1
|
Xu LY, Qiu YB, Zhang XM, Su C, Shi JS, Xu ZH, Li H. The efficient green bio-manufacturing of Vitamin K 2: design, production and applications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39660648 DOI: 10.1080/10408398.2024.2439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Vitamin K2, also known as methylnaphthoquinone, is a crucial fat-soluble nutrient necessary for the human body. The biological production of Vitamin K2 has received widespread attention due to its environmental friendliness and maneuverability in recent years. This review provides insights into the modular metabolic pathways of Vitamin K2, lays the foundation for microbial metabolic flow balancing, cofactor engineering and dynamic regulation, and realizes the production of Vitamin K2 by synthesizing artificial cells from scratch. With the intensive development of modern fermentation technology, methods for the preparation of Vitamin K2 using the fermentation strategies of co-culturing and biofilm reactors have emerged. In prokaryotes, the introduction of heptenyl pyrophosphate synthase (HepPPS) and mevalonate acid (MVA) pathway solved the problem of insufficient precursors for Vitamin K2 production but still did not meet the market demand. Therefore, enhancing expression through multi-combinatorial metabolic regulation and innovative membrane reactors is an entry point for future research. Due to the light-induced decomposition and water-insoluble nature of Vitamin K2, the secretion regulation and purification processing also need to be considered in the actual production. Also, it summarizes the research progress of Vitamin K2 in the food and pharmaceutical fields. Additionally, the future development trend and application prospect of Vitamin K2 are also discussed to provide guidance for Vitamin K2 biosynthesis and application.
Collapse
Affiliation(s)
- Li-Yang Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Yi-Bin Qiu
- School of Food and Light Industry, Nanjing University of Technology, Nanjing, PR China
| | - Xiao-Mei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Jing-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- School of Light Industry Science and Engineering, Sichuan University, Sichuan, PR China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| |
Collapse
|
2
|
Chungchunlam SMS, Moughan PJ. Comparative bioavailability of vitamins in human foods sourced from animals and plants. Crit Rev Food Sci Nutr 2024; 64:11590-11625. [PMID: 37522617 DOI: 10.1080/10408398.2023.2241541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitamins are essential components of enzyme systems involved in normal growth and function. The quantitative estimation of the proportion of dietary vitamins, that is in a form available for utilization by the human body, is limited and fragmentary. This review provides the current state of knowledge on the bioavailability of thirteen vitamins and choline, to evaluate whether there are differences in vitamin bioavailability when human foods are sourced from animals or plants. The bioavailability of naturally occurring choline, vitamin D, vitamin E, and vitamin K in food awaits further studies. Animal-sourced foods are the almost exclusive natural sources of dietary vitamin B-12 (65% bioavailable) and preformed vitamin A retinol (74% bioavailable), and contain highly bioavailable biotin (89%), folate (67%), niacin (67%), pantothenic acid (80%), riboflavin (61%), thiamin (82%), and vitamin B-6 (83%). Plant-based foods are the main natural sources of vitamin C (76% bioavailable), provitamin A carotenoid β-carotene (15.6% bioavailable), riboflavin (65% bioavailable), thiamin (81% bioavailable), and vitamin K (16.5% bioavailable). The overview of studies showed that in general, vitamins in foods originating from animals are more bioavailable than vitamins in foods sourced from plants.
Collapse
Affiliation(s)
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Yalew M, Mulugeta A, Lumsden AL, Madakkatel I, Lee SH, Oehler MK, Mäenpää J, Hyppönen E. Circulating Phylloquinone and the Risk of Four Female-Specific Cancers: A Mendelian Randomization Study. Nutrients 2024; 16:3680. [PMID: 39519513 PMCID: PMC11547380 DOI: 10.3390/nu16213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Observational studies have linked vitamin K and cancer, but the causality of this association remains unknown. This Mendelian randomization (MR) study aims to investigate the association between circulating phylloquinone (vitamin K1) levels and four female-specific cancers. METHODS We used four single-nucleotide polymorphisms (SNPs) to instrument phylloquinone, with the reported F-statistic 16.00-28.44 for all variants. SNP-outcome associations were obtained from consortia meta-analyses, UK Biobank, and the FinnGen database (up to 145,257/419,675, 27,446/362,324, 15,181/591,477, and 2211/320,454 cases/controls for breast, ovarian, endometrial, and cervical cancer, respectively). Analyses were conducted using five complementary MR methods including pleiotropy robust approaches. The MR Egger intercept test, MR PRESSO global test and leave-one-out analyses were used to test for and identify pleiotropic variants. RESULTS The relevance of the instrument was validated by positive control analyses on coagulation factor IX (p = 0.01). However, the main MR analysis and all sensitivity analyses were consistently supportive of a null association between phylloquinone and all four cancers (p > 0.05 for all analyses, across all methods). MR-PRESSO did not detect outlying variants, and there was no evidence of horizontal pleiotropy relating to any cancer outcome (pintercept > 0.26 for all). CONCLUSIONS We found no evidence for an association between genetically predicted circulating phylloquinone levels and the risk of four female-specific cancers.
Collapse
Affiliation(s)
- Melaku Yalew
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Department of Public Health, College of Medicine and Health Sciences, Injibara University, Injibara P.O. Box 6040, Ethiopia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
| | - Amanda L. Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - S. Hong Lee
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia
| | - Martin K. Oehler
- Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Johanna Mäenpää
- Faculty of Medicine and Medical Technology, Tampere University, 33014 Tampere, Finland
- Cancer Centre, Tampere University and University Hospital, 33520 Tampere, Finland
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Dai H, Chen Z. Association between dietary vitamin K and telomere length: Based on NHANES 2001 to 2002. Medicine (Baltimore) 2024; 103:e40157. [PMID: 39432594 PMCID: PMC11495779 DOI: 10.1097/md.0000000000040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 10/23/2024] Open
Abstract
As an anti-inflammatory and antioxidant, vitamin K has the potential to reduce telomere attrition. However, the correlation between dietary vitamin K and telomere length (TL) has not been reported. We aimed to investigate the association between these 2 variables. This study included 3754 participants from the National Health and Nutrition Examination Survey 2001-2002 database. We used multivariate linear regression and restricted cubic splines to assess the relationship between dietary vitamin K intake and TL. Subgroup analyses and interaction tests were utilized to examine the stability of the results. After adjusting for all variables, each unit increase in daily dietary intake of vitamin K lengthened telomeres by 0.22 base pairs (β = 0.22, 95% CI: 0.09-0.36, P = .001). Individuals with the highest dietary vitamin K intake had significantly longer TL (β = 80.27, 95% CI: 20.83-139.71, P = .008). Subgroup analyses suggested that this association persisted in populations stratified by gender, age, diabetes, cardiovascular disease (CVD), body mass index and total energy intake (P for interaction > .05). A linear relationship between dietary vitamin K intake and TL was observed in restricted cubic splines (P for nonlinear = .554). In conclusion, our findings suggest that dietary vitamin K intake is positively associated with TL, providing recent evidence to guide the management of healthy diets.
