1
|
Arab N, Derakhshani R, Sayadi MH. Approaches for the Efficient Removal of Fluoride from Groundwater: A Comprehensive Review. TOXICS 2024; 12:306. [PMID: 38787085 PMCID: PMC11126082 DOI: 10.3390/toxics12050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
Contamination of groundwater with fluoride represents a significant global issue, with high concentrations posing serious public health threats. While fluoride is a critical element in water, excessive levels can be detrimental to human health and potentially life-threatening. Addressing the challenge of removing fluoride from underground water sources via nanotechnological approaches is a pressing concern in environmental science. To collate relevant information, extensive literature searches were conducted across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science, the American Chemical Society, Elsevier, Springer, and the Royal Society of Chemistry. VOS Viewer software version 1.6.20 was employed for a systematic review. This article delivers an exhaustive evaluation of various groundwater fluoride removal techniques, such as adsorption, membrane filtration, electrocoagulation, photocatalysis, and ion exchange. Among these, the application of nanoparticles emerges as a notable method. The article delves into nano-compounds, optimizing conditions for the fluoride removal process and benchmarking their efficacy against other techniques. Studies demonstrate that advanced nanotechnologies-owing to their rapid reaction times and potent oxidation capabilities-can remove fluoride effectively. The implementation of nanotechnologies in fluoride removal not only enhances water quality but also contributes to the safeguarding of human health.
Collapse
Affiliation(s)
- Negar Arab
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand 9717434765, Iran;
| | - Reza Derakhshani
- Department of Geology, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Mohammad Hossein Sayadi
- Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| |
Collapse
|
2
|
Peng X, Chen N, Wei K, Li S, Shang H, Sun H, Zhang L. Zero-valent iron coupled calcium hydroxide: A highly efficient strategy for removal and magnetic separation of concentrated fluoride from acidic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156336. [PMID: 35654177 DOI: 10.1016/j.scitotenv.2022.156336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The removal of concentrated fluoride in acidic wastewater by the conventional Ca(OH)2 method is challenged by the insufficient efficiency and difficult separation of fine CaF2 precipitate. Herein, we construct a strategy to tackle these challenges by coupling zero-valent iron (ZVI) with Ca(OH)2. ZVI reduces fluoride concentration from 12,000 to 3980 mg L-1 under optimal conditions primarily through the in-situ growth of porous FeF2·4H2O shell on its surface, which simultaneously assists fluoride removal via adsorption. The residual fluoride after ZVI treatment then decreases to 6.74 mg L-1 via precipitation with Ca(OH)2. Interestingly, the iron ions dissolved from ZVI also participate in the precipitation to form magnetite. This co-precipitation reinforces the fluoride removal and meanwhile endows the resulted precipitates with magnetism, thus enabling the perfect solid-liquid separation by the magnetic field before discharge. The application prospect of this coupling strategy is further verified by its ability in decreasing the concentrations of fluoride and other coexisting heavy metals (Zn2+, Cd2+ and Pb2+) in real smeltery wastewater below their discharge limitations. This study provides a promising strategy for the treatment of concentrated fluoride in acidic wastewater and also highlights ZVI as a good candidate to couple with conventional methods for enhanced pollution control.
Collapse
Affiliation(s)
- Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shengbiao Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
3
|
Kanchan Arsenic Filters for Household Water Treatment: Unsuitable or Unsustainable? WATER 2022. [DOI: 10.3390/w14152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article critically evaluates the conventional Kanchan Arsenic Filter (KAF) in order to determine the main reasons for its reported poor performance. The KAF was introduced in 2004 in Nepal and makes use of non-galvanized nails as a Fe0 source for As removal. As early as 2009, the KAF was demonstrated to be ineffective for As removal in many cases. This was unambiguously attributed to the Fe0 layer which is placed on top of a sand filter instead of being incorporated into a sand matrix. Despite this conceptual mistake, the conventional KAF has been largely distributed in Asia, and recent articles have assessed its sustainability. This study reiterates that the suitability of the technology, rather than its sustainability, should be addressed. Evidence shows that the KAF has the following design limitations: (i) uses iron nails of unknown reactivity, and (ii) operates on the principle of a wet/dry cycle. The latter causes a decrease in the corrosion rate of the used nails, thereby limiting the availability of the iron corrosion products which act as contaminant scavengers. Taken together, these results confirm the unsuitability of the conventional KAF. Besides correcting the design mistakes, more attention should be paid to the intrinsic reactivity of the used iron nails, including using alternative Fe0 materials (e.g., iron filings, steel wool) for filters lasting for just 6 or 18 months. Specific design considerations to be addressed in the future are highlighted.
