1
|
Kumari P, Kumar S, Raman RP, Brahmchari RK. Nanotechnology: An avenue for combating fish parasites in aquaculture system. Vet Parasitol 2024; 332:110334. [PMID: 39514929 DOI: 10.1016/j.vetpar.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The intensification of aquaculture in recent years has led to the rise of infectious fish diseases caused by bacteria, viruses, and parasites. Parasitic diseases, in particular, are widespread and have significant economic impacts globally. Protozoan parasites like Ichthyophthirius multifiliis and Trichodina sp., myxozoans (cnidarians), monogeneans like Dactylogyrus sp. and Gyrodactylus sp., and crustacean parasites like Argulus sp. and Lernaea cyprinacea primarily cause these diseases. Despite advancements and new technologies aimed at understanding and treating these diseases, parasites remain a major health challenge in aquaculture. Traditional antiparasitic agents face limitations, including drug resistance and negative effects on non-target organisms. Recently, nanotechnology has emerged as a novel approach in aquaculture medicine, enabling the development of effective nanoparticles against pathogenic microbes. Silver nanoparticles (AgNPs) are particularly notable for their strong antimicrobial and antiparasitic properties due to their broad mechanisms of action. Although Argulus is a highly destructive crustacean parasite that financially burdens fish farmers, applying nanoparticles to manage this infection in aquaculture is still underexplored. Therefore, this review explores recent efforts to combat parasitic diseases with AgNPs and investigates their potential parasiticidal mechanisms of action, proposing them as a novel tool that could improve the management and control of argulosis diseases. The article underscores the benefits and challenges of this technology, emphasizing its significance in fostering improved health management for sustainable aquaculture.
Collapse
Affiliation(s)
- Pushpa Kumari
- Department of Aquatic Animal Health Management, College of Fisheries, Kishanganj, Bihar, India.
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ram P Raman
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Rajive K Brahmchari
- Department of Fisheries Resource Management, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Dholi, Muzaffarpur, Bihar, India
| |
Collapse
|
2
|
Kim MJ, Kim JY, Shin DW, Eom MO. Application potential of albendazole as an aquatic animal drug based on its safety, efficacy, and residue profiles. Toxicol Res 2024; 40:519-531. [PMID: 39345735 PMCID: PMC11436531 DOI: 10.1007/s43188-024-00244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 10/01/2024] Open
Abstract
The number of available drugs for treating aquatic animals is insufficient, given the occurrence of a variety of parasites and difficulties in developing appropriate treatments, such as vaccines or immunostimulants. Consequently, repurposing livestock drugs for treating aquatic animals is a viable alternative. Several studies have demonstrated that albendazole (ABZ) is a good anthelmintic for humans and animals such as ruminants, poultry, and honeybees. Therefore, we investigated the toxicological studies, metabolic and residue depletion studies, and efficacy trials of ABZ in aquatic animals to identify its application potential as a drug for aquatic animals. ABZ was depleted within 24 h in the muscle tissues of hybrid striped bass, rainbow trout, and tilapia. In muscle tissue with adhering skin obtained from tilapia and largemouth bass, a significant quantity of the amino-sulfone metabolite of ABZ (ABZ-SO2NH2) was present, while no ABZ-SO2NH2 was detected in hybrid striped bass, channel catfish, and patinga. Fish exposed only to high doses of ABZ showed reduced red blood cell counts and hemoglobin levels and increased lymphocytes. Such signs of toxicity have also been observed in human patients and animal studies. At a dose of 100 mg/L, ABZ showed 100% efficacy in eels. In addition, albendazole sulfoxide (ABZSO) demonstrated efficacies of 96.1% and 100% in pirapatinga and ray-finned fish, respectively, at a dose 500 mg/L. ABZ was also highly effective in treating an intracellular parasite E. hepatopenaei in white shrimp. The application of ABZ in aquatic animals under the low-dose and short-term conditions is considered a reasonable solution to manage parasite infections. The types and residual periods of degradation products differed among fish species, suggesting dissimilar metabolic pathways. With a high demand for new alternative veterinary drugs in aquaculture by fish farmers, this review offers important evidence for considering the use of ABZ in Korean farmed fish, taking food safety issues into account.
