1
|
Hurtado AR, Mesa-Pérez E, Berbel J. Systems Modeling of the Water-Energy-Food-Ecosystems Nexus: Insights from a Region Facing Structural Water Scarcity in Southern Spain. ENVIRONMENTAL MANAGEMENT 2024; 74:1045-1062. [PMID: 39271532 PMCID: PMC11549115 DOI: 10.1007/s00267-024-02037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
The complex relationship between water, energy, food, and ecological systems, known as the WEFE nexus, has emerged as a major topic in the debate about sustainable economic development and resource management. This subject is of special interest in Mediterranean coastal areas as rapid economic expansion driven by population growth, higher influx of tourists, and intensification of agriculture is leading to structural water scarcity conditions. However, addressing the diverse range of issues associated with the nexus is a difficult task due to the existence of intricate interconnections, interdependencies, and nonlinearities within and across its various components. Accordingly, this case study applies a combination of participatory systems modeling and network analysis tools to yield insights into the complexity of this nexus in Axarquia, a region with features that make it an example of water-stressed jurisdictions in the Mediterranean. Overall, our results provide a strong foundation to understand the dynamics that govern this nexus in regions where the availability of freshwater resources is a significant concern. Furthermore, they lay the groundwork for the development of models and scenarios to simulate the impact of various policies and interventions on the overall system.
Collapse
Affiliation(s)
- Antonio R Hurtado
- Water, Environmental and Agricultural Resources Economics (WEARE) Research Group, Department of Agricultural Economics, Universidad de Córdoba, Campus Rabanales Building C5, 14014, Córdoba, Spain.
| | - Enrique Mesa-Pérez
- Departamento de Economía Financiera y Contabilidad, Universidad Loyola Andalucía, 41704, Dos Hermanas (Sevilla), Spain
| | - Julio Berbel
- Water, Environmental and Agricultural Resources Economics (WEARE) Research Group, Department of Agricultural Economics, Universidad de Córdoba, Campus Rabanales Building C5, 14014, Córdoba, Spain
| |
Collapse
|
2
|
Oluoch B, Mandizvo T, Musazura W, Badza T, Otieno B, Ojwach S, Odindo A. A review of pathogen removal from municipal wastewater using advanced oxidation processes: Agricultural application, regrowth risks, and new perspectives. Heliyon 2024; 10:e39625. [PMID: 39498016 PMCID: PMC11533656 DOI: 10.1016/j.heliyon.2024.e39625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Pathogen removal in wastewater offers a chance to recover water and nutrients for crop production, reducing environmental contamination and public health risks. However, the risk of pathogens regrowing in treated effluents can endanger public health if reused in agriculture, attracting stringent reuse standards. While advanced oxidation processes (AOPs) promise to reduce pathogens, eliminating regrowth potential in AOP-treated effluents requires further scrutiny. This review aimed to summarize the available evidence on understanding pathogen reduction and regrowth potential in AOP-treated effluents, following best practices for scoping reviews like the preferred reporting items for systematic reviews and meta-analysis (PRISMA). It covers recent pathogen studies under AOPs, current AOP investigations, the impact of AOP dosage and retention time on pathogen control, and challenges in reusing AOP-treated effluents for crop production. Additionally, it identifies areas needing improvement or complementary treatments for pathogen-free effluents with no regrowth potential. The review concludes by summarizing key findings and suggesting research areas for further exploration.
Collapse
Affiliation(s)
- Barnabas Oluoch
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Takudzwa Mandizvo
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - William Musazura
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Taruvinga Badza
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Benton Otieno
- Water, Sanitation & Hygiene Research & Development Centre (WASH R&D Centre), University of KwaZulu-Natal, Howard College, 4041, Durban, South Africa
| | - Stephen Ojwach
- Chemistry Department, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Alfred Odindo
- Crop Science Discipline, University of KwaZulu-Natal, Private BagX01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
3
|
Areosa I, Martins TAE, Lourinho R, Batista M, Brito AG, Amaral L. Treated wastewater reuse for irrigation: A feasibility study in Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176698. [PMID: 39366581 DOI: 10.1016/j.scitotenv.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
In an increasing water scarcity and climate-vulnerable global context, treated wastewater represents a vital alternative water source, thereby enhancing resource sustainability. Despite its potential, only roughly 2.5 % of the treated wastewater is reused in the European Union, with Portugal's reuse rate being only 1.2 % in 2022. Considering this framework, this study evaluates the feasibility of increasing wastewater reuse in Portugal by focusing on the Tagus River and Ribeiras do Oeste Basins. The regional assessment identified eight key wastewater treatment plants (WWTP) with significant potential for irrigation reuse in the agriculture and tourism sectors. Analysing costs, quality requirements, and technological options, this study considered five treatment lines, incorporating filtration and disinfection methods. The findings indicate that reclaimed water costs may range from 0.02€/m3 to 0.83€/m3, being competitive with other water sources and significantly lower than desalination processes (up to 1.66€/m3). Distribution investments and energy consumption are primary cost drivers, suggesting a relocation of WWTP closer to end-users as a cost-saving strategy. The proposed reuse projects could quadruple regional reuse rates and double the national rate, mitigating water needs for over 2000 ha of agricultural land and golf courses. This study underscores the importance of treated wastewater reuse in addressing water scarcity, advocating for WWTP decentralisation, strategic investments and policy interventions to achieve cost-effective goals. The methodologies and insights presented offer valuable guidance for other regions facing similar challenges, promoting a paradigm shift towards circular water resource management.