Collapse
|
4
|
A Hybrid Model for Achieving Universal Safe Drinking Water in the Medium-Sized City of Bangangté (Cameroon). WATER 2021. [DOI: 10.3390/w13223177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Providing everyone with safe drinking water is a moral imperative. Yet, sub-Saharan Africa seems unable to achieve “safe drinking water for all” by 2030. This sad situation calls for a closer examination of the water supply options for both rural and urban populations. Commonly, two main aspects are considered: (1) behavioural responses to available or potential water supply options, and (2) socio-economic acceptability. These aspects determine the feasibility and the affordability of bringing safe drinking water as a basic good and human right to everyone. There is a broad consensus that achieving the UN Sustainable Development Goal 6.1 is mostly a financial issue, especially in low-income settings. This communication challenges this view as water is available everywhere and affordable treatment options are well-known. It considers the decentralized water supply model as a reference or standard approach in low-income settings rather than as an alternative. Here, the medium-sized city of Bangangté in the western region of Cameroon is used to demonstrate that universal safe drinking water will soon be possible. In fact, during the colonial period, the residences of the elite and the main institutions, including the administrative quarter, churches, and hospital, have been supplied with clean water from various local sources. All that is needed is to consider everyone as important or accept safe drinking water as human right. First, we present a historical background on water supply in the colonial period up to 1980. Second, the drinking water supply systems and water demand driven by population growth are discussed. Finally, a hybrid model for the achieving of universal access to clean drinking water, and preconditions for its successful implementation, are presented. Overall, this communication calls for a shift from safe drinking water supply approaches dominated by centralized systems, and presents a transferable hybrid model to achieve universal clean drinking water.
Collapse
|
5
|
Universal Access to Safe Drinking Water: Escaping the Traps of Non-Frugal Technologies. SUSTAINABILITY 2021. [DOI: 10.3390/su13179645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This communication is motivated by recent publications discussing the affordability of appropriate decentralized solutions for safe drinking water provision in low-income communities. There is a huge contrast between the costs of presented technologies, which vary by a factor of up to 12. For example, for the production of 2000 L/d of treated drinking water, the costs vary between about 1500 and 12,000 Euro. A closer look at the technologies reveals that expensive technologies use imported manufactured components or devices that cannot yet be locally produced. In the battle to achieve the United Nations Sustainable Development Goal for safe drinking water (SDG 6.1), such technologies should be, at best, considered as bridging solutions. For a sustainable self-reliance in safe drinking water supply, do-it-yourself (DIY) systems should be popularized. These DIY technologies include biochar and metallic iron (Fe0) based systems. These relevant technologies should then be further improved through internal processes.
Collapse
|
6
|
Application of the Kilimanjaro Concept in Reversing Seawater Intrusion and Securing Water Supply in Zanzibar, Tanzania. WATER 2021. [DOI: 10.3390/w13152085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is escalating salinity levels on small islands due to uncontrolled groundwater extraction. Conventionally, this challenge is addressed by adopting optimal groundwater pumping strategies. Currently, on Unguja Island (Zanzibar), urban freshwater is supplied by desalination, which is expensive and energy-intensive. Hence, desalinization cannot be afforded by rural communities. This study demonstrates that the innovative Kilimanjaro Concept (KC), based on rainwater harvesting (RWH) can remediate seawater intrusion in Unguja, while enabling a universal safe drinking water supply. The reasoning is rooted in the water balance of the whole island. It is shown that if rainwater is systematically harvested, quantitatively stored, and partly infiltrated, seawater intrusion will be reversed, and a universal safe drinking water supply will be secured. Water treatment with affordable technologies (e.g., filtration and adsorption) is suggested. The universality of KC and its suitability for small islands is demonstrated. Future research should focus on pilot testing of this concept on Unguja Island and other island nations.
Collapse
|
7
|
Integrated Water Resource Management: Rethinking the Contribution of Rainwater Harvesting. SUSTAINABILITY 2021. [DOI: 10.3390/su13158338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rainwater harvesting (RWH) is generally perceived as a promising cost-effective alternative water resource for potable and non-potable uses (water augmentation) and for reducing flood risks. The performance of RWH systems has been evaluated for various purposes over the past few decades. These systems certainly provide economic, environmental, and technological benefits of water uses. However, regarding RWH just as an effective alternative water supply to deal with the water scarcity is a mistake. The present communication advocates for a systematic RWH and partial infiltration wherever and whenever rain falls. By doing so, the detrimental effects of flooding are reduced, groundwater is recharged, water for agriculture and livestock is stored, and conventional water sources are saved. In other words, RWH should be at the heart of water management worldwide. The realization of this goal is easy even under low-resource situations, as infiltration pits and small dams can be constructed with local skills and materials.