Collapse
Affiliation(s)
- Min Ji Kim
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Chungcheongbuk-do 28159 Republic of Korea
| | - Ji Young Kim
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Chungcheongbuk-do 28159 Republic of Korea
| | - Dong Woo Shin
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Chungcheongbuk-do 28159 Republic of Korea
| | - Mi Ok Eom
- Pesticide and Veterinary Drug Residues Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Chungcheongbuk-do 28159 Republic of Korea
| |
Collapse
|
3
|
Kumar A, Middha SK, Menon SV, Paital B, Gokarn S, Nelli M, Rajanikanth RB, Chandra HM, Mugunthan SP, Kantwa SM, Usha T, Hati AK, Venkatesan D, Rajendran A, Behera TR, Venkatesamurthy S, Sahoo DK. Current Challenges of Vaccination in Fish Health Management. Animals (Basel) 2024; 14:2692. [PMID: 39335281 PMCID: PMC11429256 DOI: 10.3390/ani14182692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination is an essential method of immunological preventive care required for the health management of all animals, including fish. More particularly, immunization is necessary for in-land aquaculture to manage diseases in fish broodstocks and healthy seed production. According to the latest statistics in 2020, 90.3 million tons of capture fishery production was achieved from the aquaculture sector. Out of the above, 78.8 million tons were from marine water aquaculture sectors, and 11.5 million tons were from inland water aquaculture sectors. About a 4% decline in fish production was achieved in 2020 in comparison to 2018 from inland aquaculture sectors. On the other hand, the digestive protein content, healthy fats, and nutritional values of fish products are comparatively more affordable than in other meat sources. In 2014, about 10% of aquatic cultured animals were lost (costing global annual losses > USD 10 billion) due to infectious diseases. Therefore, vaccination in fish, especially in broodstocks, is one of the essential approaches to stop such losses in the aquaculture sector. Fish vaccines consist of whole-killed pathogens, protein subunits, recombinant proteins, DNA, or live-attenuated vaccines. Challenges persist in the adaption of vaccination in the aquaculture sector, the route of administration, the use of effective adjuvants, and, most importantly, the lack of effective results. The use of autogenous vaccines; vaccination via intramuscular, intraperitoneal, or oral routes; and, most importantly, adding vaccines in feed using top dressing methods or as a constituent in fish feed are now emerging. These methods will lower the risk of using antibiotics in cultured water by reducing environmental contamination.
Collapse
Affiliation(s)
- Avnish Kumar
- Department of Biotechnology, School of Life Sciences, Dr. Bhimrao Ambedkar University, Agra 282004, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Soumya Vettiyatil Menon
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Shyam Gokarn
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Meghana Nelli
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | | | - Harish Mani Chandra
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | | | - Sanwar Mal Kantwa
- Department of Zoology, B. S. Memorial P.G. College, NH 52, Ranoli, Sikar 332403, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, 18th Cross, Malleswaram, Bangalore 560012, India
| | - Akshaya Kumar Hati
- Dr. Abhin Chandra Homoeopathic Medical College and Hospital, Homeopathic College Rd., Unit 3, Kharvela Nagar, Bhubaneswar 751001, India
| | | | - Abira Rajendran
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Tapas Ranjan Behera
- Department of Community Medicine, Fakir Mohan Medical College and Hospital, Januganj Rd., Kalidaspur, Balia, Balasore 756019, India
| | - Swarupa Venkatesamurthy
- Department of Chemistry and Biochemistry, School of Sciences, Jain University, #34 JC Road, Bangalore 560027, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
4
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
5
|
Widdicombe M, Coff L, Nowak BF, Ramsland PA, Bott NJ. Understanding the host response of farmed fish to blood flukes (Trematoda: Aporocotylidae) for developing new treatment strategies. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109613. [PMID: 38710341 DOI: 10.1016/j.fsi.2024.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Aporocotylids (Trematoda: Digenea), also known as fish blood flukes infect the circulatory system of fish leading to serious health problems and mortality. Aporocotylids are a particular concern for farmed fish as infection intensity can increase within the farming environment and lead to mortalities. In the context of managing these infections, one of the most crucial aspects to consider is the host response of the infected fish against these blood flukes. Understanding the response is essential to improving current treatment strategies that are largely based on the use of anthelmintic praziquantel to manage infections in aquaculture. This review focuses on the current knowledge of farmed fish host responses against the different life stages of aporocotylids. New treatment strategies that are able to provide protection against reinfections should be a long-term goal and is not possible without understanding the fish response to infection and the interactions between host and parasite.
