1
|
Cui Y, Zhu J, Li P, Guo F, Yang B, Su X, Zhou H, Zhu K, Xu F. Assessment of probiotic Bacillus velezensis supplementation to reduce Campylobacter jejuni colonization in chickens. Poult Sci 2024; 103:103897. [PMID: 38865770 PMCID: PMC11223109 DOI: 10.1016/j.psj.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter jejuni continues to be a major public health issue worldwide. Poultry are recognized as the main reservoir for this foodborne pathogen. Implementing measures to decrease C. jejuni colonization on farms has been regarded as the most effective strategy to control the incidence of campylobacteriosis. The probiotics supplementation has been regarded as an attractive approach against C. jejuni in chickens. Here the inhibitory effects of one probiotic B. velezensis isolate CAU277 against C. jejuni was evaluated in vitro and in vivo. The in vitro antimicrobial activity showed that the supernatant of B. velezensis exhibited the most pronounced inhibitory effects on Campylobacter strains compared to other bacterial species. When co-cultured with B. velezensis, the growth of C. jejuni reduced significantly from 7.46 log10 CFU/mL (24 h) to 1.02 log10 CFU/mL (48 h). Further, the antimicrobial activity of B. velezensis against C. jejuni remained stable under a broad range of temperature, pH, and protease treatments. The in vivo experiments demonstrated that oral administration of B. velezensis significantly reduced the colonization of C. jejuni by 2.0 log10 CFU/g of feces in chicken cecum at 15 d postinoculation. In addition, the supplementary of B. velezensis significantly increased microbial species richness and diversity in chicken ileum, especially enhanced the bacterial population of Alistipes and Christensenellaceae, and decreased the existence of Lachnoclostridium. Our study presents that B. velezensis possesses antimicrobial activities against C. jejuni and promotes microbiota diversity in chicken intestines. These findings indicate a potential to develop an effective probiotic additive to control C. jejuni infection in chicken.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Pengxiang Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Calland JK, Pesonen ME, Mehat J, Pascoe B, Haydon DJ, Lourenco J, Lukasiewicz B, Mourkas E, Hitchings MD, La Ragione RM, Hammond P, Wallis TS, Corander J, Sheppard SK. Genomic tailoring of autogenous poultry vaccines to reduce Campylobacter from farm to fork. NPJ Vaccines 2024; 9:105. [PMID: 38866805 PMCID: PMC11169640 DOI: 10.1038/s41541-024-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter is a leading cause of food-borne gastroenteritis worldwide, linked to the consumption of contaminated poultry meat. Targeting this pathogen at source, vaccines for poultry can provide short-term caecal reductions in Campylobacter numbers in the chicken intestine. However, this approach is unlikely to reduce Campylobacter in the food chain or human incidence. This is likely as vaccines typically target only a subset of the high genomic strain diversity circulating among chicken flocks, and rapid evolution diminishes vaccine efficacy over time. To address this, we used a genomic approach to develop a whole-cell autogenous vaccine targeting isolates harbouring genes linked to survival outside of the host. We hyper-immunised a whole major UK breeder farm to passively target offspring colonisation using maternally-derived antibody. Monitoring progeny, broiler flocks revealed a near-complete shift in the post-vaccination Campylobacter population with an ~50% reduction in isolates harbouring extra-intestinal survival genes and a significant reduction of Campylobacter cells surviving on the surface of meat. Based on these findings, we developed a logistic regression model that predicted that vaccine efficacy could be extended to target 65% of a population of clinically relevant strains. Immuno-manipulation of poultry microbiomes towards less harmful commensal isolates by competitive exclusion, has major potential for reducing pathogens in the food production chain.
