjødt K, Jensen I, Jørgensen JB. Profiling Atlantic salmon B cell populations: CpG-mediated TLR-ligation enhances IgM secretion and modulates immune gene expression. Sci Rep 2018; 8:3565. [PMID: 29476080 PMCID: PMC5824956 DOI: 10.1038/s41598-018-21895-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
While TLR-activated pathways are key regulators of B cell responses in mammals, their impact on teleost B cells are scarcely addressed. Here, the potential of Atlantic salmon B cells to respond to TLR ligands was shown by demonstrating a constitutive expression of nucleic-acid sensing TLRs in magnetic sorted IgM+ cells. Of the two receptors recognizing CpG in teleosts, tlr9 was the dominating receptor with over ten-fold higher expression than tlr21. Upon CpG-stimulation, IgM secretion increased for head kidney (HK) and splenic IgM+ cells, while blood B cells were marginally affected. The results suggest that CpG directly affects salmon B cells to differentiate into antibody secreting cells (ASCs). IgM secretion was also detected in the non-treated controls, again with the highest levels in the HK derived population, signifying that persisting ASCs are present in this tissue. In all tissues, the IgM+ cells expressed high MHCII levels, suggesting antigen-presenting functions. Upon CpG-treatment the co-stimulatory molecules cd83 and cd40 were upregulated, while cd86 was down-regulated under the same conditions. Finally, ifna1 was upregulated upon CpG-stimulation in all tissues, while a restricted upregulation was evident for ifnb, proposing that salmon IgM+ B cells exhibit a type I IFN-response.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanna L Thim
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - J Oriol Sunyer
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Karsten Skjødt
- Department of Immunology and Microbiology, Institute of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
27
|
Nguyen HT, Nguyen TTT, Wang YT, Wang PC, Chen SC. Effectiveness of formalin-killed vaccines containing CpG oligodeoxynucleotide 1668 adjuvants against Vibrio harveyi in orange-spotted grouper. FISH & SHELLFISH IMMUNOLOGY 2017; 68:124-131. [PMID: 28698120 DOI: 10.1016/j.fsi.2017.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Vibrio harveyi is a major bacterial pathogen that causes serious vibriosis in cultured groupers, leading to massive deaths. In this study, we evaluated the immune responses and protective efficacy of vaccines containing V. harveyi formalin-killed cells (FKC) formulated with CpG ODN 1668-enriched plasmids (p30CpG and p60CpG) in the orange-spotted grouper. Results indicated that antibody titres were remarkably increased in vaccinated fish 2 weeks post-immunisation. Expression level of major histocompatibility complex (MHC) class II, CD 8, and toll-like receptor 9 was significantly upregulated in the spleen of fish immunised with CpG ODN 1668-adjuvanted vaccines, as recorded at 6 weeks after immunisation. Additionally, the FKC + p60CpG-vaccinated fish displayed greater mRNA levels of MHC I and tumor necrosis factor-alpha. Of note, the relative percent survival after V. harveyi challenge was significantly higher in FKC + p60CpG-vaccinated fish (96.2%) than in FKC + p30CpG-vaccinated (79.8%) and FKC-vaccinated fish (59.9%). These results demonstrate that the FKC + CpG ODN 1668 vaccines are promising candidates that could enhance both innate and adaptive immune responses, conferred remarkable protection, and CpG ODN 1668 is a potential adjuvant for vaccines against V. harveyi.