Collapse
Affiliation(s)
- Maree Widdicombe
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Lachlan Coff
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia; Australian Centre for Disease Preparedness, CSIRO, East Geelong, Victoria, 3219, Australia
| | - Barbara F Nowak
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia
| | - Paul A Ramsland
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3004. Australia; Department of Surgery, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Nathan J Bott
- School of Science, STEM College, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
6
|
Mertes V, Saragliadis A, Mascherin E, Tysvær EB, Roos N, Linke D, Winther-Larsen HC. Recombinant expression of Yersinia ruckeri outer membrane proteins in Escherichia coli extracellular vesicles. Protein Expr Purif 2024; 215:106409. [PMID: 38040272 DOI: 10.1016/j.pep.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.
Collapse
Affiliation(s)
- Verena Mertes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Elisa Mascherin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
| | - Ellen-Beate Tysvær
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Norbert Roos
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Hanne C Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
| |
Collapse
|
7
|
Lou F, Zhang Y, Xu A, Gao T. Transcriptional responses of liver and spleen in Lota lota to polyriboinosinic polyribocytidylic acid. Front Immunol 2023; 14:1272393. [PMID: 37901224 PMCID: PMC10611466 DOI: 10.3389/fimmu.2023.1272393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The cultured Lota lota can meet the market demand in the context of the decline of wild resources, but the disease in the high-density culture process also deserves attention. Therefore, understanding the immune regulation mechanisms of L. lota will be the basis for obtaining high benefits in artificial culture. Methods To explore the viral response mechanism of L. lota, RNA-seq was applied to identify the transcriptomic changes of the liver and spleen in L. lota by poly (I:C) stress. Results The DEGs (liver: 2186 to 3123; spleen 1542 to 2622) and up-regulated genes (liver: 1231 to 1776; spleen 769 to 1502) in the liver and spleen increased with the prolongation (12h to 48h) of poly (I:C)-stimulation time. This means L. lota needs to mobilize more functional genes in response to longer periods of poly (I:C)-stimulation. Despite the responses of L. lota to poly (I:C) showed tissue-specificity, we hypothesized that both liver and spleen of L. lota can respond to poly (I:C) challenge may be through promoting apoptosis of DNA-damaged cells, increasing the activity of immune-enhancing enzymes, and increasing energy supply based on DEGs annotation information. Conclusions Our results demonstrate the transcriptional responses of L. lota to poly (I:C)-stimulation, and these data provide the first resource on the genetic regulation mechanisms of L. lota against viruses. Furthermore, the present study can provide basic information for the prevention of viral diseases in L. lota artificial culture process.