Collapse
Affiliation(s)
- Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.
| | - Maiju E Pesonen
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Jai Mehat
- School of Biosciences, University of Surrey, Surrey, UK
| | - Ben Pascoe
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - David J Haydon
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| | - Jose Lourenco
- Faculty of Medicine, Biomedical Research Centre, Universidade Católica Portuguesa, Lisbon, Portugal
| | | | - Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | | | - Roberto M La Ragione
- School of Biosciences, University of Surrey, Surrey, UK
- School of Veterinary Medicine, University of Surrey, Surrey, UK
| | | | - Timothy S Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| | - Jukka Corander
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Gloanec N, Guyard-Nicodème M, Brunetti R, Quesne S, Keita A, Chemaly M, Dory D. Evaluation of Two Recombinant Protein-Based Vaccine Regimens against Campylobacter jejuni: Impact on Protection, Humoral Immune Responses and Gut Microbiota in Broilers. Animals (Basel) 2023; 13:3779. [PMID: 38136816 PMCID: PMC10741133 DOI: 10.3390/ani13243779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Campylobacter infections in humans are traced mainly to poultry products. While vaccinating poultry against Campylobacter could reduce the incidence of human infections, no vaccine is yet available on the market. In our previous study using a plasmid DNA prime/recombinant protein boost vaccine regimen, vaccine candidate YP437 induced partial protective immune responses against Campylobacter in broilers. In order to optimise vaccine efficacy, the vaccination protocol was modified using a protein prime/protein boost regimen with a different number of boosters. Broilers were given two or four intramuscular protein vaccinations (with the YP437 vaccine antigen) before an oral challenge by C. jejuni during a 42-day trial. The caecal Campylobacter load, specific systemic and mucosal antibody levels and caecal microbiota in the vaccinated groups were compared with their respective placebo groups and a challenge group (Campylobacter infection only). Specific humoral immune responses were induced, but no reduction in Campylobacter caecal load was observed in any of the groups (p > 0.05). Microbiota beta diversity analysis revealed that the bacterial composition of the groups was significantly different (p ≤ 0.001), but that vaccination did not alter the relative abundance of the main bacterial taxa residing in the caeca. The candidate vaccine was ineffective in inducing a humoral immune response and therefore did not provide protection against Campylobacter spp. infection in broilers. More studies are required to find new candidates.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
- Life Environmental Sciences Department, University of Rennes 1, 37500 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Raphaël Brunetti
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
| | - Ségolène Quesne
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Alassane Keita
- SELEAC—Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France;
| | - Marianne Chemaly
- HQPAP—Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (M.C.)
| | - Daniel Dory
- GVB—Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France; (N.G.); (R.B.); (D.D.)
| |
Collapse
|
4
|
Passari AK, Ruiz-Villafán B, Cruz-Bautista R, Díaz-Domínguez V, Rodríguez-Sanoja R, Sanchez S. Opportunities and challenges of microbial siderophores in the medical field. Appl Microbiol Biotechnol 2023; 107:6751-6759. [PMID: 37755507 PMCID: PMC10589192 DOI: 10.1007/s00253-023-12742-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Siderophores are low-molecular-weight secondary metabolites that function as iron chelators. Under iron-deficiency conditions, they are produced by a wide variety of microbes, allowing them to increase their iron uptake. The primary function of these compounds is the environmental iron scavenging and its transport into the cytosol. Iron is then reduced to its ferrous form to operate as an enzymatic cofactor for various functions, including respiration, nitrogen fixation, photosynthesis, methanogenesis, and amino acid synthesis. Depending on their functional group, siderophores are classified into hydroxamate, catecholate, phenolate, carboxylate, and mixed types. They have achieved great importance in recent years due to their medical applications as antimicrobial, antimalarial, or anticancer drugs, vaccines, and drug-delivery agents. This review integrates current advances in specific healthcare applications of microbial siderophores, delineating new opportunities and challenges as viable therapies to fight against diseases that represent crucial public health problems in the medical field.Key points• Siderophores are low-molecular-weight secondary metabolites functioning as iron chelators.• The siderophore's properties offer viable options to face diverse clinical problems.• Siderophores are alternatives for the enhancement of antibiotic activities.