Collapse
Affiliation(s)
- Heng Dai
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziyi Chen
- Third Clinical Medical College and Rehabilitation Medicine College of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Dunlop E, Cunningham J, Adorno P, Dabos G, Johnson SK, Black LJ. Vitamin K content of Australian-grown horticultural commodities. Food Chem 2024; 452:139382. [PMID: 38705117 DOI: 10.1016/j.foodchem.2024.139382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Vitamin K is a multi-function vitamin that has emerging roles in bone, brain and vascular health. Vitamin K composition data remain limited globally and Australia has lacked nationally representative data for vitamin K1 (phylloquinone) in horticultural commodities. Primary samples (n = 927) of 90 Australian-grown fruit, vegetable and nut commodities were purchased in three Australian cities. We measured vitamin K1/phylloquinone in duplicate in 95 composite samples using liquid chromatography with electrospray ionisation-tandem mass spectrometry. The greatest mean concentrations of vitamin K1/phylloquinone were found in kale (565 μg/100 g), baby spinach (255 μg/100 g) and Brussels sprouts (195 μg/100 g). The data contribute to the global collection of vitamin K food composition data. They add to the evidence that vitamin K1/phylloquinone concentrations vary markedly between geographic regions, supporting development of region-specific datasets for national food composition databases that do not yet contain data for vitamin K. Such data are needed globally.
Collapse
Affiliation(s)
- Eleanor Dunlop
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia..
| | - Judy Cunningham
- Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Paul Adorno
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC 3207, Australia..
| | - Georgios Dabos
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC 3207, Australia..
| | | | - Lucinda J Black
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; Curtin School of Population Health, Curtin University, Kent Street, Bentley, WA 6102, Australia..
| |
Collapse
|
6
|
Barna M, Dunovska K, Cepova J, Werle J, Prusa R, Bjørklud G, Melichercik P, Kizek R, Klapkova E. Short-term impact of vitamin K2 supplementation on biochemical parameters and lipoprotein fractions. Electrophoresis 2024. [PMID: 39091191 DOI: 10.1002/elps.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
This study explored the short-term effects of vitamin K2 (VK2) supplementation on biochemical parameters (vitamin D, vitamin E, vitamin A, alkaline phosphatase, calcium, phosphorus (P), magnesium, metallothionein, triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lipoprotein fractions (albumin, HDL, very low-density lipoprotein (VLDL), LDL, and chylomicrons). A short-term experiment (24 h, six probands) was performed to track changes in VK2 levels after a single-dose intake (360 µg/day). Liquid chromatography-tandem mass spectrometry was used to monitor vitamin K levels (menaquinone-4 (MK-4), menaquinone-7 (MK-7), and vitamin K1 [VK1]) with a limit of detection of 1.9 pg/mL for VK1 and 3.8 pg/mL for the two forms of VK2. Results showed that MK-7 levels significantly increased within 2-6 h post-administration and then gradually declined. MK-4 levels were initially low, showing a slight increase, whereas VK1 levels rose initially and then decreased. Biochemical analyses indicated no significant changes in sodium, chloride, potassium, calcium, magnesium, albumin, or total protein levels. A transient increase in P was observed, peaking at 12 h before returning to baseline. Agarose gel electrophoresis of lipoprotein fractions revealed distinct chylomicron bands and variations in VLDL and HDL mobility, influenced by dietary lipids and VK2 supplementation. These findings suggest effective absorption and metabolism of MK-7 with potential implications for bone metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Milos Barna
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Geir Bjørklud
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Pavel Melichercik
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| |
Collapse
|
7
|
Lal N, Seifan M, Ebrahiminezhad A, Berenjian A. The Impact of Amine-Functionalised Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Profile and Production of the Bioactive Isomer. Mol Biotechnol 2024; 66:1970-1987. [PMID: 37517081 PMCID: PMC11281992 DOI: 10.1007/s12033-023-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
The K family of vitamins includes a collection of molecules with different pharmacokinetic characteristics. Menaquinone-7 (MK-7) has the finest properties and is the most therapeutically beneficial due to its long plasma half-life and outstanding extrahepatic bioavailability. MK-7 exhibits cis-trans isomerism, and merely the all-trans form is biologically efficacious. Therefore, the remedial value of MK-7 end products is exclusively governed by the quantity of all-trans MK-7. Consumers favour fermentation for the production of MK-7; however, it involves several challenges. The low MK-7 yield and extensive downstream processing requirements increase production costs, resulting in an expensive final product that is not universally available. Bacterial cell immobilisation with iron oxide nanoparticles (IONs) can potentially address the limitations of MK-7 fermentation. Uncoated IONs tend to have low stability and can adversely affect cell viability; thus, amine-functionalised IONs, owing to their increased physicochemical stability and biocompatibility, are a favourable alternative. Nonetheless, employing biocompatible IONs for this purpose is only advantageous if the bioactive MK-7 isomer is obtained in the most significant fraction, exploring which formed the aim of this investigation. Two amine-functionalised IONs, namely 3-aminopropyltriethoxysilane (APTES)-coated IONs (IONs@APTES) and L-Lysine (L-Lys)-coated IONs (L-Lys@IONs), were synthesised and characterised, and their impact on various parameters was evaluated. IONs@APTES were superior, and the optimal concentration (300 μ g/mL) increased all-trans MK-7 production and improved its yield relative to the untreated cells by 2.3- and 3.1-fold, respectively. The outcomes of this study present an opportunity to develop an innovative and effective fermentation method that enhances the production of bioactive MK-7.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | | | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
8
|
Zhang T, O’Connor C, Sheridan H, Barlow JW. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods 2024; 13:1646. [PMID: 38890875 PMCID: PMC11172246 DOI: 10.3390/foods13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamins are essential organic compounds that vary widely in chemical structure and are vital in small quantities for numerous biochemical and biological functions. They are critical for metabolism, growth, development and maintaining overall health. Vitamins are categorised into two groups: hydrophilic and lipophilic. Vitamin K (VK), a lipophilic vitamin, occurs naturally in two primary forms: phylloquinone (VK1), found in green leafy vegetables and algae, and Menaquinones (VK2), present in certain fermented and animal foods and widely formulated in VK supplements. This review explores the possible factors contributing to VK deficiency, including dietary influences, and discusses the pharmacological and therapeutic potential of supplementary VK2, examining recent global clinical studies on its role in treating diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, cardiovascular disease, chronic kidney disease, diabetes, neurodegenerative disorders and cancers. The analysis includes a review of published articles from multiple databases, including Scopus, PubMed, Google Scholar, ISI Web of Science and CNKI, focusing on human studies. The findings indicate that VK2 is a versatile vitamin essential for human health and that a broadly positive correlation exists between VK2 supplementation and improved health outcomes. However, clinical data are somewhat inconsistent, highlighting the need for further detailed research into VK2's metabolic processes, biomarker validation, dose-response relationships, bioavailability and safety. Establishing a Recommended Daily Intake for VK2 could significantly enhance global health.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