Collapse
Affiliation(s)
- Inês Areosa
- Department of Biosystems Science and Engineering, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Tiago A E Martins
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Rita Lourinho
- Department of Research, Development, and Innovation, Águas do Tejo Atlântico S.A., 1300-254 Lisbon, Portugal
| | - Marcos Batista
- Department of Communication and Development, Águas do Tejo Atlântico S.A., 1300-254 Lisbon, Portugal
| | - António G Brito
- Department of Biosystems Science and Engineering, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal; LEAF (Linking Landscape, Environment, Agriculture and Food) & TERRA (Laboratory for Sustainable Land Use and Ecosystem Services), School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Leonor Amaral
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; CENSE (Center for Environmental and Sustainability Research) & CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Pasquarelli F, Oliva G, Mariniello A, Buonerba A, Li CW, Belgiorno V, Naddeo V, Zarra T. Carbon neutrality in wastewater treatment plants: An integrated biotechnological-based solution for nutrients recovery, odour abatement and CO 2 conversion in alternative energy drivers. CHEMOSPHERE 2024; 354:141700. [PMID: 38490615 DOI: 10.1016/j.chemosphere.2024.141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.
Collapse
Affiliation(s)
- Federica Pasquarelli
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy.
| | - Aniello Mariniello
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy; Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084, via Giovanni Paolo II, Fisciano, Italy
| | - Chi-Wang Li
- Department of Water Resources and Environmental Engineering, Tamkang University, 151 Yingzhuan Road, Tamsui District, New Taipei City, 25137, Taiwan
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
5
|
Torre A, Vázquez-Rowe I, Parodi E, Kahhat R. A multi-criteria decision framework for circular wastewater systems in emerging megacities of the Global South. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169085. [PMID: 38056636 DOI: 10.1016/j.scitotenv.2023.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Lima faces increasing water stress due to demographic growth, climate change and outdated water management infrastructure. Moreover, its highly centralized wastewater management system is currently unable to recover water or other resources. Hence, the primary aim of this study is to identify suitable wastewater treatment alternatives for both eutrophication mitigation and indirect potable reuse (IPR). For eutrophication mitigation, we examined MLE, Bardenpho, Step-feed, HF-MBR, and FS-MBR. For IPR, we considered secondary treatment+UF + RO + AOP or MBR + RO + AOP. These alternatives form part of a WWTP network at a district level, aiding Lima's pursuit of a circular economy approach. This perspective allows reducing environmental impacts through resource recovery, making the system more resilient to disasters and future water shortages. The methods used to assess these scenarios were Life Cycle Assessment for the environmental dimension; Life Cycle Costing for the economic perspective; and Multi-Criteria Decision Analysis to integrate both the quantitative tools aforementioned and qualitative criteria for social and techno-operational dimensions, which combined, strengthen the decision-making process. The decision-making steered towards Bardenpho for eutrophication abatement when environmental and economic criteria were prioritized or when the four criteria were equally weighted, while HF-MBR was the preferred option when techno-operational and social aspects were emphasized. In this scenario, global warming (GW) impacts ranged from 0.23 to 0.27 kg CO2eq, eutrophication mitigation varied from 6.44 to 7.29 g PO4- equivalent, and costs ranged between 0.12 and 0.17 €/m3. Conversely, HF-MBR + RO + AOP showed the best performance when IPR was sought from the outset. In the IPR scenario, GW impacts were significantly higher, at 0.46-0.51 kg CO2eq, eutrophication abatement was above 98 % and costs increased to ca. 0.44 €/m3.