Collapse
|
8
|
Wimalasiri AKVK, Fernando MS, Dziemidowicz K, Williams GR, Koswattage KR, Dissanayake DP, de Silva KMN, de Silva RM. Structure-Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead. ACS OMEGA 2021; 6:13527-13543. [PMID: 34095648 PMCID: PMC8173547 DOI: 10.1021/acsomega.0c05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/03/2021] [Indexed: 05/10/2023]
Abstract
The growing demand for water purification provided the initial momentum to produce lanthanide-incorporated nano-hydroxyapatite (HAP) such as HAP·CeO2, HAP·CeO2·La(OH)3 (2:1), and HAP·CeO2·La(OH)3 (3:2). These materials open avenues to remove fluoride and lead ions from contaminated water bodies effectively. Composites of HAP containing CeO2 and La(OH)3 were prepared using in situ wet precipitation of HAP, followed by the addition of Ce(SO4)2 and La(NO3)3 into the same reaction mixture. The resultant solids were tested for the removal of fluoride and lead ions from contaminated water. It was found that the composite HAP·CeO2 shows fluoride and lead ion removal capacities of 185 and 416 mg/g, respectively. The fluoride removal capacity of the composite was improved when La(OH)3 was incorporated and it was observed that the composite HAP·CeO2·La(OH)3 (3:2) has the highest recorded fluoride removal capacity of 625 mg/g. The materials were characterized using scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectrometry, Fourier transform infrared (FT-IR) spectrometry, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area analysis. Analysis of results showed that Ce and La are incorporated in the HAP matrix. Results of kinetic and leaching analyses indicated a chemisorptive behavior during fluoride and lead ion adsorption by the composites; meanwhile, the thermodynamic profile shows a high degree of feasibility for fluoride and lead adsorption.
Collapse
Affiliation(s)
| | - M. Shanika Fernando
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Karolina Dziemidowicz
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Gareth R. Williams
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | | | - D. P. Dissanayake
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - K. M. Nalin de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Rohini M. de Silva
- Centre
for Advanced Materials and Devices (CAMD), Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
9
|
Iron Oxide (Fe3O4)-Supported SiO2 Magnetic Nanocomposites for Efficient Adsorption of Fluoride from Drinking Water: Synthesis, Characterization, and Adsorption Isotherm Analysis. WATER 2021. [DOI: 10.3390/w13111514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This research work reports the magnetic adsorption of fluoride from drinking water through silica-coated Fe3O4 nanoparticles. Chemical precipitation and wet impregnation methods were employed to synthesize the magnetic nanomaterials. Moreover, the synthesized nanomaterials were characterized for physicochemical properties through scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray powder diffraction. Screening studies were conducted to select the best iron oxide loading (0.0–1.5 wt%) and calcination temperature (300–500 °C). The best selected nanomaterial (0.5Fe-Si-500) showed a homogenous FeO distribution with a 23.79 nm crystallite size. Moreover, the optimized reaction parameters were: 10 min of contact time, 0.03 g L−1 adsorbent dose, and 10 mg L−1 fluoride (F−) concentration. Adsorption data were fitted to the Langmuir and Freundlich isotherm models. The Qm and KF (the maximum adsorption capacities) values were 5.5991 mg g−1 and 1.869 L g−1 respectively. Furthermore, accelerated adsorption with shorter contact times and high adsorption capacity at working pH was among the outcomes of this research work.
Collapse
|
10
|
Removal of Fluorides from Aqueous Solutions Using Exhausted Coffee Grounds and Iron Sludge. WATER 2021. [DOI: 10.3390/w13111512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many countries are confronted with a striking problem of morbidity of fluorosis that appears because of an increased concentration of fluorides in drinking water. The objective of this study is to explore opportunities for removal of fluoride from aqueous solutions using cheap and easily accessible adsorbents, such as exhaustive coffee grounds and iron sludge and to establish the efficiency of fluoride removal. Twelve doses (1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 50 and 60 g/L) of adsorbents were used and five durations of the sorption process (30, 60, 90, 120 and 150 min). The results showed that the most optimum dose of iron sludge for 3 mg/L of fluoride removal was 30 g/L and the contact time was 30 min, the efficiency of fluoride removal achieved 62.92%; the most optimum dose of exhausted coffee grounds was 60 g/L with the most optimum contact time of 60 min; at a dose of 50 g/L with contact time of 90 min, the efficiency of fluoride removal achieved 56.67%. Findings demonstrate that adsorbents have potential applicability in fluoride removal up to the permissible norms.
Collapse
|
11
|
Kanchan Arsenic Filters and the Future of Fe0-Based Filtration Systems for Single Household Drinking Water Supply. Processes (Basel) 2020. [DOI: 10.3390/pr9010058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological and chemical contamination of natural water bodies is a global health risk for more than one billion people, mostly living in low-income countries. Innovative, affordable, and efficient decentralized solutions for safe drinking water supply are urgently needed. Metallic iron (Fe0)-based filtration systems have been described as such an appropriate solution. This communication focuses on the Kanchan arsenic filter (KAF), presented in the early 2000s and widely assessed during the past decade. The KAF contains iron nails as the Fe0 source and is primarily designed to remove As from polluted tube well waters. Recent independent works assessing their performance have all reported on a high degree of variability in efficiency depending mostly on the following factors: (1) the current operating conditions, (2) the design, and (3) the groundwater chemistry. This communication shows that the major problems of the KAF are two-fold: (1) a design mistake as the Fe0 units disturb the operation and functionality of the biosand filter, and (2) the use of poorly characterized iron nails of unknown reactivity. This assertion is supported by the evidence that the very successful community filter designed by the Indian Institute of Technology Bombay works with iron nails and has been efficient for many years. Replacing iron nails by more reactive Fe0 materials (e.g., iron fillings and steel wool) should be tested in a new generation KAF. It is concluded that a methodological or systematic approach in introducing and monitoring the efficiency of KAF should be used to test and disseminate the next generation KAF worldwide. Moreover, better characterization of the Fe0 materials including their intrinsic reactivity is required.
