1
|
Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Illescas-Amo M, Benavides J, Moreno S, Marín-López A, Nogales A, Ortego J. Co-expression of VP2, NS1 and NS2-Nt proteins by an MVA viral vector induces complete protection against bluetongue virus. Front Immunol 2024; 15:1440407. [PMID: 39072326 PMCID: PMC11272488 DOI: 10.3389/fimmu.2024.1440407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
2
|
Carpenter MJ, Rodgers CR, Torchetti MK, Fox KA, Burton M, Sherman TJ, Mayo CE. Recovery of multireassortant bluetongue virus serotype 6 sequences from a mule deer (Odocoileus hemionus) and Dorset sheep (Ovis aries) in Colorado. Vet Microbiol 2024; 289:109944. [PMID: 38141398 DOI: 10.1016/j.vetmic.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
We report the discovery of two bluetongue virus serotype 6 (BTV-6) reassortants recovered from a domestic sheep and a free-ranging mule deer in northern Colorado. At the time of this publication, whole-genome sequencing of BTV-6 isolates in the Western U.S. have not been undertaken. These findings reflect the incursive movement of geographically distinct BTV serotypes into important agricultural areas of the U.S. and demonstrate reassortment with regionally circulating serotypes.
Collapse
Affiliation(s)
- Molly J Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Case R Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, US Department of Agriculture, 1800 Dayton Ave, Ames, IA 50010, USA.
| | - Karen A Fox
- Colorado Division of Parks and Wildlife, 4330 Laporte Avenue, Fort Collins, CO 80521, USA.
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA.
| | - Christie E Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA.
| |
Collapse
|
3
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
4
|
Spedicato M, Di Teodoro G, Teodori L, Iorio M, Leone A, Bonfini B, Testa L, Pisciella M, Casaccia C, Portanti O, Rossi E, Di Febo T, Ferri N, Savini G, Lorusso A. Intravenous Infection of Small Ruminants Suggests a Goat-Restricted Host Tropism and Weak Humoral Immune Response for an Atypical Bluetongue Virus Isolate. Viruses 2023; 15:257. [PMID: 36680297 PMCID: PMC9864981 DOI: 10.3390/v15010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Bluetongue virus (BTV) is the etiologic agent of bluetongue (BT), a viral WOAH-listed disease affecting wild and domestic ruminants, primarily sheep. The outermost capsid protein VP2, encoded by S2, is the virion's most variable protein, and the ability of reference sera to neutralize an isolate has so far dictated the differentiation of 24 classical BTV serotypes. Since 2008, additional novel BTV serotypes, often referred to as "atypical" BTVs, have been documented and, currently, the full list includes 36 putative serotypes. In March 2015, a novel atypical BTV strain was detected in the blood of asymptomatic goats in Sardinia (Italy) and named BTV-X ITL2015. The strain re-emerged in the same region in 2021 (BTV-X ITL2021). In this study, we investigated the pathogenicity and kinetics of infection of BTV-X ITL2021 following subcutaneous and intravenous infection of small ruminants. We demonstrated that, in our experimental settings, BTV-X ITL2021 induced a long-lasting viraemia only when administered by the intravenous route in goats, though the animals remained healthy and, apparently, did not develop a neutralizing immune response. Sheep were shown to be refractory to the infection by either route. Our findings suggest a restricted host tropism of BTV-X and point out goats as reservoirs for this virus in the field.
Collapse
Affiliation(s)
- Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
The Combined Expression of the Non-structural Protein NS1 and the N-Terminal Half of NS2 (NS2 1-180) by ChAdOx1 and MVA Confers Protection against Clinical Disease in Sheep upon Bluetongue Virus Challenge. J Virol 2021; 96:e0161421. [PMID: 34787454 PMCID: PMC8826911 DOI: 10.1128/jvi.01614-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.
Collapse
|