Collapse
Affiliation(s)
- Andre Torre
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ian Vázquez-Rowe
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru.
| | - Eduardo Parodi
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ramzy Kahhat
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| |
Collapse
|
6
|
Yu Y, Wang S, Yu P, Wang D, Hu B, Zheng P, Zhang M. A bibliometric analysis of emerging contaminants (ECs) (2001-2021): Evolution of hotspots and research trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168116. [PMID: 37884150 DOI: 10.1016/j.scitotenv.2023.168116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Emerging contaminants (ECs) have attracted increasing attention in the past two decades because of their ubiquitous existence and high environmental risk. Understanding the progress of research and the evolution of hot topics is critical. This study provides a bibliometric review, along with a quantitative trend analysis of approximately 8000 publication records dated from 2001 to 2021. Wider distribution in various subjects was discovered in terms of publication numbers, indicating a strong tendency for EC research to become an interdisciplinary topic. Visualization of term co-occurrence analysis revealed that the ECs study went through three stages over time: identification and detection, traceability and risk, and process and control. Quantitative trend analysis revealed that antibiotics, microplastics, endocrine disrupting chemicals (EDCs), per/poly-fluoroalkyl substances (PFAS), pesticides, heavy metals, and nanoparticles are attracting increasing attention, whereas conventional pharmaceuticals, persistent organic pollutants, and materials such as benzotriazole, diclofenac, bisphenol A, carbamazepine, triclosan, and titanium dioxide exhibit a downward trend. PFAS and EDCs are considered potential future core hotspots for the hysteretic rise in research attention compared with conventional ECs. Furthermore, analysis of research linkage and the developing stages of ECs could be possible approach to determine the evolution of hotspots in ECs study. This study provides objective and comprehensive insights into the research landscape of ECs, which may shed light on future developmental directions for researchers interested in this field.
Collapse
Affiliation(s)
- Yang Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Pingfeng Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dongsheng Wang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
7
|
Haider I, Ali MA, Sanaullah M, Ahmed N, Hussain S, Shakeel MT, Naqvi SAH, Dar JS, Moustafa M, Alshaharni MO. Unlocking the secrets of soil microbes: How decades-long contamination and heavy metals accumulation from sewage water and industrial effluents shape soil biological health. CHEMOSPHERE 2023; 342:140193. [PMID: 37722537 DOI: 10.1016/j.chemosphere.2023.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Heavy metals contamination is posing severe threat to the soil health and environmental sustainability. Application of industrial and sewage waste as irrigation and growing urbanization and agricultural industry is the main reason for heavy metals pollution. Therefore, the present study was planned to assess the influence of different irrigation sources such as industrial effluents, sewage wastewater, tube well water, and canal water on the soil physio-chemical, soil biological, and enzymatic characteristics. Results showed that sewage waste and industrial effluents affect the soil pH, organic matter, total organic carbon, and cation exchange capacity. The highest total nickel (383.71 mg kg-1), lead (312.46 mg kg-1), cadmium (147.75 mg kg-1), and chromium (163.64 mg kg-1) were recorded with industrial effluents application. Whereas, industrial effluent greatly reduced the soil microbial biomass carbon (SMB-C), soil microbial biomass nitrogen (SMB-N), soil microbial biomass phosphorus (SMB-P), and soil microbial biomass sulphur (SMB-S) in the winter season at sowing time. Industrial effluent and sewage waste inhibited the soil enzymes activities. For instance, the minimum activity of amidase, urease, alkaline-phosphatase, β-glucosidase, arylsulphatase and dehydrogenase activity was noted with HMs contamination. The higher levels of metals accumulation was observed in vegetables grown in soil contaminated with untreated waste water and industrial effluent in comparison to soil irrigated with canal and tube well water. The mean increase in soil microbial parameters and enzyme activities was also observed in response to the change in season from winter to spring due to increase in soil mean temperature. The SMB-C, SMB-N, SMB-P and SMB-S showed significant positive correlation with soil enzymes (amidase, urease, alkaline-phosphatase, β-glucosidase, arylsulphatase and dehydrogenase). The heavy metals accumulation in soil is toxic to microorganisms and inhibits enzyme functions critical for nutrient cycling and organic matter decomposition and can disrupt the delicate balance of soil ecosystem and may lead to long-term damage of soil biological health.