Collapse
Affiliation(s)
- Hai Trong Nguyen
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Yi-Ting Wang
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Pei-Chyi Wang
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; International Degree Program of Ornamental Fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
28
|
Veenstra KA, Wang T, Alnabulsi A, Douglas A, Russell KS, Tubbs L, Arous JB, Secombes CJ. Analysis of adipose tissue immune gene expression after vaccination of rainbow trout with adjuvanted bacterins reveals an association with side effects. Mol Immunol 2017. [DOI: 10.1016/j.molimm.2017.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Matsumoto M, Araki K, Hayashi K, Takeuchi Y, Shiozaki K, Suetake H, Yamamoto A. Adjuvant effect of recombinant interleukin-12 in the Nocardiosis formalin-killed vaccine of the amberjack Seriola dumerili. FISH & SHELLFISH IMMUNOLOGY 2017; 67:263-269. [PMID: 28602739 DOI: 10.1016/j.fsi.2017.06.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/13/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Nocardiosis causes serious economic damage in the fish farming of Japanese yellowtail fish. Nocardia seriolae identified as pathogenic bacterium is an intracellular-pathogen. In general, induction of cell-mediated immunity (CMI) is effective in infection defense against intracellular-pathogen. However, the conventional formalin-killed N. seriolae (FKC) vaccine induces humoral immunity. Interleukin-12 (IL-12) is Th1 type heterodimeric cytokine and induces cell differentiation in mammals. Our previous study showed that recombinant amberjack IL-12 has a role in CMI induction in vitro and could be a possible CMI inducing adjuvant. However, its adjuvant effect of fish IL-12 was not studied. In the present study, six types of amberjack recombinant IL-12 (rIL-12) were mixed and injected into amberjack with FKC. Firstly, we analyzed Th1- and Th2- related gene expression and monitored Th1/Th2 status followed by investigation of antibody titer. As a result, Th1-type immunity was induced in FKC + rIL-12 vaccinated fish. Secondly, we checked Th1/Th2 status of vaccinated fish after 10 days of N. seriolae infection using the expression of related genes. High T-bet/GATA-3 ratio was observed in FKC + rIL-12 vaccinated fish, suggesting that Th1 cells possesing antigen memory were induced against N. seriolae infection. Finally, the survival rate in challenge test showed that 88% of FKC + rIL-12 vaccinated fish was survived at 34 days after N. seriolae injection whereas PBS (control) and FKC only were exterminated. These result suggest that i) rIL-12 is viable CMI inducible adjuvant and ii) production of Th1 cells having antigen memory resulting from activation of IL-12 signaling pathway is important for defense against N. seriolae infection.
Collapse
Affiliation(s)
- Megumi Matsumoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan
| | - Kyosuke Araki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuma Hayashi
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Yutaka Takeuchi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Hiroaki Suetake
- Department of Marine Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-8580, Japan; Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan.
| |
Collapse
|
30
|
Nguyen HT, Thu Nguyen TT, Tsai MA, Ya-Zhen E, Wang PC, Chen SC. A formalin-inactivated vaccine provides good protection against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2017; 65:118-126. [PMID: 28419854 DOI: 10.1016/j.fsi.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Vibrio harveyi is one of the most common threats to farmed grouper, so considerable efforts are in practice to control the pathogen. This study presents a highly effective vaccine against V. harveyi in the orange-spotted grouper with the help of a single intraperitoneal immunization. The vaccine candidate was in form of whole, formalin-inactivated V. harveyi cells combined with a metabolizable ISA763 AVG adjuvant. Our results indicated that the vaccine triggered a remarkably higher expression level of interleukin (IL)-1β, IL-6, IL-8, and IL-10 in the groupers' kidneys and spleens, as recorded after 1 and 3 days of immunization. Antibody titers were significantly elevated in the vaccinated fish. A pivotal observation was that the vaccine highly protected the grouper from a homologous V. harveyi strain challenge with relative percentage survival values of 100% and 91.7% at 6 and 12 weeks post-immunization, respectively. Vaccinated fish also demonstrated strong cross-protection against a heterologous bacterial isolate challenge. Therefore, the inactivated V. harveyi vaccine is a promising candidate that could stimulate good immune responses and confer remarkable protection in farmed groupers.