Collapse
Affiliation(s)
- Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, China
| | - Anle Xu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
8
|
Young T, Laroche O, Walker SP, Miller MR, Casanovas P, Steiner K, Esmaeili N, Zhao R, Bowman JP, Wilson R, Bridle A, Carter CG, Nowak BF, Alfaro AC, Symonds JE. Prediction of Feed Efficiency and Performance-Based Traits in Fish via Integration of Multiple Omics and Clinical Covariates. BIOLOGY 2023; 12:1135. [PMID: 37627019 PMCID: PMC10452023 DOI: 10.3390/biology12081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Fish aquaculture is a rapidly expanding global industry, set to support growing demands for sources of marine protein. Enhancing feed efficiency (FE) in farmed fish is required to reduce production costs and improve sector sustainability. Recognising that organisms are complex systems whose emerging phenotypes are the product of multiple interacting molecular processes, systems-based approaches are expected to deliver new biological insights into FE and growth performance. Here, we establish 14 diverse layers of multi-omics and clinical covariates to assess their capacities to predict FE and associated performance traits in a fish model (Oncorhynchus tshawytscha) and uncover the influential variables. Inter-omic relatedness between the different layers revealed several significant concordances, particularly between datasets originating from similar material/tissue and between blood indicators and some of the proteomic (liver), metabolomic (liver), and microbiomic layers. Single- and multi-layer random forest (RF) regression models showed that integration of all data layers provide greater FE prediction power than any single-layer model alone. Although FE was among the most challenging of the traits we attempted to predict, the mean accuracy of 40 different FE models in terms of root-mean square errors normalized to percentage was 30.4%, supporting RF as a feature selection tool and approach for complex trait prediction. Major contributions to the integrated FE models were derived from layers of proteomic and metabolomic data, with substantial influence also provided by the lipid composition layer. A correlation matrix of the top 27 variables in the models highlighted FE trait-associations with faecal bacteria (Serratia spp.), palmitic and nervonic acid moieties in whole body lipids, levels of free glycerol in muscle, and N-acetylglutamic acid content in liver. In summary, we identified subsets of molecular characteristics for the assessment of commercially relevant performance-based metrics in farmed Chinook salmon.
Collapse
Affiliation(s)
- Tim Young
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Private Bag 92006, Auckland 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | | | | | - Matthew R. Miller
- Cawthron Institute, Nelson 7010, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
| | | | | | - Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
| | - Ruixiang Zhao
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
| | - John P. Bowman
- Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart 7005, Australia
| | - Richard Wilson
- Central Science Laboratory, Research Division, University of Tasmania, Hobart 7001, Australia
| | - Andrew Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
| | - Chris G. Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
- Blue Economy Cooperative Research Centre, Launceston 7250, Australia
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Private Bag 92006, Auckland 1142, New Zealand
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, Hobart 7005, Australia
| |
Collapse
|
9
|
Shivam S, Ertl R, Sexl V, El-Matbouli M, Kumar G. Differentially expressed transcripts of Tetracapsuloides bryosalmonae (Cnidaria) between carrier and dead-end hosts involved in key biological processes: novel insights from a coupled approach of FACS and RNA sequencing. Vet Res 2023; 54:51. [PMID: 37365650 PMCID: PMC10291810 DOI: 10.1186/s13567-023-01185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Tetracapsuloides bryosalmonae is a malacosporean endoparasite that infects a wide range of salmonids and causes proliferative kidney disease (PKD). Brown trout serves as a carrier host whereas rainbow trout represents a dead-end host. We thus asked if the parasite adapts to the different hosts by changing molecular mechanisms. We used fluorescent activated cell sorting (FACS) to isolate parasites from the kidney of brown trout and rainbow trout following experimental infection with T. bryosalmonae. The sorted parasite cells were then subjected to RNA sequencing. By this approach, we identified 1120 parasite transcripts that were expressed differentially in parasites derived from brown trout and rainbow trout. We found elevated levels of transcripts related to cytoskeleton organisation, cell polarity, peptidyl-serine phosphorylation in parasites sorted from brown trout. In contrast, transcripts related to translation, ribonucleoprotein complex biogenesis and subunit organisation, non-membrane bounded organelle assembly, regulation of protein catabolic process and protein refolding were upregulated in rainbow trout-derived parasites. These findings show distinct molecular adaptations of parasites, which may underlie their distinct outcomes in the two hosts. Moreover, the identification of these differentially expressed transcripts may enable the identification of novel drug targets that may be exploited as treatment against T. bryosalmonae. We here also describe for the first time how FACS based isolation of T. bryosalmonae cells from infected kidney of fish fosters research and allows to define differentially expressed parasite transcripts in carrier and dead-end fish hosts.