Collapse
Affiliation(s)
- Idrees Haider
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Arif Ali
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan; Department of Environmental Sciences, Faculty of Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Muhammad Sanaullah
- Institute of Soil Science, University of Agriculture Faisalabad, Punjab, Pakistan
| | - Niaz Ahmed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Muhammad Taimoor Shakeel
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University Bahawalpur, Pakistan
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Javeed Shabbir Dar
- Department of Agronomy Shaheed Zulfiqar Ali Bhutto Agricultural College Dokri, Larkana, Pakistan
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Manisha M, Verma K, Ramesh N, Anirudha TP, Santrupt RM, Das R, Mohan Kumar MS, Chanakya HN, Rao L. Socio-economic impact assessment of large-scale recycling of treated municipal wastewater for indirect groundwater recharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160207. [PMID: 36402318 DOI: 10.1016/j.scitotenv.2022.160207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Reusing treated wastewater is an emerging solution to address freshwater scarcity, and surface water contamination faced worldwide. A unique large-scale wastewater recycling project was implemented to replenish groundwater by filling secondary treated wastewater (STW) into existing irrigation tanks in severely drought-hit areas of the Kolar districts of Southern India. This study quantifies the socio-economic impacts of this large-scale indirect groundwater recharge scheme. The changes in areas receiving STW i.e., impacted areas and those areas which did not receive STW i.e., non-impacted areas was studied. Also, pre and post recycling changes were quantified in the Kolar district. The results show that surface water quality meets India's most stringent treated wastewater discharge standards prescribed by the Hon'ble National Green Tribunal. Due to these recycling efforts, significant improvements in groundwater level and quality were found. It was observed that there was a noticeable difference in agricultural cropping areas, seasons, patterns, and production between impacted and non-impacted areas. Post-recycling, farmers tended to cultivate cash and water-intensive crops over less water-intensive crops. During the post-recycling period, livestock and milk production also increased, and in impacted areas, it was significantly higher. Post-recycling, fish production increased and land prices per hectare increased by 118 % in impacted areas. The farmer's net income under flowers and vegetable farming increased by 202 % and 150 % respectively in impacted areas compared to non-impacted areas. Furthermore, this project contributes to a circular economy transition in the water sector, which has economic, environmental, social, and cultural benefits. A key recommendation from the outcomes of the study is to draft and implement a policy that encourages the reuse of recycled water for groundwater recharge which in turn will improve the agro-economic system and food security.
Collapse
Affiliation(s)
- Manjari Manisha
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India.
| | - Kavita Verma
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - N Ramesh
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - T P Anirudha
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - R M Santrupt
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Reshmi Das
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - M S Mohan Kumar
- Department of Civil Engineering, Indian Institute of Science, Bengaluru, India; Gitam University, India
| | - H N Chanakya
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Lakshminarayana Rao
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
10
|
Fico GC, de Azevedo ARG, Marvila MT, Cecchin D, de Castro Xavier G, Tayeh BA. Water reuse in industries: analysis of opportunities in the Paraíba do Sul river basin, a case study in Presidente Vargas Plant, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66085-66099. [PMID: 35488991 PMCID: PMC9055219 DOI: 10.1007/s11356-022-20475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the demand for clean water has been growing all over the world despite the different threats posed, including increasing pollution, increasing deforestation and climate change. Industrial activity is the second largest consumer of water, so highly industrialized regions are more susceptible to water stress. In this sense, reuse strategies have been progressively discussed and used around the world; however, in Brazil there is still place for many advances, whether due to lack of incentives, cultural issues in society, or poor regulation of the subject. The objective of this work was to carry out a diagnosis of raw water uptake by industries in one Hydrographic Region of the state of Rio de Janeiro and to propose a discussion on the adoption of water reuse practices for non-potable purposes from the use of treated effluents. A survey of the theoretical framework on the subject was carried out, as well as an analysis of sustainability indicators and reports of the companies, including the current licensing processes of large undertakings consuming water resources. With this study, it was possible to obtain the average cost of implementing a water reuse unit for an industry in the state of Rio de Janeiro-Brazil, which, despite still being expensive, has a strong tendency to use due to world water shortages. Finally, it was concluded that the state of Rio de Janeiro has a threat of water scarcity that could be aggravated in the coming years, if measures and investments in supply alternatives are not adopted (water reuse), and improvement in all stages of water management water resources.