| | - Helen Sheridan
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland
| | - James W. Barlow
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
9
|
Pinto E, Viegas C, Martins PV, Marreiros C, Nascimento T, Schurgers L, Simes D. Mediterranean Diet Favors Vitamin K Intake: A Descriptive Study in a Mediterranean Population. Nutrients 2024; 16:1098. [PMID: 38674788 PMCID: PMC11054598 DOI: 10.3390/nu16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The Mediterranean diet (MD) is associated with improved longevity and the prevention and management of chronic inflammatory diseases (CIDs). Vitamin K, which is present in MD core components such as leafy green vegetables, is also known as a protective factor for CIDs. Estimates of vitamin K intake in Mediterranean settings are still scarce, and the association between MD and vitamin K intake is yet to be established. This study analyzed vitamin K intake and MD adherence in the Algarve region, in Portugal. We conducted a cross-sectional study in a nonrandom sample of adults using an online questionnaire which included a validated food-frequency questionnaire and a screener for MD adherence. A total of 238 participants were recruited (68% women and 32% men). Adherence to the MD was low (11%). Only 10% of the participants had vitamin K intake below the adequate intake. Adherence to the MD was positively correlated with vitamin K intake (r = 0.463; p < 0.001) and age (r = 0.223; p < 0.001). Our findings underscore the importance of promoting adherence to the MD for optimal vitamin K intake, and future research should focus on developing effective interventions to promote this dietary pattern, particularly among younger individuals and men.
Collapse
Affiliation(s)
- Ezequiel Pinto
- Centro de Estudos e Desenvolvimento em Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (E.P.); (T.N.)
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carla Viegas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.V.); (C.M.)
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paula Ventura Martins
- Algarve Cyber-Physical Systems Research Centre (CISCA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Catarina Marreiros
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.V.); (C.M.)
| | - Tânia Nascimento
- Centro de Estudos e Desenvolvimento em Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (E.P.); (T.N.)
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands;
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (C.V.); (C.M.)
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Younes S. The role of micronutrients on the treatment of diabetes. HUMAN NUTRITION & METABOLISM 2024; 35:200238. [DOI: 10.1016/j.hnm.2023.200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
11
|
Sugandhi VV, Pangeni R, Vora LK, Poudel S, Nangare S, Jagwani S, Gadhave D, Qin C, Pandya A, Shah P, Jadhav K, Mahajan HS, Patravale V. Pharmacokinetics of vitamin dosage forms: A complete overview. Food Sci Nutr 2024; 12:48-83. [PMID: 38268871 PMCID: PMC10804103 DOI: 10.1002/fsn3.3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Vitamins are crucial for sustaining life because they play an essential role in numerous physiological processes. Vitamin deficiencies can lead to a wide range of severe health issues. In this context, there is a need to administer vitamin supplements through appropriate routes, such as the oral route, to ensure effective treatment. Therefore, understanding the pharmacokinetics of vitamins provides critical insights into absorption, distribution, and metabolism, all of which are essential for achieving the desired pharmacological response. In this review paper, we present information on vitamin deficiencies and emphasize the significance of understanding vitamin pharmacokinetics for improved clinical research. The pharmacokinetics of several vitamins face various challenges, and thus, this work briefly outlines the current issues and their potential solutions. We also discuss the feasibility of enhanced nanocarrier-based pharmaceutical formulations for delivering vitamins. Recent studies have shown a preference for nanoformulations, which can address major limitations such as stability, solubility, absorption, and toxicity. Ultimately, the pharmacokinetics of pharmaceutical dosage forms containing vitamins can impede the treatment of diseases and disorders related to vitamin deficiency.
Collapse
Affiliation(s)
| | - Rudra Pangeni
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Sagun Poudel
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Sopan Nangare
- Department of PharmaceuticsH. R. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Satveer Jagwani
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Dnyandev Gadhave
- Department of PharmaceuticsSinhgad Technical Education SocietySinhgad Institute of PharmacyPuneMaharashtraIndia
| | - Chaolong Qin
- Department of PharmaceuticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Purav Shah
- Thoroughbred Remedies ManufacturingTRM Industrial EstateNewbridgeIreland
| | - Kiran Jadhav
- KLE College of PharmacyKLE Academy of Higher Education and ResearchBelagaviKarnatakaIndia
| | - Hitendra S. Mahajan
- Department of PharmaceuticsR. C. Patel Institute of Pharmaceutical Education and ResearchShirpurMaharashtraIndia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| |
Collapse
|
12
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
13
|
Aaseth JO, Alehagen U, Opstad TB, Alexander J. Vitamin K and Calcium Chelation in Vascular Health. Biomedicines 2023; 11:3154. [PMID: 38137375 PMCID: PMC10740993 DOI: 10.3390/biomedicines11123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, N-2418 Elverum, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Trine Baur Opstad
- Oslo Centre for Clinical Heart Research Laboratory, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway;
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway;
| |
Collapse
|
14
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Pinto E, Viegas C, Martins PV, Nascimento T, Schurgers L, Simes D. New Food Frequency Questionnaire to Estimate Vitamin K Intake in a Mediterranean Population. Nutrients 2023; 15:3012. [PMID: 37447338 DOI: 10.3390/nu15133012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Vitamin K is a multifunctional micronutrient essential for human health, and deficiency has been linked to multiple pathological conditions. In this study, we aimed to develop and validate a new food frequency questionnaire (FFQ) to estimate total vitamin K intake, over the course of a 30-day interval, in a Portuguese, Mediterranean-based, population. We conducted a prospective study in a non-random sample of 38 healthy adult volunteers. The FFQ was designed based on a validated Portuguese FFQ used in nationally representative studies and on literature reviews, to include foods containing ≥5 μg of vitamin K/100 g and foods with a lower vitamin K content, yet commonly included in a Mediterranean diet. Vitamin K intake was estimated from 24 h recalls and six days of food records. The final FFQ included 54 food items which, according to regression analyses, explains 90% of vitamin K intake. Mean differences in vitamin K intake based on food records (80 ± 47.7 μg/day) and on FFQ (96.5 ± 64.3 μg/day) were statistically non-significant. Further, we found a strong correlation between both methods (r = 0.7; p = 0.003). Our results suggest that our new FFQ is a valid instrument to assess the last 30 days of vitamin K intake in the Portuguese Mediterranean population.