Collapse
Affiliation(s)
- Saloni Shivam
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Karwar Regional Station of Indian Council of Agricultural Research, Central Marine Fisheries Research Institute, Karwar, Karnataka, India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mansour El-Matbouli
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Gokhlesh Kumar
- Division of Fish Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Niciura SCM, Minho AP, McIntyre J, Benavides MV, Okino CH, Esteves SN, Chagas ACDS, Amarante AFTD. In vitro culture of parasitic stages of Haemonchus contortus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e010122. [PMID: 36651422 DOI: 10.1590/s1984-29612023005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/02/2022] [Indexed: 01/15/2023]
Abstract
Haemonchus contortus is a constraint to sheep production. Seeking to reduce the use of hosts and produce parasitic stages in large-scale, a 42-day in vitro culture protocol of H. contortus third-stage larvae was optimized using Dulbecco's modified Eagle's medium (DMEM). In cell-free culture, larvae were maintained at 39.6°C, in acidic media (pH 6.1) for 3 or 6 days with Δ4-dafachronic acid followed by DMEM pH 7.4 supplemented or not with Fildes' reagent. In DMEM pH 7.4 at 37°C, supplementation with Caco-2 cells was compared to Fildes. On Day 14, fourth-stage larvae (L4) development rates in acidic media supplemented (86.8-88.4%) or not (74.4-77.8%) with Fildes and in Caco-2 cell co-culture (92.6%) were similar, and superior to DMEM pH 7.4 with Fildes (0.0%). On Day 21, Caco-2 cell co-culture resulted in higher larvae differentiation (25.0%) and lower degeneration (13.9%) compared to acidic media (1.5-8.1% and 48.6-69.9%, respectively). This is the first report of prolonged in vitro culture of H. contortus larvae using commercial media in co-culture with Caco-2 cells. Although no progression to the adult stage, Caco-2 cell co-culture resulted in morphological differentiation of H. contortus L4 and larval viability for up to 28 days.
Collapse
|
11
|
Thakur K, Sharma A, Sharma D, Brar B, Choudhary K, Sharma AK, Mahajan D, Kumar R, Kumar S, Kumar R. An insight into the interaction between Argulus siamensis and Labeo rohita offers future therapeutic strategy to combat argulosis. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 31:1607-1621. [PMID: 36589529 PMCID: PMC9792311 DOI: 10.1007/s10499-022-01043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 05/29/2023]
Abstract
Aquaculture and fisheries are salient flourishing sectors in the world but their sustainability is often afflicted by several pathogenic diseases. Among all the pathogenic diseases of fish, parasitic diseases are found to be a major cause of concern. Argulosis is one of the dominant parasitic problems encountered in Indian aquaculture practices. Argulus siamensis is the most prevalent argulid species harming the Indian major carp species including Labeo rohita. The major carps respond to parasitic infestation by elevating various immune relevant genes. The therapeutic chemicals, synthetic drugs and other plant extracts have made a progress in the fight against argulosis. However, there is no effective vaccine and drugs are available for this disease. Thus, designing efficient, cost-effective and eco-friendly control and treatment strategies for argulosis is presently needed. Keeping the aforementioned facts in mind, the current review elaborated the immunological interaction between A. siamensis and L. rohita, available combat tactics, highlighted the already identified vaccine candidates to design effective control measures and illustrated the use of omics technology in future to combat argulosis.