Collapse
Affiliation(s)
- Giulianna Costa Fico
- School of Engineering, Post-graduation in Biosystems Engineering (PGEB), Fluminense Federal University (UFF), Rua Passo da Pátria 156, Bloco D, sala 236, Ingá, Niterói, Brazil
| | - Afonso R G de Azevedo
- Civil Engineering Laboratory (LECIV), North Fluminense Estadual University (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Brazil.
| | - Markssuel Teixeira Marvila
- Federal University of Viçosa (UFV), Campus Rio Paranaiba, Highway BR 230 Km 7, Rio Paranaiba, Minas Gerais, Brazil
| | - Daiane Cecchin
- School of Engineering, Post-graduation in Biosystems Engineering (PGEB), Fluminense Federal University (UFF), Rua Passo da Pátria 156, Bloco D, sala 236, Ingá, Niterói, Brazil
| | - Gustavo de Castro Xavier
- Civil Engineering Laboratory (LECIV), North Fluminense Estadual University (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, Brazil
| | - Bassam A Tayeh
- Civil Engineering Department, Islamic University of Gaza, Gaza, Palestine
| |
Collapse
|
11
|
Possibilities and Challenges of Wastewater Reuse—Planning Aspects and Realized Examples. WATER 2022. [DOI: 10.3390/w14101619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Population growth and climate change has a huge impact on water availability. To ensure a secure water supply, water-reuse concepts and its implementation are gaining more and more importance. Additionally, water saving potentials to optimize the drinking and water reuse availability have to be considered. However, limited spatial planning opportunities and missing regulation to provide treated wastewater according to the “fit-for-purpose” principle are often hindering its application. Some countries, such as the USA or Singapore, have been leading the way for decades in implementing water-reuse concepts and in treating wastewater for potable and non-potable reuse. The wastewater treatment technologies are currently providing solutions for an adequate provision of reclaimed water. Consequently, the opportunities for water reuse are given, but the challenge is largely in the implementation, which becomes necessary in water-scarce regions. This perspective is thus presenting the current possibilities and challenges of wastewater reuse with respect to existing examples of implementations but also shows the need for action in the future. The relevance of this topic is also underlined in particular by the Sustainable Development Goals (SDG), especially Goal 6 which is related to “Ensure availability and sustainable management of water and sanitation for all”.
Collapse
|
12
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
13
|
Penalver JG, Aldaya MM. The Role of the Food Banks in Saving Freshwater Resources through Reducing Food Waste: The Case of the Food Bank of Navarra, Spain. Foods 2022; 11:foods11020163. [PMID: 35053895 PMCID: PMC8775326 DOI: 10.3390/foods11020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
In the year 2011, the FAO estimated that food loss and waste reached one third of the total food produced worldwide. Since then, numerous studies have been published characterizing this problem and reflecting on its repercussions, not only social, but also environmental. Food wastage triggers unnecessary greenhouse gas emissions, deforestation or loss of biodiversity. This study aims to quantify the water-related benefits associated with food loss and waste reduction by studying the Food Bank of Navarra (FBN). For this purpose, the water footprint assessment manual has been followed. First, the water footprint of the activities of the FBN has been analysed for the year 2018 (scenario with the FBN). A comparative analysis has been carried out between the scenario with the FBN and a theoretical scenario without the action of the FBN. This has allowed us to highlight the benefits associated with the activity of this entity. The FBN not only avoided the waste of 2.7 thousand tons of food suitable for consumption in 2018, but also avoided the unnecessary use of more than 3.2 million m3 of freshwater. As a result of the present investigation, it can be stated that promoting food banks, which avoid food waste, would be an effective way to contribute to the protection and conservation of water resources.
Collapse
Affiliation(s)
- Josemi G. Penalver
- Arrosadia Campus, Public University of Navarra (UPNA), 31006 Pamplona, Spain;
| | - Maite M. Aldaya
- Arrosadia Campus, Institute for Sustainability & Food Chain Innovation (IS-FOOD), Public University of Navarra (UPNA), Jerónimo de Ayanz Building, 31006 Pamplona, Spain
- Correspondence:
| |
Collapse
|
14
|
An SEM-REM-Based Study on the Driving and Restraining Mechanisms and Potential of Reclaimed Water Utilization in China. WATER 2021. [DOI: 10.3390/w14010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to promote the efficient use of reclaimed water in China and make water resources allocation better structured, this paper analyzed the factors that drive and restrain the current utilization of reclaimed water and unveiled their correlation and hierarchy in a way to develop a non-recursive structural framework of what drives and restrain reclaimed water use. By structural equation modeling (SEM), the transmission path of affecting factors was identified, the contribution of the factors quantified, and key indicators for potential prediction selected. On that basis, a random-effects model (REM) was built to predict the potential availability of the country’s reclaimed water. Meanwhile, parametric confidence intervals at 10–90% quantile levels were described, given the uncertainty of REM parameters. The results showed that four indicators for potential prediction, namely the total amount of wastewater treated, the density of water pipelines in built-up areas, investment in facilities for reclaimed water treatment, and the processing of applications for water treatment patents, are intertwined with the utilization of reclaimed water. Overall, the REM for potential prediction produced more precise fitting results, with the most significant fitting error standing at 5.9%. Going ahead, China is set to maintain the rapid growth in reclaimed water use, and up to 13.7 billion cubic meters of reclaimed water is expected to be available by 2025. This will help better structure the urban water supply and render regional water recycling more efficient.