Collapse
Affiliation(s)
- Ezequiel Pinto
- Centro de Estudos e Desenvolvimento em Saúde, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Carla Viegas
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Paula Ventura Martins
- Research Centre for Tourism, Sustainability and Well-Being, CinTurs, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Tânia Nascimento
- Centro de Estudos e Desenvolvimento em Saúde, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200 MD Maastricht, The Netherlands
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
16
|
Mahmoud M, Kokozidou M, Gögele C, Werner C, Auffarth A, Kohl B, Mrosewski I, Schulze-Tanzil GG. Does Vitamin K2 Influence the Interplay between Diabetes Mellitus and Intervertebral Disc Degeneration in a Rat Model? Nutrients 2023; 15:2872. [PMID: 37447201 DOI: 10.3390/nu15132872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain in diabetes mellitus type 2 (T2DM) patients. Its pathogenesis and the vitamin (vit.) K2 influence on this disease remain unclear. Lumbar motion segments of male Zucker Diabetes Fatty (ZDF) rats (non-diabetic [control] and diabetic; fed without or with vit. K2) were used. Femur lengths and vertebral epiphyseal cross-section areas were measured. IVDs were histopathologically examined. Protein synthesis and gene expression of isolated IVD fibrochondrocytes were analyzed. T2DM rats showed histopathological IVD degeneration. Femur lengths and epiphyseal areas were smaller in T2DM rats regardless of vit. K2 feeding. Fibrochondrocytes synthesized interleukin (IL)-24 and IL-10 with no major differences between groups. Alpha smooth muscle actin (αSMA) was strongly expressed, especially in cells of vit. K2-treated animals. Gene expression of aggrecan was low, and that of collagen type 2 was high in IVD cells of diabetic animals, whether treated with vit. K2 or not. Suppressor of cytokine signaling (Socs)3 and heme oxygenase (Hmox)1 gene expression was highest in the cells of diabetic animals treated with vit. K2. Vit. K2 influenced the expression of some stress-associated markers in IVD cells of diabetic rats, but not that of IL-10 and IL-24.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Alexander Auffarth
- Department of Orthopedics and Traumatology, Paracelsus Medical University, Müllner-Hauptstraße 48, 5020 Salzburg, Austria
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingo Mrosewski
- MVZ MDI Limbach Berlin, Aroser Alle 84, 13407 Berlin, Germany
| | - Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
17
|
Lal N, Seifan M, Ebrahiminezhad A, Berenjian A. The Effect of Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Composition and Synthesis of the Biologically Significant All- Trans Isomer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1825. [PMID: 37368255 DOI: 10.3390/nano13121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 μg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
| | - Alireza Ebrahiminezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
18
|
Zheng Y, Mostamand S. Nutrition in children with exocrine pancreatic insufficiency. Front Pediatr 2023; 11:943649. [PMID: 37215591 PMCID: PMC10196508 DOI: 10.3389/fped.2023.943649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Exocrine pancreatic insufficiency (EPI) is a condition defined as pancreatic loss of exocrine function, including decreased digestive enzymes and bicarbonate secretion, which leads to maldigestion and malabsorption of nutrients. It is a common complication in many pancreatic disorders. If left undiagnosed, EPI can cause poor digestion of food, chronic diarrhea, severe malnutrition and related complications. Nutritional status and fat-soluble vitamins should be carefully assessed and monitored in patients with EPI. Early diagnosis of EPI is clinically important for appropriate nutritional support and initiating pancreatic enzyme replacement therapy (PERT) which could significantly improve patient outcomes. The evaluation of nutritional status and related unique management in children with EPI will be discussed in this review.
Collapse
Affiliation(s)
- Yuhua Zheng
- Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shikib Mostamand
- Gastroenterology, Hepatology, and Nutrition, Stanford Children’s Health & Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
19
|
Melkamu A, Woldu B, Sitotaw C, Seyoum M, Aynalem M. The magnitude and associated factors of coagulation abnormalities among liver disease patients at the University of Gondar Comprehensive Specialized Hospital Northwest, Ethiopia, 2022. Thromb J 2023; 21:35. [PMID: 37013616 PMCID: PMC10069033 DOI: 10.1186/s12959-023-00479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Liver disease is any condition that affects the liver cells and their function. It is directly linked to coagulation disorders since most coagulation factors are produced by the liver. Therefore, this study aimed to assess the magnitude and associated factors of coagulation abnormalities among liver disease patients. METHODS A cross-sectional study was conducted from August to October 2022 among 307 consecutively selected study participants at the University of Gondar Comprehensive Specialized Hospital. Sociodemographic and clinical data were collected using a structured questionnaire and data extraction sheet, respectively. About 2.7 mL of venous blood were collected and analyzed by the Genrui CA51 coagulation analyzer. Data were entered into Epi-data and exported to STATA version 14 software for analysis. The finding was described in terms of frequencies and proportions. Factors associated with coagulation abnormalities were analyzed by bivariable and multivariable logistic regression. RESULT In this study, a total of 307 study participants were included. Of them the magnitude of prolonged Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) were 68.08% and 63.51%, respectively. The presence of anaemia (AOR = 2.97, 95% CI: 1.26, 7.03), a lack of a vegetable feeding habit (AOR = 2.98, 95% CI: 1.42, 6.24), no history of blood transfusion (AOR = 3.72, 95% CI: 1.78, 7.78), and lack of physical exercise (AOR = 3.23, 95% CI: 1.60, 6.52) were significantly associated with prolonged PT. While the presence of anaemia (AOR = 3.02; 95% CI: 1.34, 6.76), lack of vegetable feeding habit (AOR = 2.64; 95% CI: 1.34, 5.20), no history of blood transfusion (AOR = 2.28; 95% CI: 1.09, 4.79), and a lack of physical exercise (AOR = 2.35; 95% CI: 1.16, 4.78) were significantly associated with abnormal APTT. CONCLUSION Patients with liver disease had substantial coagulation problems. Being anemic, having a transfusion history, lack of physical activity, and lack of vegetables showed significant association with coagulopathy. Therefore, early detection and management of coagulation abnormalities in liver disease patients are critical.