Collapse
Affiliation(s)
- Kushal Thakur
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Dixit Sharma
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Bhavna Brar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Kanika Choudhary
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Amit Kumar Sharma
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Danish Mahajan
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Ranjit Kumar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Sunil Kumar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| | - Rakesh Kumar
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176206 India
| |
Collapse
|
12
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Schmidt H, Mauer K, Glaser M, Dezfuli BS, Hellmann SL, Silva Gomes AL, Butter F, Wade RC, Hankeln T, Herlyn H. Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model. BMC Genomics 2022; 23:677. [PMID: 36180835 PMCID: PMC9523657 DOI: 10.1186/s12864-022-08882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 08/30/2023] Open
Abstract
Background With the expansion of animal production, parasitic helminths are gaining increasing economic importance. However, application of several established deworming agents can harm treated hosts and environment due to their low specificity. Furthermore, the number of parasite strains showing resistance is growing, while hardly any new anthelminthics are being developed. Here, we present a bioinformatics workflow designed to reduce the time and cost in the development of new strategies against parasites. The workflow includes quantitative transcriptomics and proteomics, 3D structure modeling, binding site prediction, and virtual ligand screening. Its use is demonstrated for Acanthocephala (thorny-headed worms) which are an emerging pest in fish aquaculture. We included three acanthocephalans (Pomphorhynchus laevis, Neoechinorhynchus agilis, Neoechinorhynchus buttnerae) from four fish species (common barbel, European eel, thinlip mullet, tambaqui). Results The workflow led to eleven highly specific candidate targets in acanthocephalans. The candidate targets showed constant and elevated transcript abundances across definitive and accidental hosts, suggestive of constitutive expression and functional importance. Hence, the impairment of the corresponding proteins should enable specific and effective killing of acanthocephalans. Candidate targets were also highly abundant in the acanthocephalan body wall, through which these gutless parasites take up nutrients. Thus, the candidate targets are likely to be accessible to compounds that are orally administered to fish. Virtual ligand screening led to ten compounds, of which five appeared to be especially promising according to ADMET, GHS, and RO5 criteria: tadalafil, pranazepide, piketoprofen, heliomycin, and the nematicide derquantel. Conclusions The combination of genomics, transcriptomics, and proteomics led to a broadly applicable procedure for the cost- and time-saving identification of candidate target proteins in parasites. The ligands predicted to bind can now be further evaluated for their suitability in the control of acanthocephalans. The workflow has been deposited at the Galaxy workflow server under the URL tinyurl.com/yx72rda7. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08882-1.
Collapse
Affiliation(s)
- Hanno Schmidt
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany. .,Present address: Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katharina Mauer
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuel Glaser
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Sören Lukas Hellmann
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany.,Present address: Nucleic Acids Core Facility, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Center for Molecular Biology (ZMBH) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution (iomE), Molecular Genetics and Genomic Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution (iomE), Anthropology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Exploring Sea Lice Vaccines against Early Stages of Infestation in Atlantic Salmon (Salmo salar). Vaccines (Basel) 2022; 10:vaccines10071063. [PMID: 35891227 PMCID: PMC9324576 DOI: 10.3390/vaccines10071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The sea louse Caligus rogercresseyi genome has opened the opportunity to apply the reverse vaccinology strategy for identifying antigens with potential effects on lice development and its application in sea lice control. This study aimed to explore the efficacy of three sea lice vaccines against the early stage of infestation, assessing the transcriptome modulation of immunized Atlantic salmon. Therein, three experimental groups of Salmo salar (Atlantic salmon) were vaccinated with the recombinant proteins: Peritrophin (prototype A), Cathepsin (prototype B), and the mix of them (prototype C), respectively. Sea lice infestation was evaluated during chalimus I-II, the early-infective stages attached at 7-days post infestation. In parallel, head kidney and skin tissue samples were taken for mRNA Illumina sequencing. Relative expression analyses of genes were conducted to identify immune responses, iron transport, and stress responses associated with the tested vaccines during the early stages of sea lice infection. The vaccine prototypes A, B, and C reduced the parasite burden by 24, 44, and 52% compared with the control group. In addition, the RNA-Seq analysis exhibited a prototype-dependent transcriptome modulation. The high expression differences were observed in genes associated with metal ion binding, molecular processes, and energy production. The findings suggest a balance between the host’s inflammatory response and metabolic process in vaccinated fish, increasing their transcriptional activity, which can alter the early host–parasite interactions. This study uncovers molecular responses produced by three vaccine prototypes at the early stages of infestation, providing new knowledge for sea lice control in the salmon aquaculture.