Collapse
|
15
|
Heavy Metals and Microbes Accumulation in Soil and Food Crops Irrigated with Wastewater and the Potential Human Health Risk: A Metadata Analysis. WATER 2021. [DOI: 10.3390/w13233405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wastewater is actively used for irrigation of vegetable and forage crops in arid lands due to water scarcity and cost advantages. The objective of this review was to assess the effect of wastewater (mixture sources) reuse in irrigation on soil, crop (vegetable and forage crops), animal products, and human health. The metadata analysis of 95 studies revealed that the mean of toxic heavy metals including nickel (Ni), chromium (Cr), cadmium (Cd), lead (Pb), and zinc (Zn) in untreated wastewater were higher than the world standard limits in wastewater-irrigated regions. Although heavy metals in treated wastewater were within the standard limits in those areas, the concentration of those toxic elements (Pb, Cd, Ni, Cr, and As) exceeded the allowable limits in both soil and vegetables’ edible parts. In fact, the concentration of heavy metals in vegetables’ edible parts increased by 3–9 fold when compared with those irrigated with fresh water. Escherichia coli in wastewater-irrigated soil was about 2 × 106 (CFU g−1) and about 15 (CFU g−1) in vegetables’ edible parts (leaf, bulb, tuber and fruit) while the mean total coliforms was about 1.4 × 106 and 55 (CFU g−1) in soil and vegetables’ edible parts, respectively. For human health risk assessment, the estimated daily intake (EDI) and human health risk index (HRI) ranged from 0.01 to 8 (EDI and HRI > 1.0 associated with adverse health effects). Although the mean of EDI for heavy metals from wastewater-irrigated vegetables were less than 1, the HRI for Cd and Pb were above the limits for safe consumption. Overall, heavy metal levels in wastewater that used for irrigation of agricultural crops could be within the recommended levels by the world standards, but the long-term use of this reused water will contaminate soil and crops with several toxic heavy metals leading to potential carcinogenic risks to humans. Therefore, rigorous and frequent testing (wastewater, soil, and plant) is required in cultivated farms to prevent the translocation of heavy metals in the food chain.
Collapse
|
16
|
Economic Sustainability in Wastewater Treatment Companies: A Regional Analysis for the Iberian Peninsula. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An important part of environmental degradation is caused by the discharge of untreated or mistreated wastewater. The reuse of water is paramount to the National Strategic Plan for the Water Supply and Wastewater Sanitation Sector in Portugal and Spain. Since centralized treatment systems have proved to be inefficient, tackling environmental issues requires a regional approach. Wastewater treatment plants (WWTPs) mitigate environmental impacts and contribute to the financial savings of other firms. However, the literature evaluating WWTPs’ financial performance and economic sustainability is scarce. The implementation of a resource recovery technology depends heavily on economic viability. Thus, this paper analyses the financial sustainability of 222 WWTPs in the Iberian Peninsula by NUTS II regions in 2016–2019 to assess the region with the best performance and financial stability and provide regional policy implications. Using the SABI database, this research encompasses a numerical and narrative analysis of key financial ratios. Results show that firms in Algarve and La Rioja exhibit higher financial sustainability when compared to other regions. Results can foster enhancements in the governance of regulated utilities.
Collapse
|
17
|
Wastewater Treatment Plants in Mediterranean Spain: An Exploration of Relations between Water Treatments, Water Reuse, and Governance. WATER 2021. [DOI: 10.3390/w13121710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wastewater treatment plants (WWTPs) are fundamental to enable the transition towards the principles of a circular economy in water supply. In Mediterranean Spain, an area with recurrent episodes of water stress, treated wastewater may become a critical resource for the future. However, its incorporation into the array of potential water options opens up questions regarding the different qualities obtained with each treatment, the extent of existing water reuse practices, or the governance regime of plants. In this paper, the state of WWTPs in Mediterranean Spain is analyzed, with focus on plant sizes, treatment technologies, water use, and governance regimes. The latter shows a strong presence of private WWTPs and a lesser extent of public–private WWTPs, while the number of public plants is small. Regarding treatment technologies, the most sophisticated systems are found in public–private plants that are also the largest in size. Reclaimed water is very significant for agricultural and golf course irrigation in some areas (Valencia, Murcia, Andalusia), but still relatively incipient for other uses.