Collapse
Affiliation(s)
- Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Valerie Díaz-Domínguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Zeng X, Vidlund J, Gillespie B, Cao L, Agga GE, Lin J, Dego OK. Evaluation of immunogenicity of enterobactin conjugate vaccine for the control of Escherichia coli mastitis in dairy cows. J Dairy Sci 2023; 106:7147-7163. [PMID: 37210351 DOI: 10.3168/jds.2022-23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/09/2023] [Indexed: 05/22/2023]
Abstract
Mastitis is the most common disease of dairy cows that incurs severe economic losses to the dairy industry. Currently, environmental mastitis pathogens are a major problem for most dairy farms. A current commercially available Escherichia coli vaccine does not prevent clinical mastitis and production losses, likely due to antibody accessibility and antigenic variation issues. Therefore, a novel vaccine that prevents clinical disease and production losses is critically needed. Recently a nutritional immunity approach, which restricts bacterial iron uptake by immunologically sequestering conserved iron-binding enterobactin (Ent), has been developed. The objective of this study was to evaluate the immunogenicity of the keyhole limpet hemocyanin-enterobactin (KLH-Ent) conjugate vaccine in dairy cows. Twelve pregnant Holstein dairy cows in their first through third lactations were randomized to the control or vaccine group, with 6 cows per group. The vaccine group received 3 subcutaneous vaccinations of KLH-Ent with adjuvants at drying off (D0), 20 (D21), and 40 (D42) days after drying off. The control group was injected with phosphate-buffered saline (pH 7.4) mixed with the same adjuvants at the same time points. Vaccination effects were assessed over the study period until the end of the first month of lactation. The KLH-Ent vaccine did not cause any systemic adverse reactions or reduction in milk production. Compared with the control group, the vaccine elicited significantly higher levels of serum Ent-specific IgG at calving (C0) and 30 d postcalving (C30), mainly its IgG2 fraction, which was significantly higher at D42, C0, C14, and C30 d, with no significant change in IgG1 levels. Milk Ent-specific IgG and IgG2 levels in the vaccine group were significantly higher on C30. Fecal microbial community structures were similar for both control and vaccine groups on the same day and shifted directionally along the sampling days. In conclusion, the KLH-Ent vaccine successfully triggered strong Ent-specific immune responses in dairy cows without significantly affecting the gut microbiota diversity and health. The results show that Ent conjugate vaccine is a promising nutritional immunity approach in control of E. coli mastitis in dairy cows.
Collapse
Affiliation(s)
- X Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - J Vidlund
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - B Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - L Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - G E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, Bowling Green, KY 42101
| | - J Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996
| | - O Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996.
| |
Collapse
|
6
|
Wang H, Logue CM, Nolan LK, Lin J. Assessment of an Enterobactin Conjugate Vaccine in Layers to Protect Their Offspring from Colibacillosis. Pathogens 2023; 12:1002. [PMID: 37623962 PMCID: PMC10458604 DOI: 10.3390/pathogens12081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is an important infectious disease in chickens and a major cause of mortality in young chicks. Therefore, protecting young chickens from colibacillosis is important for improving welfare and productivity in the poultry industry. Recently, we developed a novel enterobactin (Ent) conjugate vaccine that could induce high titers of anti-Ent immunoglobulin Y (IgY) in chicken serum and consequently mitigate the organ lesions caused by APEC infection. Considering that maternal immunization is a practical approach to confer instant immune protection to the hatchlings, in this study, we immunized breeder hens with the Ent conjugate vaccine and evaluated the maternal immune protection on the progenies challenged with APEC. Three doses of the vaccine induced high titers of anti-Ent IgY in the hens (about 16- and 64-fold higher than the control group in the sera and egg yolks, respectively), resulting in an eight-fold of increase in anti-Ent IgY in the sera of progenies. However, the anti-Ent maternal immunity did not display significant protection against APEC challenge in the young chicks as there was no significant difference in APEC load (in liver, lung, and spleen) or organ lesions (in heart, liver, spleen, lung, and air sac) between the vaccinated and control groups. In future studies, the APEC infection model needs to be optimized to exhibit proper pathogenicity of APEC, and the maternal immunization regimen can be further improved to boost the maternally derived anti-Ent IgY in the hatchlings.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, University of Tennessee, Knoxville, TN 37919, USA