Collapse
|
15
|
Sudhagar A, El-Matbouli M, Kumar G. Genome-wide alternative splicing profile in the posterior kidney of brown trout (Salmo trutta) during proliferative kidney disease. BMC Genomics 2022; 23:446. [PMID: 35710345 PMCID: PMC9204890 DOI: 10.1186/s12864-022-08685-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The cnidarian myxozoan parasite Tetracapsuloides bryosalmonae causes chronic proliferative kidney disease (PKD) in salmonids. This parasite is a serious threat to wild and cultured salmonids. T. bryosalmonae undergoes intra-luminal sporogonic development in the kidney of brown trout (Salmo trutta) and the viable spores are released via urine. We investigated the alternative splicing pattern in the posterior kidney of brown trout during PKD. RESULTS RNA-seq data were generated from the posterior kidney of brown trout collected at 12 weeks post-exposure to T. bryosalmonae. Subsequently, this data was mapped to the brown trout genome. About 153 significant differently expressed alternatively spliced (DEAS) genes, (delta PSI = 5%, FDR P-value < 0.05) were identified from 19,722 alternatively spliced events. Among the DEAS genes, the least and most abundant alternative splicing types were alternative 5' splice site (5.23%) and exon skipping (70.59%), respectively. The DEAS genes were significantly enriched for sodium-potassium transporter activity and ion homeostasis (ahcyl1, atp1a3a, atp1a1a.1, and atp1a1a.5). The protein-protein interaction network analysis enriched two local network clusters namely cation transporting ATPase C-terminus and Sodium/potassium ATPase beta chain cluster, and mixed inclusion of Ion homeostasis and EF-hand domain cluster. Furthermore, the human disease-related salmonella infection pathway was significantly enriched in the protein-protein interaction network. CONCLUSION This study provides the first baseline information about alternative splicing in brown trout during PKD. The generated data lay a foundation for further functional molecular studies in PKD - brown trout infection model. The information generated from the present study can help to develop therapeutic strategies for PKD in the future.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Peninsular and Marine Fish Genetic Resources Centre, ICAR - National Bureau of Fish Genetic Resources, Kochi, Kerala, 682 018, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|
16
|
Comparative transcriptome profiling of virulent and avirulent isolates of Neoparamoeba perurans. Sci Rep 2022; 12:5860. [PMID: 35393457 PMCID: PMC8989968 DOI: 10.1038/s41598-022-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Neoparamoeba perurans, the aetiological agent of amoebic gill disease, remains a persistent threat to Atlantic salmon mariculture operations worldwide. Innovation in methods of AGD control is required yet constrained by a limited understanding of the mechanisms of amoebic gill disease pathogenesis. In the current study, a comparative transcriptome analysis of two N. perurans isolates of contrasting virulence phenotypes is presented using gill-associated, virulent (wild type) isolates, and in vitro cultured, avirulent (clonal) isolates. Differential gene expression analysis identified a total of 21,198 differentially expressed genes between the wild type and clonal isolates, with 5674 of these genes upregulated in wild type N. perurans. Gene set enrichment analysis predicted gene sets enriched in the wild type isolates including, although not limited to, cortical actin cytoskeleton, pseudopodia, phagocytosis, macropinocytic cup, and fatty acid beta-oxidation. Combined, the results from these analyses suggest that upregulated gene expression associated with lipid metabolism, oxidative stress response, protease activity, and cytoskeleton reorganisation is linked to pathogenicity in wild type N. perurans. These findings provide a foundation for future AGD research and the development of novel therapeutic and prophylactic AGD control measures for commercial aquaculture.