Collapse
|
12
|
Manual Borehole Drilling as a Cost-Effective Solution for Drinking Water Access in Low-Income Contexts. WATER 2020. [DOI: 10.3390/w12071981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water access remains a challenge in rural areas of low-income countries. Manual drilling technologies have the potential to enhance water access by providing a low cost drinking water alternative for communities in low and middle income countries. This paper provides an overview of the main successes and challenges experienced by manual boreholes in the last two decades. A review of the existing methods is provided, discussing their advantages and disadvantages and comparing their potential against alternatives such as excavated wells and mechanized boreholes. Manual boreholes are found to be a competitive solution in relatively soft rocks, such as unconsolidated sediments and weathered materials, as well as and in hydrogeological settings characterized by moderately shallow water tables. Ensuring professional workmanship, the development of regulatory frameworks, protection against groundwater pollution and standards for quality assurance rank among the main challenges for the future.
Collapse
|
13
|
Designing the Next Generation of Fe0-Based Filters for Decentralized Safe Drinking Water Treatment: A Conceptual Framework. Processes (Basel) 2020. [DOI: 10.3390/pr8060745] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ambitious United Nations Sustainable Development Goal for 2030 to “leave no one behind” concerning safe drinking water calls for the development of universally applicable and affordable decentralized treatment systems to provide safe drinking water. Published results suggest that well-designed biological sand filters (BSFs) amended with metallic iron (Fe0-BSFs) have the potential to achieve this goal. Fe0-BSFs quantitatively remove pathogens and a myriad of chemical pollutants. The available data were achieved under various operating conditions. A comparison of independent research results is almost impossible, especially because the used Fe0 materials are not characterized for their intrinsic reactivity. This communication summarizes the state-of-the-art knowledge on designing Fe0-BSFs for households and small communities. The results show that significant research progress has been made on Fe0-BSFs. However, well-designed laboratory and field experiments are required to improve the available knowledge in order to develop the next generation of adaptable and scalable designs of Fe0-BSFs in only two years. Tools to alleviate the permeability loss, the preferential flow, and the use of exhausted filters are presented.
Collapse
|
14
|
Steel Wool for Water Treatment: Intrinsic Reactivity and Defluoridation Efficiency. Processes (Basel) 2020. [DOI: 10.3390/pr8030265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Studies were undertaken to characterize the intrinsic reactivity of Fe0-bearing steel wool (Fe0 SW) materials using the ethylenediaminetetraacetate method (EDTA test). A 2 mM Na2-EDTA solution was used in batch and column leaching experiments. A total of 15 Fe0 SW specimens and one granular iron (GI) were tested in batch experiments. Column experiments were performed with four Fe0 SW of the same grade but from various suppliers and the GI. The conventional EDTA test (0.100 g Fe0, 50 mL EDTA, 96 h) protocol was modified in two manners: (i) Decreasing the experimental duration (down to 24 h) and (ii) decreasing the Fe0 mass (down to 0.01 g). Column leaching studies involved glass columns filled to 1/4 with sand, on top of which 0.50 g of Fe0 was placed. Columns were daily gravity fed with EDTA and effluent analyzed for Fe concentration. Selected reactive Fe0 SW specimens were additionally investigated for discoloration efficiency of methylene blue (MB) in shaken batch experiments (75 rpm) for two and eight weeks. The last series of experiments tested six selected Fe0 SW for water defluoridation in Fe0/sand columns. Results showed that (i) the modifications of the conventional EDTA test enabled a better characterization of Fe0 SW; (ii) after 53 leaching events the Fe0 SW showing the best kEDTA value released the lowest amount of iron; (iii) all Fe0 specimens were efficient at discoloring cationic MB after eight weeks; (iv) limited water defluoridation by all six Fe0 SW was documented. Fluoride removal in the column systems appears to be a viable tool to characterize the Fe0 long-term corrosion kinetics. Further research should include correlation of the intrinsic reactivity of SW specimens with their efficiency at removing different contaminants in water.
Collapse
|
15
|
Characterizing a Newly Designed Steel-Wool-Based Household Filter for Safe Drinking Water Provision: Hydraulic Conductivity and Efficiency for Pathogen Removal. Processes (Basel) 2019. [DOI: 10.3390/pr7120966] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This study characterizes the decrease of the hydraulic conductivity (permeability loss) of a metallic iron-based household water filter (Fe0 filter) for a duration of 12 months. A commercial steel wool (SW) is used as Fe0 source. The Fe0 unit containing 300 g of SW was sandwiched between two conventional biological sand filters (BSFs). The working solution was slightly turbid natural well water polluted with pathogens (total coliform = 1950 UFC mL−1) and contaminated with nitrate ([NO3−] = 24.0 mg L−1). The system was monitored twice per month for pH value, removal of nitrate, coliforms, and turbidity, the iron concentration, as well as the permeability loss. Results revealed a quantitative removal of coliform (>99%), nitrate (>99%) and turbidity (>96%). The whole column effluent depicted drinking water quality. The permeability loss after one year of operation was about 40%, and the filter was still producing 200 L of drinking water per day at a flow velocity of 12.5 L h−1. A progressive increase of the effluent pH value was also recorded from about 5.0 (influent) to 8.4 at the end of the experiment. The effluent iron concentration was constantly lower than 0.2 mg L−1, which is within the drinking-water quality standards. This study presents an affordable design that can be one-to-one translated into the real world to accelerate the achievement of the UN Sustainable Development Goals for safe drinking water.