Collapse
|
18
|
The Financing of Wastewater Treatment and the Balance of Payments for Water Services: Evidence from Municipalities in the Region of Valencia. SUSTAINABILITY 2021. [DOI: 10.3390/su13115874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pollution from wastewater discharges requires the treatment of all wastewater to maintain water bodies in good condition, as well as the possibility of reusing this water. Thus, wastewater treatment is an activity that has developed significantly in the Region of Valencia and has significant costs, including energy, which represents the main economic cost and an important environmental cost. In this way, efficiency and adequate financing of this activity are essential to minimise our environmental impact. However, the main funding tool currently does not allow us to address this issue, so we have a wastewater treatment with a high environmental cost in the form of greenhouse gas emissions. This tool is part of the revenues of water services, so it is not entirely independent, but it also seeks to prevent households from paying too high a total price. This leads to a situation where changes are needed to improve the financing of the different water services, as the financial resources obtained are insufficient and do not allow the current environmental problems to be solved. The analysis shows the importance of an appropriate tariff structure, as well as the need to include aspects such as water pollution and energy costs in the wastewater treatment tariff.
Collapse
|
19
|
Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System. SUSTAINABILITY 2021. [DOI: 10.3390/su13063540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Impacts on wetlands are becoming more pressing every day. Among them, habitat loss, overexploitation of aquifers and changes in land use are considered the most important. However, the impacts linked to wastewater discharges are increasing worldwide. In this context, this study analyses the impacts of input of wastewater to a Mediterranean Ramsar temporary wetland (Fuente de Piedra, south of Spain). To this end, systematic sampling was carried out in the Charcón stream which receives water from a wastewater treatment plant (WWTP) and discharges it into the wetland. The results showed a slight decrease in the nutrient concentrations, particularly for nitrogen compounds. Heterotrophic and fecal bacteria concentration, as well as phytoplankton and zooplankton abundance and biomass, all significantly decreased from the treatment plant to the wetland. When comparing the effect of this discharge with other similar occurring to the same wetland, it was evident that the Charcón stream was responsible for a greater impact. At this point, it is relevant to note that the main difference among both treated wastewater discharges lies in the different water retention time once the wastewater was released from the WWTP. In fact, we recommend an increase in the water retention time by building seminatural ponds, together with the use of biofilters, which will notably contribute to improve the processes of assimilation of nutrients and to decrease the impact generated in the wetland by this spill.
Collapse
|
20
|
An Assessment of Groundwater Recharge at a Regional Scale for Sustainable Resource Management: Province of Alicante (SE Spain). WATER 2021. [DOI: 10.3390/w13060862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For decades, the Province of Alicante, located in the Southeast of Spain, has experienced important economic development associated with groundwater exploitation. The scarcity of superficial resources and irregular distribution in the time and space of rainfall, typical of the Mediterranean environment, together with the extensive limestone outcrops, have made groundwater a key resource for the area. However, insufficient knowledge about aquifers, especially the lack of precise recharge estimates, hinders regional water management. This study establishes updated recharge estimates and water budgets for the 200 aquifers found in Alicante, using readily usable methodologies and available data. These are soil water budget models, groundwater flow models, water table fluctuation methods, and spring flow analyses. The results show low mean annual values of recharge from precipitation (69 mm/year and a coefficient of 12%) and two main differentiated domains. The first one, in the northeast of the province, under more humid climatic conditions with larger carbonate aquifer systems, has higher recharge coefficients, ranging from 14% to 24%, and greater resources. For the rest of the province, where aquifers are smaller and annual averages of rainfall range between 250 and 400 mm, average recharge rates are low (9–12%).
Collapse
|
21
|
Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13052473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water consumption continues to grow globally, and it is estimated that more than 160% of the total global water volume will be needed to satisfy the water requirements in ten years. In this context, non-conventional water resources are being considered to overcome water scarcity and reduce water conflicts between regions and sectors. A bibliometric analysis and literature review of 81 papers published between 2000 and 2020 focused on south-east Spain were conducted. The aim was to examine and re-think the benefits and concerns, and the inter-connections, of using reclaimed and desalinated water for agricultural and urban-tourist uses to address water scarcity and climate change impacts. Results highlight that: (1) water use, cost, quality, management, and perception are the main topics debated by both reclaimed and desalinated water users; (2) water governance schemes could be improved by including local stakeholders and water users in decision-making; and (3) rainwater is not recognized as a complementary option to increase water supply in semi-arid regions. Furthermore, the strengths–weaknesses–opportunities–threats (SWOT) analysis identifies complementary concerns such as acceptability and investment in reclaimed water, regulation (cost recovery principle), and environmental impacts of desalinated water.