Collapse
Affiliation(s)
- Abateneh Melkamu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia.
| | - Berhanu Woldu
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Chomaw Sitotaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Masresha Seyoum
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Melak Aynalem
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
20
|
Erdoğan AK, Ertekin Filiz B. Menaquinone content and antioxidant properties of fermented cabbage products: Effect of different fermentation techniques and microbial cultures. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
21
|
Alonso N, Meinitzer A, Fritz-Petrin E, Enko D, Herrmann M. Role of Vitamin K in Bone and Muscle Metabolism. Calcif Tissue Int 2023; 112:178-196. [PMID: 35150288 PMCID: PMC9859868 DOI: 10.1007/s00223-022-00955-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 01/25/2023]
Abstract
Vitamin K, a cofactor for the γ-glutamyl carboxylase enzyme, is required for the post-translational activation of osteocalcin and matrix Gla protein, which play a key role in bone and muscle homeostasis. In vivo and in vitro models for osteoporosis and sarcopenia suggest the vitamin K could exert a positive effect in both conditions. In bone, it increases osteoblastogenesis, whilst decreases osteoclast formation and function. In muscle, it is associated with increased satellite cell proliferation and migration and might play a role in energy metabolism. Observational trials suggest that high levels of vitamin K are associated with increased bone mineral density and reduced fracture risk. However, interventional studies for vitamin K supplementation yielded conflicting results. Clinical trials in sarcopenia suggest that vitamin K supplementation could improve muscle mass and function. One of the main limitations on the vitamin K studies are the technical challenges to measure its levels in serum. Thus, they are obtained from indirect sources like food questionnaires, or levels of undercarboxylated proteins, which can be affected by other environmental or biological processes. Although current research appoints to a beneficial effect of vitamin K in bone and muscle, further studies overcoming the current limitations are required in order to incorporate this supplementation in the clinical management of patients with osteosarcopenia.
Collapse
Affiliation(s)
- N Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - A Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - E Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - D Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - M Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.
| |
Collapse
|
22
|
Effect of different cooking method on vitamin E and K content and true retention of legumes and vegetables commonly consumed in Korea. Food Sci Biotechnol 2022; 32:647-658. [PMID: 37009044 PMCID: PMC10050254 DOI: 10.1007/s10068-022-01206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effect of cooking method on the content and true retention of vitamin E and K in legumes and vegetables, which are commonly consumed in Korea. Among eight isomers of vitamin E, α- and γ-tocopherol were detected at 0.44-1.03 and 2.05-2.11 mg/100 g, respectively, in legumes including chick pea, kidney bean, lentil, pea, and sword bean and they were decreased after boiling. Phylloquinone (vitamin K1) was present at a range of 31.33 to 91.34 μg/100 g in legumes and true retention was reduced after boiling. In 21 kinds of vegetables, α-tocopherol and phylloquinone were present at 0.14-1.85 mg/100 g and 34.55-510.83 μg/100 g, respectively. α-Tocopherol and phylloquinone increased in most vegetables after cooking via blanching, boiling, steaming, and grilling. This study revealed that cooking changed vitamin E and K contents of legumes and vegetables and the changes were dependent on the type of food and cooking method. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01206-9.
Collapse
|
23
|
The effect of the Dietary Approaches to Stop Hypertension (DASH) diet on body composition, complete blood count, prothrombin time, inflammation and liver function in haemophilic adolescents. Br J Nutr 2022; 128:1771-1779. [PMID: 34863320 DOI: 10.1017/s0007114521004839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is no dietary strategy that has yet been specifically advocated for haemophilia. Therefore, we sought to assess the effect of the Dietary Approaches to Stop Hypertension (DASH) diet in adolescents with haemophilia. In this parallel trial, forty male adolescents with haemophilia were dichotomised into the DASH group or control group for 10 weeks. The serum high sensitivity C-reactive protein, IL-6, complete blood count (CBC), serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, partial thromboplastin time (PTT), waist circumference (WC), percentage of body fat, fat-free mass and liver steatosis were measured at the beginning and end of the study. Serum vitamin C was measured as a biomarker of compliance with the DASH diet. The DASH diet was designed to include high amounts of whole grains, fruits, vegetables and low-fat dairy products, as well as low amounts of saturated fats, cholesterol, refined grains, sweets and red meat. Serum vitamin C in the DASH group was significantly increased compared with the control (P = 0·001). There was a significant reduction in WC (P = 0·005), fat mass (P = 0·006), hepatic fibrosis (P = 0·02) and PTT (P = 0·008) in the DASH group, compared with the control. However, there were no significant differences regarding other selected outcomes between groups. Patients in the DASH group had significantly greater increase in the levels of erythrocyte, Hb and haematocrit, as compared with the control. Adherence to the DASH diet in children with haemophilia yielded significant beneficial effects on body composition, CBC, inflammation and liver function.
Collapse
|
24
|
The impact of key fermentation parameters on the production of the all-trans isomer of menaquinone-7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Kaźmierczak-Barańska J, Karwowski BT. Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response. Nutrients 2022; 14:nu14204219. [PMID: 36296903 PMCID: PMC9611527 DOI: 10.3390/nu14204219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is the common name for a group of compounds recognized as essential for blood clotting. The group comprises phylloquinone (K1)—a 2-methyl-3-phytyl-1,4-naphthoquinone; menaquinone (K2, MK)—a group of compounds with an unsaturated side chain in position 3 of a different number of isoprene units and a 1,4-naphthoquinone group and menadione (K3, MD)—a group of synthetic, water-soluble compounds 2-methyl-1,4-naphthoquinone. However, recent epidemiological studies suggest that vitamin K has various benefits that go beyond blood coagulation processes. A dietary intake of K1 is inversely associated with the risk of pancreatic cancer, K2 has the potential to induce a differentiation in leukemia cells or apoptosis of various types of cancer cells, and K3 has a documented anti-cancer effect. A healthy diet rich in fruit and vegetables ensures an optimal supply of K1 and K2, though consumers often prefer supplements. Interestingly, the synthetic form of vitamin K—menadione—appears in the cell during the metabolism of phylloquinone and is a precursor of MK-4, a form of vitamin K2 inaccessible in food. With this in mind, the purpose of this review is to emphasize the importance of vitamin K as a micronutrient, which not only has a beneficial effect on blood clotting and the skeleton, but also reduces the risk of cancer and other pro-inflammatory diseases. A proper diet should be a basic and common preventive procedure, resulting in a healthier society and reduced burden on healthcare systems.