Collapse
|
16
|
Making Rainwater Harvesting a Key Solution for Water Management: The Universality of the Kilimanjaro Concept. SUSTAINABILITY 2019. [DOI: 10.3390/su11205606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rainwater is conventionally perceived as an alternative drinking water source, mostly needed to meet water demand under particular circumstances, including under semi-arid conditions and on small islands. More recently, rainwater has been identified as a potential source of clean drinking water in cases where groundwater sources contain high concentrations of toxic geogenic contaminants. Specifically, this approach motivated the introduction of the Kilimanjaro Concept (KC) to supply fluoride-free water to the population of the East African Rift Valley (EARV). Clean harvested rainwater can either be used directly as a source of drinking water or blended with polluted natural water to meet drinking water guidelines. Current efforts towards the implementation of the KC in the EARV are demonstrating that harvesting rainwater is a potential universal solution to cover ever-increasing water demands while limiting adverse environmental impacts such as groundwater depletion and flooding. Indeed, all surface and subsurface water resources are replenished by precipitation (dew, hail, rain, and snow), with rainfall being the main source and major component of the hydrological cycle. Thus, rainwater harvesting systems entailing carefully harvesting, storing, and transporting rainwater are suitable solutions for water supply as long as rain falls on earth. Besides its direct use, rainwater can be infiltrating into the subsurface when and where it falls, thereby increasing aquifer recharge while minimizing soil erosion and limiting floods. The present paper presents an extension of the original KC by incorporating Chinese experience to demonstrate the universal applicability of the KC for water management, including the provision of clean water for decentralized communities.
Collapse
|
17
|
Ndé-Tchoupé AI, Nanseu-Njiki CP, Hu R, Nassi A, Noubactep C, Licha T. Characterizing the reactivity of metallic iron for water defluoridation in batch studies. CHEMOSPHERE 2019; 219:855-863. [PMID: 30562691 DOI: 10.1016/j.chemosphere.2018.12.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/01/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
The suitability of metallic iron (Fe(0)) for water defluoridation is yet to be understood. Fluoride removal ([F-]0 = 20.0 mg L-1) and Orange II discoloration ([Orange II]0 = 10.0 mg L-1) by Fe(0)/H2O batch systems are compared herein. A steel wool (SW) and a granular iron (GI) are used as Fe(0) specimens. Each essay tube contains 0.5 g sand and 0.1 g of the used Fe(0). Investigated systems were: (i) SW/sand at pH 5.0, (ii) GI/sand at pH 5.0 and (iii) SW/sand at pH 8.0. Prior to contaminant addition, Fe(0) was allowed to pre-corrode within the systems for up to 46 days. The systems were then equilibrated for 30 days with a mixture of the two model contaminants. Result confirmed (i) the higher efficiency of SW over GI in removing both contaminants, (ii) the higher efficiency of Fe(0) for Orange II discoloration and (iii) the positive impact of initial low pH values on the efficiency of Fe(0)/H2O systems. The major output of this research is that conventional Fe(0)/H2O systems are not suitable for quantitative water defluoridation. It is suggested that ways to avoid defluoridation using Fe0 must be explored. One affordable opportunity is blending fluoride-polluted water with carefully harvested rainwater.
Collapse
Affiliation(s)
- Arnaud Igor Ndé-Tchoupé
- Department of Chemistry, Faculty of Sciences, University of Douala, B.P. 24157, Douala, Cameroon
| | - Charles Péguy Nanseu-Njiki
- Laboratory of Analytical Chemistry, Faculty of Sciences, University of Yaoundé I, B.P. 812, Yaoundé, Cameroon
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100, Nanjing, PR China
| | - Achille Nassi
- Department of Chemistry, Faculty of Sciences, University of Douala, B.P. 24157, Douala, Cameroon
| | - Chicgoua Noubactep
- Department of Applied Geology, Universität Göttingen, Goldschmidtstraße 3, Göttingen, D-37077, Germany.