Collapse
|
17
|
Fariya N, Kaur H, Singh M, Abidi R, El-Matbouli M, Kumar G. Morphological and Molecular Characterization of a New Myxozoan, Myxobolus grassi sp. nov. (Myxosporea), Infecting the Grass Carp, Ctenopharyngodon idella in the Gomti River, India. Pathogens 2022; 11:pathogens11030303. [PMID: 35335627 PMCID: PMC8956116 DOI: 10.3390/pathogens11030303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Myxosporeans are well-known parasites infecting food fishes in fresh and marine water around the globe. Grass carp (Ctenopharyngodon idella), a freshwater food fish commonly cultured in India with has significant economic importance. Herein, the study focuses on the description of a new myxosporean species, Myxobolus grassi sp. nov. from the gills as primary site and liver as secondary site of infection in grass carp. Both organs (gill and liver) were infected concurrently in the host and the prevalence of grass carp infection was 4.05% in gill filaments and liver, respectively. Identification of species was based on the morphological and morphometric features of the myxospore as well as 18S rDNA sequence data. A smear from gill and liver exhibited hundreds of morphologically similar myxospores. BLAST search revealed 98% sequence similarity and 0.03 genetic distance with M. catlae (KM029967) infecting gill lamellae of mrigal carp (Cirrhinus cirrhosus) from India and 98–84% sequence similarity with other myxobolids in India, China, Japan, Malaysia, Turkey and Hungary. Phylogenetically, it clustered with other myxobolids infecting gills and related organs (i.e., vital organ) of Indian cyprinid carp species. On the basis of myxospore morphology and 18S sequence, we propose M. grassi sp. nov.
Collapse
Affiliation(s)
- Naireen Fariya
- Parasitology Laboratory, Fish Health Management Division, National Bureau of Fish Genetic Resources, Lucknow 226002, India; (N.F.); (R.A.)
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India;
| | - Mahender Singh
- DNA Barcoding Laboratory, Molecular Biology & Biotechnology Division, National Bureau of Fish Genetic Resources, Lucknow 226002, India;
| | - Rehana Abidi
- Parasitology Laboratory, Fish Health Management Division, National Bureau of Fish Genetic Resources, Lucknow 226002, India; (N.F.); (R.A.)
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria;
- Correspondence:
| |
Collapse
|
18
|
Shivam S, El-Matbouli M, Kumar G. Kinetics of Parasite-Specific Antibody and B-Cell-Associated Gene Expression in Brown Trout, Salmo trutta during Proliferative Kidney Disease. BIOLOGY 2021; 10:1244. [PMID: 34943159 PMCID: PMC8698486 DOI: 10.3390/biology10121244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023]
Abstract
Tetracapsuloides bryosalmonae, a myxozoan endoparasite often causes chronic infection in brown trout. Antiparasite immunity mediated by antibodies and B cells is known as an important determinant of host survival and parasite proliferation during chronic infections. Accordingly, studying their time course during proliferative kidney disease (PKD) might be helpful in improving our understanding of its chronic nature. Therefore, we conducted this study to examine parasite specific serum antibody and B-cell-mediated response in laboratory-infected brown trout at different time points. Brown trout were exposed to the spores of T. bryosalmonae, derived from infected bryozoans. Samples were collected at different time points and processed for indirect ELISA, histopathology, and qRT-PCR. T. bryosalmonae specific antibody was detected at 4 weeks post exposure (wpe) and it persisted until 17 wpe. Additionally, the expressions of C4A, CD34, CD79A, BLNK, CD74, BCL7, and CD22 were differentially regulated in the important immune organs, kidney and spleen. To our knowledge, this is the first study addressing anti-T. bryosalmonae antibody response in brown trout at different time points. The results from this study provide valuable insights into the processes leading to changes in B cell development, inflammation and antibody production during the course of PKD in brown trout.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
19
|
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low CF, Goh HH, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. BIOLOGY 2021; 10:1086. [PMID: 34827079 PMCID: PMC8614662 DOI: 10.3390/biology10111086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (M.E.N.); (Y.M.); (F.M.J.); (W.M.A.); (C.-F.L.); (H.-H.G.); (K.A.A.); (H.B.)
| |
Collapse
|