Collapse
|
26
|
Ziemińska M, Pawlak D, Sieklucka B, Chilkiewicz K, Pawlak K. Vitamin K-Dependent Carboxylation of Osteocalcin in Bone-Ally or Adversary of Bone Mineral Status in Rats with Experimental Chronic Kidney Disease? Nutrients 2022; 14:nu14194082. [PMID: 36235734 PMCID: PMC9572286 DOI: 10.3390/nu14194082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic kidney disease (CKD) commonly occurs with vitamin K (VK) deficiency and impaired bone mineralization. However, there are no data explaining the metabolism of endogenous VK and its role in bone mineralization in CKD. In this study, we measured serum levels of phylloquinone (VK1), menaquinone 4 and 7 (MK4, MK7), and VK-dependent proteins: osteocalcin, undercarboxylated osteocalcin (Glu-OC), and undercarboxylated matrix Gla protein (ucMGP). The carboxylated osteocalcin (Gla-OC), Glu-OC, and the expression of genes involved in VK cycle were determined in bone. The obtained results were juxtaposed with the bone mineral status of rats with CKD. The obtained results suggest that the reduced VK1 level observed in CKD rats may be caused by the accelerated conversion of VK1 to the form of menaquinones. The bone tissue possesses all enzymes, enabling the conversion of VK1 to menaquinones and VK recycling. However, in the course of CKD with hyperparathyroidism, the intensified osteoblastogenesis causes the generation of immature osteoblasts with impaired mineralization. The particular clinical significance seems to have a finding that serum osteocalcin and Glu-OC, commonly used biomarkers of VK deficiency, could be inappropriate in CKD conditions, whereas Gla-OC synthesized in bone appears to have an adverse impact on bone mineral status in this model.
Collapse
Affiliation(s)
- Marta Ziemińska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Katarzyna Chilkiewicz
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C Str., 15-222 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-7485600
| |
Collapse
|
27
|
Wianowska D, Bryshten I. New Insights into Vitamin K-From Its Natural Sources through Biological Properties and Chemical Methods of Quantitative Determination. Crit Rev Anal Chem 2022; 54:1502-1524. [PMID: 36083712 DOI: 10.1080/10408347.2022.2121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Vitamin K is one of the many health-promoting substances whose impact on the human body has been underestimated until recently. However, recently published research results have changed this situation, prompting some researchers to consider it a new panacea for diseases of old age. The result is a significant increase in interest in the accurate analysis of vitamin K in various types of samples, ranging from food, through dietary supplements, to biological matrices and clinical trials, both observational and interventional. This review summarizes the current state of knowledge about the proven and speculated biological activity of vitamin K and its importance for the world's aging societies, including the methods used for its isolation and analysis in various matrices types. Of all the analytical methods, the currently preferred methods of choice for the direct analysis of vitamin K are chromatographic methods, in particular liquid chromatography-tandem mass spectrometry. This technique, despite its sensitivity and selectivity, requires an appropriate stage of sample preparation. As there is still room for improvement in the efficiency of these methods, especially at the sample preparation stage, this review shows the directions that need to be taken to make these methods faster, more efficient and more environmentally friendly.
Collapse
Affiliation(s)
- Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Iryna Bryshten
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| |
Collapse
|
28
|
Campos Espinosa GY, Dörr de Quadros P, Fulthorpe RR, Tsopmo A. Vitamin contents and antioxidant capacity of hydroponic grown sweet basil inoculated with endophytic bacteria. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.954956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to assess the effect of inoculated endophytic bacteria on the concentrations of vitamins E (tocopherols), K (phylloquinone), B1 (thiamine), B2 (riboflavin), C (ascorbic acid) and the peroxyl radical scavenging capacity of hydroponically grown sweet basil. Endophytic strains were all isolated from hydrocarbon-stressed herbaceous plants or from basil showing superior growth. Plants inoculated with the endophytes displayed up to 40% increase (p < 0.05) in the concentration of the reduced form of vitamin C relative to control [0.56 mg/g fresh weight (FW)] which indicated less oxidative stress in the presence of endophytes. In the case of γ-tocopherol, the highest content [25.8 μg/g of fresh weight (FW)] in inoculated basils was significantly higher compared to control plants (18.5 ± 1.2 μg/g FW) (p < 0.05). Antioxidant activity (ROO∙ radicals scavenging) was as high as 94 ± 4 μM Trolox equivalents (TE)/g FW vs. 53 ± 5 μM TE/g FW for the control basil. Concentrations of vitamins C, B1, and B2 were not affected by most strains. The results showed that endophytic bacteria have the capacity to alter free radical quenching capacity and vitamin concentrations in basil plants and, that their effect is strain and nutrient dependent.
Collapse
|
29
|
Zhou S, Mehta BM, Feeney EL. A narrative review of vitamin K forms in cheese and their potential role in cardiovascular disease. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sitong Zhou
- UCD Institute of Food and Health University College Dublin Belfield Dublin 4 Ireland
| | - Bhavbhuti M Mehta
- Dairy Chemistry Department SMC College of Dairy Science Kamdhenu University Anand 388 110 Gujarat India
| | - Emma L Feeney
- UCD Institute of Food and Health University College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
30
|
Lal N, Seifan M, Berenjian A. Optimisation of the fermentation media to enhance the production of the bioactive isomer of vitamin menaquinone-7. Bioprocess Biosyst Eng 2022; 45:1371-1390. [PMID: 35864383 PMCID: PMC9302956 DOI: 10.1007/s00449-022-02752-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand.
- Department of Agricultural and Biological Engineering, Pennsylvania State University, 221 Agricultural Engineering Building, University Park, PA, 16802, USA.
| |
Collapse
|
31
|
Plants, Plants, and More Plants: Plant-Derived Nutrients and Their Protective Roles in Cognitive Function, Alzheimer’s Disease, and Other Dementias. Medicina (B Aires) 2022; 58:medicina58081025. [PMID: 36013492 PMCID: PMC9414574 DOI: 10.3390/medicina58081025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Alzheimer’s disease (AD) is the most common form of dementia, with the risk of developing it attributed to non-modifiable and modifiable factors. Currently, there is no cure for AD. A plant-based diet may protect against cognitive decline, due to the effects of plant-based nutrients such as vitamins, antioxidants, and fiber. The aim of the review is to summarize current literature on plant-based nutrients and their impact on cognition. Materials and Methods: A search was conducted on PubMed for clinical and murine studies, using combinations of the following words: “Alzheimer’s disease”, “dementia”, “cognition”, “plant-based diet”, “mild cognitive impairment”, “vitamin B”, “vitamin C”, “vitamin E, “beta carotene”, “antioxidants”, “fiber”, “vitamin K”, “Mediterranean diet”, “vitamin D”, and “mushrooms”. Results and Conclusions: A diet rich in vitamin B and antioxidants can benefit the cognitive functions of individuals as shown in randomized clinical trials. Vitamin K is associated with improved cognition, although large randomized controlled trials need to be done. Fiber has been shown to prevent cognitive decline in animal studies. Vitamin D may contribute to cognitive health via anti-inflammatory processes. Several medical organizations have recommended a plant-based diet for optimizing cognitive health and potentially helping to prevent dementia.