| | - Tobias Licha
- Department of Applied Geology, Universität Göttingen, Goldschmidtstraße 3, Göttingen, D-37077, Germany
| |
Collapse
|
18
|
Fe0/H2O Filtration Systems for Decentralized Safe Drinking Water: Where to from Here? WATER 2019. [DOI: 10.3390/w11030429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inadequate access to safe drinking water is one of the most pervasive problems currently afflicting the developing world. Scientists and engineers are called to present affordable but efficient solutions, particularly applicable to small communities. Filtration systems based on metallic iron (Fe0) are discussed in the literature as one such viable solution, whether as a stand-alone system or as a complement to slow sand filters (SSFs). Fe0 filters can also be improved by incorporating biochar to form Fe0-biochar filtration systems with potentially higher contaminant removal efficiencies than those based on Fe0 or biochar alone. These three low-cost and chemical-free systems (Fe0, biochar, SSFs) have the potential to provide universal access to safe drinking water. However, a well-structured systematic research is needed to design robust and efficient water treatment systems based on these affordable filter materials. This communication highlights the technology being developed to use Fe0-based systems for decentralized safe drinking water provision. Future research directions for the design of the next generation Fe0-based systems are highlighted. It is shown that Fe0 enhances the efficiency of SSFs, while biochar has the potential to alleviate the loss of porosity and uncertainties arising from the non-linear kinetics of iron corrosion. Fe0-based systems are an affordable and applicable technology for small communities in low-income countries, which could contribute to attaining self-reliance in clean water supply and universal public health.
Collapse
|
19
|
The Impact of Selected Pretreatment Procedures on Iron Dissolution from Metallic Iron Specimens Used in Water Treatment. SUSTAINABILITY 2019. [DOI: 10.3390/su11030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies were undertaken to determine the reasons why published information regarding the efficiency of metallic iron (Fe0) for water treatment is conflicting and even confusing. The reactivity of eight Fe0 materials was characterized by Fe dissolution in a dilute solution of ethylenediaminetetraacetate (Na2–EDTA; 2 mM). Both batch (4 days) and column (100 days) experiments were used. A total of 30 different systems were characterized for the extent of Fe release in EDTA. The effects of Fe0 type (granular iron, iron nails and steel wool) and pretreatment procedure (socking in acetone, EDTA, H2O, HCl and NaCl for 17 h) were assessed. The results roughly show an increased iron dissolution with increasing reactive sites (decreasing particle size: wool > filings > nails), but there were large differences between materials from the same group. The main output of this work is that available results are hardly comparable as they were achieved under very different experimental conditions. A conceptual framework is presented for future research directed towards a more processed understanding.
Collapse
|
20
|
Mwakabona HT, Mlay HR, Van der Bruggen B, Njau KN. Water defluoridation by Fe(III)-loaded sisal fibre: Understanding the influence of the preparation pathways on biosorbents' defluoridation properties. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:99-106. [PMID: 30236947 DOI: 10.1016/j.jhazmat.2018.08.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Defluoridation properties of two Fe(III)-loaded plant biomass (Fe(III)-activated sisal fibre (Fe(III)-ASF) and post-alkalized Fe(III)-ASF (PA-Fe(III)-ASF)) distinguished by preparation pathways through exclusion/inclusion of post-alkalization are presented, with the aim of understanding the influence of post-alkalization in the preparation pathway to their fluoride removal properties. Findings reveal that PA-Fe(III)-ASF shows higher chemical stability with removal efficiency increasing towards acidic conditions, whereas Fe(III)-ASF manifests a lower chemical stability with removal efficiency increasing (in a wider pH range) with the increase in pH. This is attributable to the nature of the interactions between Fe(III) and the biomass surface functional groups. The removal efficiency by PA-Fe(III)-ASF has a strong positive correlation (0.98) to the surface charge/speciation induced by pH and the reverse is true for the Fe(III)-ASF. These findings therefore suggest that the principal fluoride removal mechanism is electrostatic interactions and ligand exchange for PA-Fe(III)-ASF and Fe(III)-ASF, respectively. Therefore, inclusion/exclusion of post-alkalization in preparation steps is an important aspect to consider in the production of Fe(III)-loaded biosorbents for water defluoridation for acquisition of specific defluoridation properties.
Collapse
Affiliation(s)
- Hezron Timothy Mwakabona
- Department of Chemical Engineering, Faculty of Engineering Sciences, KU Leuven, Leuven, Belgium; Department of Chemistry and Physics, Sokoine University of Agriculture, Morogoro, PO Box 3038, Tanzania; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, PO Box 447, Tanzania.