| | - Catherine M. Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Lisa K. Nolan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jun Lin
- Department of Animal Science, University of Tennessee, Knoxville, TN 37919, USA
| |
Collapse
|
7
|
Gloanec N, Guyard-Nicodème M, Brunetti R, Quesne S, Keita A, Chemaly M, Dory D. Plasmid DNA Prime/Protein Boost Vaccination against Campylobacter jejuni in Broilers: Impact of Vaccine Candidates on Immune Responses and Gut Microbiota. Pharmaceutics 2023; 15:pharmaceutics15051397. [PMID: 37242639 DOI: 10.3390/pharmaceutics15051397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Campylobacter infections, traced to poultry products, are major bacterial foodborne zoonoses, and vaccination is a potential solution to reduce these infections. In a previous experimental trial using a plasmid DNA prime/recombinant protein boost vaccine regimen, two vaccine candidates (YP437 and YP9817) induced a partially protective immune response against Campylobacter in broilers, and an impact of the protein batch on vaccine efficacy was suspected. This new study was designed to evaluate different batches of the previously studied recombinant proteins (called YP437A, YP437P and YP9817P) and to enhance the immune responses and gut microbiota studies after a C. jejuni challenge. Throughout the 42-day trial in broilers, caecal Campylobacter load, specific antibodies in serum and bile, the relative expression of cytokines and β-defensins, and caecal microbiota were assessed. Despite there being no significant reduction in Campylobacter in the caecum of vaccinated groups, specific antibodies were detected in serum and bile, particularly for YP437A and YP9817P, whereas the production of cytokines and β-defensins was not significant. The immune responses differed according to the batch. A slight change in microbiota was demonstrated in response to vaccination against Campylobacter. The vaccine composition and/or regimen must be further optimised.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
- UFR of Life Sciences Environment, University of Rennes 1, 35700 Rennes, France
| | - Muriel Guyard-Nicodème
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Raphaël Brunetti
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Ségolène Quesne
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Alassane Keita
- SELEAC-Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Marianne Chemaly
- HQPAP-Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Daniel Dory
- GVB-Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| |
Collapse
|
8
|
Wang H, Zhong Q, Lin J. Egg Yolk Antibody for Passive Immunization: Status, Challenges, and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5053-5061. [PMID: 36960586 DOI: 10.1021/acs.jafc.2c09180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immunoglobulin Y (IgY) derived from hyperimmune egg yolk is a promising passive immune agent to combat microbial infections in humans and livestock. Numerous studies have been performed to develop specific egg yolk IgY for pathogen control, but with limited success. To date, the efficacy of commercial IgY products, which are all delivered through an oral route, has not been approved or endorsed by any regulatory authorities. Several challenging issues of the IgY-based passive immunization, which were not fully recognized and holistically discussed in previous publications, have impeded the development of effective egg yolk IgY products for humans and animals. This review summarizes major challenges of this technology, including in vivo stability, purification, heterologous immunogenicity, and repertoire diversity of egg yolk IgY. To tackle these challenges, potential solutions, such as encapsulation technologies to stabilize IgY, are discussed. Exploration of this technology to combat the COVID-19 pandemic is also updated in this review.