Collapse
|
32
|
Dunlop E, Jakobsen J, Jensen MB, Arcot J, Qiao L, Cunningham J, Black LJ. Vitamin K content of cheese, yoghurt and meat products in Australia. Food Chem 2022; 397:133772. [PMID: 35907393 DOI: 10.1016/j.foodchem.2022.133772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Vitamin K is vital for normal blood coagulation, and may influence bone, neurological and vascular health. Data on the vitamin K content of Australian foods are limited, preventing estimation of vitamin K intakes in the Australian population. We measured phylloquinone (PK) and menaquinone (MK) -4 to -10 in cheese, yoghurt and meat products (48 composite samples from 288 primary samples) by liquid chromatography with electrospray ionisation-tandem mass spectrometry. At least one K vitamer was found in every sample. The greatest mean (± standard deviation for foods sampled in multiple cities) concentrations of PK (4.9 µg/100 g), MK-4 (58 ± 9 µg/100 g) and MK-9 (8 ± 2 µg/100 g) were found in lamb liver, chicken leg meat and Cheddar cheese, respectively. Cheddar cheese (1.1 ± 0.3 µg/100 g) and cream cheese (1.0 µg/100 g) contained MK-5. MK-8 was found in Cheddar cheese only (4 ± 2 µg/100 g). As the K vitamer profile and concentrations appear to vary considerably by geographical location, Australia needs a vitamin K food composition dataset that is representative of foods consumed in Australia.
Collapse
Affiliation(s)
- Eleanor Dunlop
- Curtin School of Population Health, Curtin University, Bentley, WA 6102, Australia.
| | - Jette Jakobsen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Marie Bagge Jensen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia.
| | - Judy Cunningham
- Curtin School of Population Health, Curtin University, Bentley, WA 6102, Australia.
| | - Lucinda J Black
- Curtin School of Population Health, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
33
|
Cemortan M, Sagaidac I, Cernetchi O. Assessment of vitamin K levels in women with intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2022; 22:534. [PMID: 35778702 PMCID: PMC9248160 DOI: 10.1186/s12884-022-04875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy is a disorder characterized by pruritus and elevated liver function tests and bile acids. Poor vitamin absorption and, as a result, hypovitaminosis K can occur as a result of the pathology. Given the known effects of vitamin K, the authors considered that hypovitaminosis K could increase the risk of coagulopathic hemorrhage in pregnant women. The study revealed that 59.2% of women with intrahepatic cholestasis of pregnancy were diagnosed with hypovitaminosis K; however, 98.6% of women had normal coagulogram indices. Thus, coagulogram markers are more likely to indicate vitamin K activity than its actual level.
Collapse
Affiliation(s)
- Maria Cemortan
- Department of Obstetrics and Gynecology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.
| | - Irina Sagaidac
- Department of Obstetrics and Gynecology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| | - Olga Cernetchi
- Department of Obstetrics and Gynecology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| |
Collapse
|
34
|
Shahid A, Inam‐Ur‐Raheem M, Iahtisham‐Ul‐Haq , Nawaz MY, Rashid MH, Oz F, Proestos C, Aadil RM. Diet and lifestyle modifications: An update on non‐pharmacological approach in the management of osteoarthritis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Iahtisham‐Ul‐Haq
- Kauser Abdulla Malik School of Life Sciences Forman Christian College (A Chartered University) Punjab Pakistan
| | - Muhammad Yasir Nawaz
- Department of Pathology Faculty of Veterinary Science, University of Agriculture Faisalabad Faisalabad Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture Ataturk University Erzurum Turkey
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry National and Kapodistrian University of Athens Zografou Athens Greece
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
35
|
Tragni V, Primiano G, Tummolo A, Cafferati Beltrame L, La Piana G, Sgobba MN, Cavalluzzi MM, Paterno G, Gorgoglione R, Volpicella M, Guerra L, Marzulli D, Servidei S, De Grassi A, Petrosillo G, Lentini G, Pierri CL. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules 2022; 27:3494. [PMID: 35684429 PMCID: PMC9182050 DOI: 10.3390/molecules27113494] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Lucas Cafferati Beltrame
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Gianluigi La Piana
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, Via Amendola 207, 70126 Bari, Italy; (A.T.); (G.P.)
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.P.); (S.S.)
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy;
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy; (V.T.); (L.C.B.); (G.L.P.); (M.N.S.); (R.G.); (M.V.); (L.G.); (A.D.G.)
| |
Collapse
|
36
|
Role of Vitamin K in Chronic Kidney Disease: A Focus on Bone and Cardiovascular Health. Int J Mol Sci 2022; 23:ijms23095282. [PMID: 35563672 PMCID: PMC9099759 DOI: 10.3390/ijms23095282] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is commonly associated with vitamin K deficiency. Some of the serious complications of CKD are represented by cardiovascular disease (CVD) and skeletal fragility with an increased risk of morbidity and mortality. A complex pathogenetic link between hormonal and ionic disturbances, bone tissue and metabolism alterations, and vascular calcification (VC) exists and has been defined as chronic kidney disease–mineral and bone disorder (CKD-MBD). Poor vitamin K status seems to have a key role in the progression of CKD, but also in the onset and advance of both bone and cardiovascular complications. Three forms of vitamin K are currently known: vitamin K1 (phylloquinone), vitamin K2 (menaquinone), and vitamin K3 (menadione). Vitamin K plays different roles, including in activating vitamin K-dependent proteins (VKDPs) and in modulating bone metabolism and contributing to the inhibition of VC. This review focuses on the biochemical and functional characteristics of vitamin K vitamers, suggesting this nutrient as a possible marker of kidney, CV, and bone damage in the CKD population and exploring its potential use for promoting health in this clinical setting. Treatment strategies for CKD-associated osteoporosis and CV disease should include vitamin K supplementation. However, further randomized clinical studies are needed to assess the safety and the adequate dosage to prevent these CKD complications.
Collapse
|
37
|
Characterization of the Upper Respiratory Bacterial Microbiome in Critically Ill COVID-19 Patients. Biomedicines 2022; 10:biomedicines10050982. [PMID: 35625719 PMCID: PMC9138573 DOI: 10.3390/biomedicines10050982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
The upper respiratory tract (URT) microbiome can contribute to the acquisition and severity of respiratory viral infections. The described associations between URT microbiota and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited at microbiota genus level and by the lack of functional interpretation. Our study, therefore, characterized the URT bacterial microbiome at species level and their encoded pathways in patients with COVID-19 and correlated these to clinical outcomes. Whole metagenome sequencing was performed on nasopharyngeal samples from hospitalized patients with critical COVID-19 (n = 37) and SARS-CoV-2-negative individuals (n = 20). Decreased bacterial diversity, a reduction in commensal bacteria, and high abundance of pathogenic bacteria were observed in patients compared to negative controls. Several bacterial species and metabolic pathways were associated with better respiratory status and lower inflammation. Strong correlations were found between species biomarkers and metabolic pathways associated with better clinical outcome, especially Moraxella lincolnii and pathways of vitamin K2 biosynthesis. Our study demonstrates correlations between the URT microbiome and COVID-19 patient outcomes; further studies are warranted to validate these findings and to explore the causal roles of the identified microbiome biomarkers in COVID-19 pathogenesis.