Collapse
|
22
|
Developing a Multicriteria Decision Analysis Framework to Evaluate Reclaimed Wastewater Use for Agricultural Irrigation: The Case Study of Maryland. HYDROLOGY 2021. [DOI: 10.3390/hydrology8010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Groundwater is the main source of irrigation and residential use in the Eastern Shore Maryland, which is experiencing challenges regarding overuse, saltwater intrusion, and diminishing productivity. The Chesapeake Bay is also facing the problem of water pollution due to pollutant loading from agricultural fields and wastewater treatment plants (WWTPs). Using recycled water for irrigation has the potential to alleviate the pressure on groundwater and reduce pollutant loading. The objective of this study was to develop a decision tool to explore the use of recycled water for agricultural irrigation in Maryland using Multicriteria Decision Analysis (MCDA) integrated with Geographical Information Systems (GIS). Four main evaluation criteria were included in the GIS-MCDA framework: agricultural land cover, climate, groundwater vulnerability, and characteristics of the WWTPs as sources of recycled water. Groundwater vulnerability zones were developed using the groundwater well density, water extraction data, and the aquifer information. Then, the most suitable areas for irrigation using recycled water were identified. About 13.5% and 32.9% of agricultural land was, respectively, found to be “highly” and “moderately” suitable for irrigation with recycled water when WWTPs were categorized based on their treatment process information. The results provide a useful decision tool to promote the use of recycled water for agricultural irrigation.
Collapse
|
23
|
Legal Analysis and Case Study on the Choice between Setting Environmental Flows by Using Reclaimed Water in Non-Permanent Rivers and the Sustainable Management of Groundwater in Southeast Spain. WATER 2020. [DOI: 10.3390/w12082171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article studies the interaction between two environmental objectives actively pursued in water governance. On the one hand, the convenience of establishing or raising a minimum circulating flow in surface water bodies so to improve their quantitative and qualitative status. On the other hand, the need to carry out an intelligent management of aquifers avoiding their overexploitation. In the case study, the proposal consisting of increasing the minimum flow rate on a non-permanent river by means of discharging reclaimed water is studied. Such strategy jeopardizes the recovery of a number of overexploited aquifers since reclaimed water is currently being used for farming under the condition to proportionally reduce groundwater withdrawals. The aim is to discuss whether it is reasonable and rational to ensure continuous flows in water courses which do not have that pattern according to their natural dynamics to the detriment of other environmental or socioeconomic goals. In order to help decision makers to make a right choice, a set of criteria based on legal principles is proposed. According to the principles of minimum intervention, rationality and reasonableness, proportionality, and water economy, it is concluded that the use of reclaimed water to set higher environmental flows in discontinuous and ephemeral streams should only have a minor role in water policies, especially whether it may jeopardize other critical environmental goals.
Collapse
|
24
|
Towards the Implementation of Circular Economy in the Wastewater Sector: Challenges and Opportunities. WATER 2020. [DOI: 10.3390/w12051431] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advancement of science has facilitated increase in the human lifespan, reflected in economic and population growth, which unfortunately leads to increased exploitation of resources. This situation entails not only depletion of resources, but also increases environmental pollution, mainly due to atmospheric emissions, wastewater effluents, and solid wastes. In this scenario, it is compulsory to adopt a paradigm change, as far as the consumption of resources by the population is concerned, to achieve a circular economy. The recovery and reuse of resources are key points, leading to a decrease in the consumption of raw materials, waste reduction, and improvement of energy efficiency. This is the reason why the concept of the circular economy can be applied in any industrial activity, including the wastewater treatment sector. With this in view, this review manuscript focuses on demonstrating the challenges and opportunities in applying a circular economy in the water sector. For example, reclamation and reuse of wastewater to increase water resources, by paying particular attention to the risks for human health, recovery of nutrients, or highly added-value products (e.g., metals and biomolecules among others), valorisation of sewage sludge, and/or recovery of energy. Being aware of this situation, in the European, Union 18 out of 27 countries are already reusing reclaimed wastewater at some level. Moreover, many wastewater treatment plants have reached energy self-sufficiency, producing up to 150% of their energy requirements. Unfortunately, many of the opportunities presented in this work are far from becoming a reality. Still, the first step is always to become aware of the problem and work on optimizing the solution to make it possible.
Collapse
|