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Li P, Cui Y, Guo F, Guo J, Cao X, Lin J, Ding B, Xu F. Campylobacter jejuni infection induces dynamic expression of avian host defense peptides in vitro and in vivo. Vet Microbiol 2023; 277:109631. [PMID: 36543091 DOI: 10.1016/j.vetmic.2022.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Campylobacter jejuni is considered as the leading cause of worldwide foodborne bacterial gastroenteritis. Chicken is the main reservoir of C. jejuni. Avian innate immune responses to C. jejuni remain poorly defined. Chicken host defense peptides (HDPs) are the major components of avian innate immune system. This study aimed to characterize the chicken HDPs responses to C. jejuni in vitro and in vivo. In the HD11 macrophage cell line, the HDPs, including AvBD1-2, CATH1-3, AvBD7, AvBD4, and AvBD6, were relatively higher expressed in untreated cells, whereas the expressions were suppressed after C. jejuni infection. In contrast, C. jejuni infection significantly increased the expression of the lower expressed HDPs, such as AvBD3, AvBD5, AvBD8-14, and CATHB1, in untreated cells. In the chicken challenge experiment, the immune tissues of spleens and cecal tonsils were collected from C. jejuni-infected and uninfected chickens at 1, 3 and 15 day post inoculation (DPI). In spleens of C. jejuni-infected chickens, only AvBD14 expression was elevated at 1 DPI. The majority of avian HDPs were significantly up-regulated at 3 DPI and dramatically decreased to the levels of uninfected controls at 15 DPI. In chicken cecal tonsils, only AvBD9 and AvBD14 were significantly up-regulated at 1 DPI with C. jejuni infection. Collectively, C. jejuni infection induced dynamic expression of chicken HDPs in both macrophage HD11 and immune tissues of chickens. Suppression of chicken HDPs expression may be an evasion strategy of C. jejuni for persistent colonization in chicken intestine by circumventing the chicken immune system.
Collapse
Affiliation(s)
- Pengxiang Li
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiahui Guo
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Baoan Ding
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China.
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
10
|
Wang H, Cao L, Logue CM, Barbieri NL, Nolan LK, Lin J. Evaluation of immunogenicity and efficacy of the enterobactin conjugate vaccine in protecting chickens from colibacillosis. Vaccine 2023; 41:930-937. [PMID: 36585279 DOI: 10.1016/j.vaccine.2022.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Colibacillosis is one of the most common and economically devastating infectious diseases in poultry production worldwide. Innovative universal vaccines are urgently needed to protect chickens from the infections caused by genetically diverse avian pathogenic Escherichia coli (APEC). Enterobactin (Ent) is a highly conserved siderophore required for E. coli iron acquisition and pathogenesis. The Ent-specific antibodies induced by a novel Ent conjugate vaccine significantly inhibited the in vitro growth of diverse APEC strains. In this study, White Leghorn chickens were immunized with the Ent conjugate vaccine using a crossed design with two variables, vaccination (with or without) and APEC challenge (O1, O78, or PBS control), resulting in six study groups (9 to 10 birds/group). The chickens were subcutaneously injected with the vaccine (100 μg per bird) at 7 days of age, followed by booster immunization at 21 days of age. The chickens were intratracheally challenged with an APEC strain (108 CFU/bird) or PBS at 28 days of age. At 5 days post infection, all chickens were euthanized to examine lesions and APEC colonization of the major organs. Immunization of chickens with the Ent vaccine elicited a strong immune response with a 64-fold increase in the level of Ent-specific IgY in serum. The hypervirulent strain O78 caused extensive lesions in lung, air sac, heart, liver, and spleen with significantly reduced lesion scores observed in the vaccinated chickens. Interestingly, the vaccination did not significantly reduce APEC levels in the examined organs. The APEC O1 with low virulence only caused sporadic lesions in the organs in both vaccination and control groups. The Ent conjugate vaccine altered the bacterial community of the ileum and cecum. Taken together, the findings from this study showed the Ent conjugate vaccine could trigger a strong specific immune response and was promising to confer protection against APEC infection.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Liu Cao