Collapse
Affiliation(s)
- Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - E Ya-Zhen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Pei-Chyi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan; International Degree Program of Ornamental fish Science and Technology, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| |
Collapse
|
31
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Reyes-Becerril M, Ascencio-Valle F, Hirono I, Kondo H, Jirapongpairoj W, Esteban MA, Alamillo E, Angulo C. TLR21's agonists in combination with Aeromonas antigens synergistically up-regulate functional TLR21 and cytokine gene expression in yellowtail leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:107-115. [PMID: 26987525 DOI: 10.1016/j.dci.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to characterize the TLR21 gene from yellowtail (Seriola lalandi) and its functional activity using TLR agonist stimulation and Aeromonas antigens. The TLR21 nucleotide sequence from yellowtail was obtained using the whole-genome shotgun sequencing method and bioinformatics tools. Basal TLR21 gene expression was analyzed in several tissues. Subsequently, the gene expression of TLR21 and cytokines IL-1β and TNF-α was evaluated in TLR agonist (CpG-ODN2006, LPS, and Poly I:C) exposing head kidney leucocytes, which were then subjected to Aeromonas antigen stimulation. The yellowtail full-length cDNA sequence of SlTLR21 was 3615 bp (980 aa) showing a high degree of similarity with the counterparts of other fish species and sharing the common structural architecture of the TLR family, including LRR domains, one C-terminal LRR region, and a TIR domain. Gene expression studies revealed the constitutive expression of TLR21 mRNA in all the analyzed tissues; the highest levels were observed in spleen and head kidney where they play an important role in the fish immune system. Transcripts of TLR21 and the downstream IL-1β and TNF-α cytokine genes were most strongly up-regulated after exposure to the TLR agonists following Aeromonas antigen stimulation, suggesting they are involved in immune response. The results indicated that TLR agonists, in combination with Aeromonas antigens in head kidney leucocytes, synergistically enhance TLR21 and cytokines in yellowtail.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Felipe Ascencio-Valle
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Erika Alamillo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
33
|
Taksdal T, Jensen BB, Böckerman I, McLoughlin MF, Hjortaas MJ, Ramstad A, Sindre H. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. JOURNAL OF FISH DISEASES 2015; 38:1047-61. [PMID: 25322679 DOI: 10.1111/jfd.12312] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) has a significant negative economic impact in the salmonid fish farming industry in northern Europe. Until recently, only SAV subtype 3 was present in Norwegian fish farms. However, in 2011, a marine SAV 2 subtype was detected in a fish farm outside the PD-endemic zone. This subtype has spread rapidly among fish farms in mid-Norway. The PD mortality in several farms has been lower than expected, although high mortality has also been reported. In this situation, the industry and the authorities needed scientific-based information about the virulence of the marine SAV 2 strain in Norway to decide how to handle this new situation. Atlantic salmon post-smolts were experimentally infected with SAV 2 and SAV 3 strains from six different PD cases in Norway. SAV 3-infected fish showed higher mortality than SAV 2-infected fish. Among the SAV 3 isolates, two isolates gave higher mortality than the third one. At the end of the experiment, fish in all SAV-infected groups had significantly lower weight than the uninfected control fish. This is the first published paper on PD to document that waterborne infection produced significantly higher mortality than intraperitoneal injection.
Collapse
Affiliation(s)
- T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - I Böckerman
- Norwegian Veterinary Institute, Oslo, Norway
| | | | | | | | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
34
|
Kavaliauskis A, Arnemo M, Kim SH, Ulanova L, Speth M, Novoa B, Dios S, Evensen Ø, Griffiths GW, Gjøen T. Use of Poly(I:C) Stabilized with Chitosan As a Vaccine-Adjuvant Against Viral Hemorrhagic Septicemia Virus Infection in Zebrafish. Zebrafish 2015; 12:421-31. [PMID: 26509227 DOI: 10.1089/zeb.2015.1126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an urgent need for more efficient viral vaccines in finfish aquaculture worldwide. Here, we report the use of poly(I:C) stabilized with chitosan as an adjuvant for development of better finfish vaccines. The adjuvant was co-injected with inactivated viral hemorrhagic septicemia virus (VHSV) (CSpIC+iV vaccine) in adult zebrafish and its efficiency in protection against VHSV infection was compared to a live, attenuated VHS virus vaccine (aV). Both free and stabilized poly(I:C) were strong inducers of an antiviral state, measured by transcriptional activation of the genes of viral sensors: toll-like receptors, interferons, and interferon-stimulated genes, such as MXa within 48 h after injection. Both the CSpIC+iV and the aV formulations provided a significant protection against VHSV-induced mortality. However, when plasma from survivors was tested for neutralizing antibodies in an in vitro protection assay, we could not demonstrate any protective effect. On the contrary, plasma from aV vaccinated fish enhanced cytopathic effects, indicating that antibody-dependent entry may play a role in this system. Our results show that poly(I:C) is a promising candidate as an adjuvant for fish vaccination against viral pathogens, and that the zebrafish is a promising model for aquaculture-relevant vaccination studies.