| | - Hilda R Mlay
- Department of Chemistry and Physics, Sokoine University of Agriculture, Morogoro, PO Box 3038, Tanzania
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Faculty of Engineering Sciences, KU Leuven, Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Karoli N Njau
- Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, PO Box 447, Tanzania
| |
Collapse
|
21
|
White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free Drinking Water in Tanzania. WATER 2019. [DOI: 10.3390/w11010131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorosis has been prevalent in the great East African Rift Valley (EARV) since before this region was given a name. In the Tanganyika days, Germans reported elevated fluoride concentrations in natural waters. In the 1930s, the clear relationship between high fluoride level and mottling of teeth was established. Since then, the global research community has engaged in the battle to provide fluoride-free drinking water, and the battle is not yet won for low-income communities. An applicable concept for fluoride-free drinking water in the EARV was recently presented, using the Kilimanjaro as a rainwater harvesting park. The Kilimanjaro concept implies that rainwater is harvested, stored on the Kilimanjaro mountains, gravity-transported to the point of use, eventually blended with natural water and treated for distribution. This article provides a roadmap for the implementation of the Kilimanjaro concept in Tanzania. Specifically, the current paper addresses the following: (i) presents updated nationwide information on fluoride contaminated areas, (ii) discusses the quality and quantity of rainwater, and current rainwater harvesting practices in Tanzania, (iii) highlights how low-cost water filters based on Fe0/biochar can be integrating into rainwater harvesting (RWH) systems to provide clean drinking water, and (iv) discusses the need for strict regulation of RWH practices to optimize water collection and storage, while simplifying the water treatment chain, and recommends strict analytical monitoring of water quality and public education to sustain public health in the EARV. In summary, it is demonstrated that, by combining rainwater harvesting and low-cots water treatment methods, the Kilimanjaro concept has the potential to provide clean drinking water, and overcome fluorosis on a long-term basis. However, a detailed design process is required to determine: (i) institutional roles, and community contributions and participation, (ii) optimal location and sizing of conveyance and storage facilities to avoid excessive pumping costs, and (iii) project funding mechanisms, including prospects for government subsidy. By drawing attention to the Kilimanjaro concept, the article calls for African engineers and scientists to take the lead in translating this concept into reality for the benefit of public health, while simultaneously increasing their self-confidence to address other developmental challenges pervasive in Africa.
Collapse
|
22
|
Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. SUSTAINABILITY 2018. [DOI: 10.3390/su10114194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The high availability of fluoride in surface and groundwater in the East African Rift Valley was documented during the colonial period. Since the early 1960s, many studies have been conducted to solve the fluorosis crisis in this region. At present, no cost-effective solution to mitigate fluoride contamination is available for the large majority of the population. This situation prompted a process analysis of commonly used technologies. Results revealed that the geochemistry of fluoride is the main problem. Fluoride is very difficult to remove from the aqueous phase. Thus, eliminating the need for technical water defluoridation is an excellent way out of the fluorosis crisis. This goal can be achieved by harvesting fluoride-free rainwater. Harvested rainwater can be mixed with naturally polluted waters in calculated proportions to obtain safe drinking water (blending). This paper presents a concept to transform the Kilimanjaro Mountains into a huge rainwater harvesting park for drinking water supply for the whole East African Rift Valley. However, blended water may contain other pollutants including pathogens that are easy to treat using low-cost methods such as metallic iron based-filters (Fe0 filters). The proposed concept is transferable to other parts of the world still enduring fluoride pollution.
Collapse
|
23
|
Heimann S, Ndé-Tchoupé AI, Hu R, Licha T, Noubactep C. Investigating the suitability of Fe 0 packed-beds for water defluoridation. CHEMOSPHERE 2018; 209:578-587. [PMID: 29957518 DOI: 10.1016/j.chemosphere.2018.06.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
A commercial granular metallic iron (Fe0) specimen was used to evaluate the suitability of Fe0 materials for removing aqueous fluoride (F-) (water defluoridation). Experiments were performed to characterize the defluoridation potential of the tested Fe0 as influenced by the presence of chloride (Cl-) and bicarbonate (HCO3-) ions using tap water (H2O) as operational reference system. Duplicate column studies were conducted for 120 days (4 months) using an initial F- concentration of 22.5 mg L-1, columns flow rates were about 17 mL h-1. Each column contained a reactive layer (11 cm) made up of 100 g of Fe0 in a 1:1 volumetric Fe0:sand mixture. The reactive layer was sandwiched between two layers of the same sand. A pure sand column was used as control system. After the F- removal experiments, the columns were flushed by methylene blue (MB) and Orange II for 21 days. Removal studies revealed (i) no F- removal in the control system, (ii) no F- significant removal on the Cl- system, (iii) limited F- removal in the HCO3- system, and (iv) the best F- removal efficiency in tap water (H2O). Dye flushing studies confirmed the ion-selective nature of the Fe0/H2O system and demonstrated the relatively low efficiency of the same for F- removal. The overall results challenge the prevailing perception that water defluoridation using granular Fe0 is not possible and suggest that effective water defluoridation in Fe0 packed-beds is pure a site-specific design issue.
Collapse
Affiliation(s)
- Svenja Heimann
- Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany
| | - Arnaud Igor Ndé-Tchoupé
- University of Douala, Faculty of Sciences, Department of Chemistry, B.P. 24157 Douala, Cameroon
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100 Nanjing, PR China
| | - Tobias Licha
- Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany
| | - Chicgoua Noubactep
- Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany.
| |
Collapse
|
24
|
Avoiding the Use of Exhausted Drinking Water Filters: A Filter-Clock Based on Rusting Iron. WATER 2018. [DOI: 10.3390/w10050591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Bibi S, Farooqi A, Yasmin A, Kamran MA, Niazi NK. Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:1029-1036. [PMID: 28441035 DOI: 10.1080/15226514.2017.1319329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Finding appropriate adsorbent may improve the quality of drinking water in those regions where arsenic (As) and fluoride (F-) are present in geological formations. In this study, we evaluated the efficiency of potato peel and rice husk ash (PPRH-ash)-derived adsorbent for the removal of As and F from contaminated water. Evaluation was done in batch adsorption experiments, and the effect of pH, initial adsorbate concentration, contact time, and adsorbent dose were studied. Characteristics of adsorbents were analyzed using scanning electron micropcope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Both the Langmuir and Freundlich isotherm models fitted well for F- and As sorption process. The maximum adsorption capacity of adsorbent for As and F- was 2.17 μg g-1 and 2.91 mg g-1, respectively. The As and Fi removal was observed between pH 7 and 9. The sorption process was well explained with pseudo-second order kinetic model. Arsenic adsorption was not decreased in the presence of carbonate and sulfate. Results from this study demonstrated potential utility of this agricultural biowaste, which could be developed into a viable filtration technology for As and F- removal in As- and F-contaminated water streams.