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Catherine M Logue
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Lisa K Nolan
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
11
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
12
|
Cui Y, Wang H, Guo F, Cao X, Wang X, Zeng X, Cui G, Lin J, Xu F. Monoclonal antibody-based indirect competitive ELISA for quantitative detection of Enterobacteriaceae siderophore enterobactin. Food Chem 2022; 391:133241. [PMID: 35598389 DOI: 10.1016/j.foodchem.2022.133241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/18/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
Abstract
Enterobactin (Ent) is a promising indicator to monitor intestinal level of Enterobacteriaceae for assessment of gut inflammation. In this study, we developed a monoclonal antibody (mAb)-based ELISA for Ent quantification. We immunized mice with an Ent conjugate vaccine. An mAb named 2E4, with the highest anti-Ent antibody titer, was selected for developing indirect competitive ELISA (ic-ELISA). The purified mAb 2E4 showed high affinity (3.1 × 10-10 M) and specificity to Ent. The limit of detection of ic-ELISA was 0.39 μg/mL. The intra- and inter-assay recovery rates of standard curve were up to 94.6% with the coefficients of variation between 4.0% and 12.3%, indicating high accuracy, repeatability, and reproducibility of the ic-ELISA. In addition, the ic-ELISA was able to quantitatively detect Ent produced in different bacterial cultures. Collectively, this study developed an ic-ELISA with excellent performance in Ent quantification, laying a solid foundation for Ent-based diagnostics of gut health.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xue Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Guolin Cui
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
13
|
Gloanec N, Dory D, Quesne S, Béven V, Poezevara T, Keita A, Chemaly M, Guyard-Nicodème M. Impact of DNA Prime/Protein Boost Vaccination against Campylobacter jejuni on Immune Responses and Gut Microbiota in Chickens. Vaccines (Basel) 2022; 10:vaccines10060981. [PMID: 35746589 PMCID: PMC9231206 DOI: 10.3390/vaccines10060981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/15/2023] Open
Abstract
Campylobacteriosis is reported to be the leading zoonosis in Europe, and poultry is the main reservoir of Campylobacter. Despite all the efforts made, there is still no efficient vaccine to fight this bacterium directly in poultry. Recent studies have reported interactions between the chicken immune system and gut microbiota in response to Campylobacter colonisation. The present study was designed to analyse in more depth the immune responses and caecal microbiota following vaccination with a DNA prime/protein boost flagellin-based vaccine that induces some protection in specific-pathogen-free White Leghorn chickens, as shown previously. These data may help to improve future vaccination protocols against Campylobacter in poultry. Here a vaccinated and a placebo group were challenged by C. jejuni at the age of 19 days. A partial reduction in Campylobacter loads was observed in the vaccinated group. This was accompanied by the production of specific systemic and mucosal antibodies. Transient relatively higher levels of Interleukin-10 and antimicrobial peptide avian β-defensin 10 gene expressions were observed in the vaccinated and placebo groups respectively. The analysis of caecal microbiota revealed the vaccination's impact on its structure and composition. Specifically, levels of operational taxonomic units classified as Ruminococcaceae and Bacillaceae increased on day 40.
Collapse
Affiliation(s)
- Noémie Gloanec
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
- UFR of Life Sciences Environment, University of Rennes 1, 35700 Rennes, France
| | - Daniel Dory
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
- Correspondence: ; Tel.: +33-(0)2-96-31-64-42
| | - Ségolène Quesne
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Véronique Béven
- GVB–Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (N.G.); (V.B.)
| | - Typhaine Poezevara
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Alassane Keita
- SELEAC–Avian Breeding and Experimental Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Marianne Chemaly
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| | - Muriel Guyard-Nicodème
- HQPAP–Unit of Hygiene and Quality of Poultry and Pork Products, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (T.P.); (M.C.); (M.G.-N.)