Collapse
Affiliation(s)
- Arturas Kavaliauskis
- 1 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Marianne Arnemo
- 1 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo, Norway
| | - Sung-Hyun Kim
- 2 Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo, Norway
| | - Lilia Ulanova
- 3 Department of Biosciences, University of Oslo , Oslo, Norway
| | - Martin Speth
- 3 Department of Biosciences, University of Oslo , Oslo, Norway
| | | | - Sonia Dios
- 4 Institute of Marine Research, CSIC , Vigo, Spain
| | - Øystein Evensen
- 2 Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo, Norway
| | | | - Tor Gjøen
- 1 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo , Oslo, Norway
| |
Collapse
|
35
|
Martinez-Lopez A, Garcia-Valtanen P, Ortega-Villaizan M, Chico V, Gomez-Casado E, Coll JM, Estepa A. VHSV G glycoprotein major determinants implicated in triggering the host type I IFN antiviral response as DNA vaccine molecular adjuvants. Vaccine 2014; 32:6012-9. [PMID: 25203447 DOI: 10.1016/j.vaccine.2014.07.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
Abstract
We have recently identified the two major determinants of the glycoprotein G of the viral hemorrhagic septicaemia rhabdovirus (gpGVHSV), peptides p31 and p33 implicated in triggering the host type I IFN antiviral response associated to these rhabdoviral antigens. With the aim to investigate the properties of these viral glycoprotein regions as DNA molecular adjuvants, their corresponding cDNA sequences were cloned into a plasmid (pMCV1.4) flanked by the signal peptide and transmembrane sequences of gpGVHSV. In addition, a plasmid construct encoding both sequences p31 and p33 (pMCV1.4-p31+p33) was also designed. In vitro transitory cell transfection assays showed that these VHSV gpG regions were able to induce the expression of type I IFN stimulated genes as well as to confer resistance to the infection with a different fish rhabdovirus, the spring viremia of carp virus (SVCV). In vivo, zebrafish intramuscular injection of only 1μg of the construct pMCV1.4-p31+p33 conferred fish protection against SVCV lethal challenge up to 45 days post-immunization. Moreover, pMCV1.4-p31+p33 construct was assayed for molecular adjuvantcity's for a DNA vaccine against SVCV based in the surface antigen of this virus (pAE6-GSVCV). The results showed that the co-injection of the SVCV DNA vaccine and the molecular adjuvant allowed (i) a ten-fold reduction in the dose of pAE6-Gsvcv without compromising its efficacy (ii) an increase in the duration of protection, and (iii) an increase in the survival rate. To our knowledge, this is the first report in which specific IFN-inducing regions from a viral gpG are used to design more-efficient and cost-effective viral vaccines, as well as to improve our knowledge on how to stimulate the innate immune system.
Collapse
Affiliation(s)
| | | | | | - V Chico
- IBMC, Miguel Hernández University, 03202 Elche, Spain
| | | | - J M Coll
- INIA-SIGT - Biotecnología, 28040 Madrid, Spain
| | - A Estepa
- IBMC, Miguel Hernández University, 03202 Elche, Spain.
| |
Collapse
|