Collapse
Affiliation(s)
- Sadia Bibi
- a Environmental Geochemistry Laboratory, Faculty of Biological Sciences, Department of Environmental Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Abida Farooqi
- a Environmental Geochemistry Laboratory, Faculty of Biological Sciences, Department of Environmental Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Azra Yasmin
- b Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, Rawalpindi , Pakistan
| | - Muhammad Aqeel Kamran
- c State Key Laboratory of Soil and Sustainable Agriculture , Institute of Soil Science, Chinese Academy of Sciences , Nanjing , People's Republic of China
| | - Nabeel Khan Niazi
- d Institute of Soil and Environmental Sciences , University of Agriculture Faisalabad , Faisalabad , Pakistan
- e MARUM and Department of Geosciences , University of Bremen , Bremen , Germany
- f Southern Cross GeoScience , Southern Cross University , Lismore , Australia
| |
Collapse
|
26
|
Gwenzi W, Chaukura N, Noubactep C, Mukome FND. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:732-749. [PMID: 28454068 DOI: 10.1016/j.jenvman.2017.03.087] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 05/22/2023]
Abstract
Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| | - Nhamo Chaukura
- Nanotechnology and Water Sustainability Research Unit (NanoWS), University of South Africa (UNISA), P.O. Box 392, UNISA, 0003, South Africa
| | - Chicgoua Noubactep
- Department of Applied Geology, Universität Göttingen, Goldschmidtstrase 3, D - 37077, Gottingen, Germany; Comite Afro-europeen, Avenue Leopold II, 41 - 5000, Namur, Belgium; Kultur und Nachhaltige Entwicklung CDD e.V., Postfach 1502, D - 37005, Gottingen, Germany
| | - Fungai N D Mukome
- William Jessup University, 333 Sunset Boulevard Rocklin, California, 95675, CA, USA
| |
Collapse
|
27
|
Making Fe0-Based Filters a Universal Solution for Safe Drinking Water Provision. SUSTAINABILITY 2017. [DOI: 10.3390/su9071224] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Mwakabona HT, Ndé-Tchoupé AI, Njau KN, Noubactep C, Wydra KD. Metallic iron for safe drinking water provision: Considering a lost knowledge. WATER RESEARCH 2017; 117:127-142. [PMID: 28390234 DOI: 10.1016/j.watres.2017.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Around year 1890, the technology of using metallic iron (Fe0) for safe drinking water provision was already established in Europe. The science and technology to manufacture suitable Fe0 materials were known and further developed in this period. Scientists had then developed skills to (i) explore the suitability of individual Fe0 materials (e.g. iron filling, sponge iron) for selected applications, and (ii) establish treatment processes for households and water treatment plants. The recent (1990) discovery of Fe0 as reactive agent for environmental remediation and water treatment has not yet considered this ancient knowledge. In the present work, some key aspects of the ancient knowledge are presented together with some contemporised interpretations, in an attempt to demonstrate the scientific truth contained therein. It appears that the ancient knowledge is an independent validation of the scientific concept that in water treatment (Fe0/H2O system) Fe0 materials are generators of contaminant collectors.
Collapse
Affiliation(s)
- Hezron T Mwakabona
- Department of Physical Sciences, Sokoine University of Agriculture, Morogoro P.O. Box 3038, Tanzania; Department of Chemical Engineering, Faculty of Engineering Sciences, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania
| | - Arnaud Igor Ndé-Tchoupé
- Department of Chemistry, Faculty of Sciences, University of Douala, Douala P.O. Box 24157, Cameroon
| | - Karoli N Njau
- Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania
| | - Chicgoua Noubactep
- Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany; Kultur und Nachhaltige Entwicklung CDD e.V., Postfach 1502, D - 37005 Göttingen, Germany; Comité Afro-européen, Avenue Léopold II, 41, 5000 Namur, Belgium.
| | - Kerstin D Wydra
- Plant Production and Climate Change, Erfurt University of Applied Sciences, Leipziger Straße 77, 99085 Erfurt, Germany
| |
Collapse
|
29
|
Continuation of Health Behaviors: Psychosocial Factors Sustaining Drinking Water Chlorination in a Longitudinal Study from Chad. SUSTAINABILITY 2016. [DOI: 10.3390/su8111149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Predicting the Hydraulic Conductivity of Metallic Iron Filters: Modeling Gone Astray. WATER 2016. [DOI: 10.3390/w8040162] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|