| |
Collapse
|
14
|
Li C, Chen X, Wen R, Ma P, Gu K, Li C, Zhou C, Lei C, Tang Y, Wang H. Immunocapture Magnetic Beads Enhanced the LAMP-CRISPR/Cas12a Method for the Sensitive, Specific, and Visual Detection of Campylobacter jejuni. BIOSENSORS 2022; 12:bios12030154. [PMID: 35323424 PMCID: PMC8946501 DOI: 10.3390/bios12030154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Campylobacter jejuni is one of the most important causes of food-borne infectious disease, and poses challenges to food safety and public health. Establishing a rapid, accurate, sensitive, and simple detection method for C. jejuni enables early diagnosis, early intervention, and prevention of pathogen transmission. In this study, an immunocapture magnetic bead (ICB)-enhanced loop-mediated isothermal amplification (LAMP) CRISPR/Cas12a method (ICB-LAMP-CRISPR/Cas12a) was developed for the rapid and visual detection of C. jejuni. Using the ICB-LAMP-CRISPR/Cas12a method, C. jejuni was first captured by ICB, and the bacterial genomic DNA was then released by heating and used in the LAMP reaction. After the LAMP reaction, LAMP products were mixed and detected by the CRISPR/Cas12a cleavage mixture. This ICB-LAMP-CRISPR/Cas12a method could detect a minimum of 8 CFU/mL of C. jejuni within 70 min. Additionally, the method was performed in a closed tube in addition to ICB capture, which eliminates the need to separate preamplification and transfer of amplified products to avoid aerosol pollution. The ICB-LAMP-CRISPR/Cas12a method was further validated by testing 31 C. jejuni-positive fecal samples from different layer farms. This method is an all-in-one, simple, rapid, ultrasensitive, ultraspecific, visual detection method for instrument-free diagnosis of C. jejuni, and has wide application potential in future work.
Collapse
Affiliation(s)
- Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.T.); (H.W.); Tel./Fax: +86-028-8547-1599 (Y.T. & H.W.)
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China; (C.L.); (X.C.); (R.W.); (P.M.); (K.G.); (C.L.); (C.Z.); (C.L.)
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.T.); (H.W.); Tel./Fax: +86-028-8547-1599 (Y.T. & H.W.)
| |
Collapse
|
15
|
Passive Immunization of Chickens with Anti-Enterobactin Egg Yolk Powder for Campylobacter Control. Vaccines (Basel) 2021; 9:vaccines9060569. [PMID: 34205835 PMCID: PMC8230082 DOI: 10.3390/vaccines9060569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Enterobactin (Ent) is a highly conserved and important siderophore for the growth of many Gram-negative bacterial pathogens. Therefore, targeting Ent for developing innovative intervention strategies has attracted substantial research interest in recent years. Recently, we developed a novel Ent conjugate vaccine that has been demonstrated to be effective for controlling Gram-negative pathogens using both in vitro and in vivosystems. In particular, active immunization of chickens with the Ent conjugate vaccine elicited strong immune responses and significantly reduced intestinal colonization of Campylobacter jejuni, the leading foodborne bacterial pathogen. Given that hyperimmune egg yolk immunoglobulin Y (IgY) has been increasingly recognized as a promising and practical non-antibiotic approach for passive immune protection against pathogens in livestock, in this study, we assessed the efficacy of oral administration of broiler chickens with the anti-Ent hyperimmune egg yolk powder to control C. jejuni colonization in the intestine. However, supplementation of feed with 2% (w/w) of anti-Ent egg yolk powder failed to reduce C. jejuni colonization when compared to the control group. Consistent with this finding, the ELISA titers of the specific IgY in cecum, ileum, duodenum, gizzard, and serum contents were similar between the two groups throughout the trial. Chicken intestinal microbiota also did not change in response to the egg yolk powder treatment. Subsequently, to examine ex vivo stability of the egg yolk IgY, the chicken gizzard and duodenum contents from two independent sources were spiked with the egg yolk antibodies, incubated at 42 °C for different lengths of time, and subjected to ELISA analysis. The specific IgY titers were dramatically decreased in gizzard contents (up to 2048-fold) but were not changed in duodenum contents. Collectively, oral administration of broiler chickens with the anti-Ent egg yolk powder failed to confer protection against intestinal colonization of C. jejuni, which was due to instability of the IgY in gizzard contents as demonstrated by both in vivo and ex vivo evidence.
Collapse
|