Collapse
|
38
|
Bertuccio MP, Currò M, Caccamo D, Ientile R. Dietary Intake and Genetic Background Influence Vitamin Needs during Pregnancy. Healthcare (Basel) 2022; 10:healthcare10050768. [PMID: 35627905 PMCID: PMC9141544 DOI: 10.3390/healthcare10050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Numerous approaches demonstrate how nutritional intake can be sufficient to ensure the necessary supply of vitamins. However, it is evident that not all vitamins are contained in all foods, so it is necessary either to combine different food groups or to use a vitamin supplement to be well-fed. During pregnancy, deficiencies are often exacerbated due to increased energy and nutritional demands, causing adverse outcomes in mother and child. Micronutrient supplementation could lead to optimal pregnancy outcomes being essential for proper metabolic activities that are involved in tissue growth and functioning in the developing fetus. In order to establish adequate vitamin supplementation, various conditions should be considered, such as metabolism, nutrition and genetic elements. This review accurately evaluated vitamin requirements and possible toxic effects during pregnancy. Much attention was given to investigate the mechanisms of cell response and risk assessment of practical applications to improve quality of life. Importantly, genetic studies suggest that common allelic variants and polymorphisms may play an important role in vitamin metabolism during pregnancy. Changes in gene expression of different proteins involved in micronutrients’ metabolism may influence the physiological needs of the pregnant woman.
Collapse
|
39
|
Ellis JL, Fu X, Karl JP, Hernandez CJ, Mason JB, DeBose-Boyd RA, Booth SL. Multiple Dietary Vitamin K Forms Are Converted to Tissue Menaquinone-4 in Mice. J Nutr 2022; 152:981-993. [PMID: 34550377 PMCID: PMC8971004 DOI: 10.1093/jn/nxab332] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vitamin K is a term that comprises a family of structurally related quinones, phylloquinone (PK) and the menaquinones (MKn), that share a common naphthoquinone ring but vary in sidechain length (n) and saturation. Dietary PK is a biosynthetic precursor to tissue menaquinone-4 (MK4), but little is known about the absorption and metabolism of dietary MKn. OBJECTIVE To characterize the absorption and metabolism of dietary MKn relative to PK. METHODS In the 4-week diet study, 10-week-old male and female C57BL/6 mice were pair-fed a vitamin K deficient diet (control) or a diet supplemented with 5.0 μmol/kg total PK, MK4, and/or MK9 (separately and in combination). In the 1-week stable isotope study, 12-week-old mice were pair-fed diets containing 2.2 μmol/kg PK (unlabeled control), 2H7PK, 13C11MK4, 2H7MK7, or 2H7MK9. Vitamin K tissue content was quantified by HPLC and/or LC-MS, and concentrations were compared by sex and diet group using 2-factor ANOVA. RESULTS Regardless of the form(s) of vitamin K provided in the diet, tissue MK4 concentrations did not differ across equimolar supplemented groups in the kidney, adipose, reproductive organ, bone, or pancreas in either males or females in the diet study (all P values > 0.05). Isotopic labeling confirmed the naphthoquinone ring of MK4 in tissues originated from the administered dietary PK or MKn. Despite equimolar supplementation, accumulation of the administered dietary form differed across diet groups in small intestinal segments (all P values < 0.002) and the liver (P < 0.001). Female mice had greater total vitamin K than males in every tissue examined (P < 0.05). CONCLUSIONS Dietary PK, MK4, MK7, and MK9 all served as precursors to tissue MK4 in mice. This study expands our understanding of vitamin K metabolism and supports a common conversion mechanism of all dietary vitamin K forms to MK4. Further investigation of the metabolism and physiological roles of MK4 that may be independent of classical vitamin K function is warranted.
Collapse
Affiliation(s)
- Jessie L Ellis
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- The Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - J Philip Karl
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Christopher J Hernandez
- Schools of Mechanical and Aerospace Engineering & Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
40
|
Karamzad N, Faraji E, Adeli S, Sullman MJM, Pourghassem Gargari B. The effect of menaquinone-7 supplementation on dp-ucMGP, PIVKAII, inflammatory markers, and body composition in type 2 diabetes patients: a randomized clinical trial. Nutr Diabetes 2022; 12:15. [PMID: 35365594 PMCID: PMC8976086 DOI: 10.1038/s41387-022-00192-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a common disorder that is characterized by chronic hyperglycemia and chronic inflammation, which also have a reinforcing effect on each other. The present research studied the effects of menaquinone (MK-7) supplementation on serum dp-ucMGP (dephospho uncarboxylated Matrix Gla Protein), PIVKAII (Prothrombin Induced by Vitamin K Absence), inflammatory markers and body composition indices in type 2 diabetes mellitus (T2DM) patients. METHODS This 12-week double-blind placebo-controlled randomized clinical trial allocated 60 T2DM patients equally into a MK-7 (200 mcg/day) group or a placebo group. All patients also received dietary advice at the beginning of study and their dietary intakes were checked using a 3-day food record. The body composition of each patient was also measured and their vitamin K status was assessed using the ELISA method to measure serum dp-ucMGP and PIVKAII. In addition, inflammatory status indices were also measured, including hsCRP (high-sensitivity C-reactive protein), IL-6 (interleukin-6) and TNF-α (tumor necrosis factor alpha). All measurements were made both before and after the intervention period. RESULTS In total 45 patients completed the trial (MK-7 group = 23 and placebo group = 22). The calorie and macronutrient intake of the two groups were similar pre and post intervention. There were statistically significant increases in dietary vitamin K intake for both groups over the course of the study (p < 0.05), but the intergroup differences were not significant. The body composition indices (i.e., body fat percentage, fat mass, fat free mass, muscle mass, bone mass and total body water) were not significantly different between groups or across the trial. The serum levels of the vitamin K markers, PIVKAII and dp-ucMGP, decreased significantly in the MK-7 group over the course of the study (p < 0.05), but there was no decrease in the placebo group. However, after adjusting for the baseline levels and changes in vitamin K intake, the between group differences were only significant for PIVKAII (p < 0.05). Following the intervention, the serum levels of the inflammatory markers (hsCRP, IL-6, and TNF-α) were significantly lower in the MK-7 group (p < 0.05), but not in the placebo group. However, the between group differences in the inflammatory markers were not statistically significant. CONCLUSIONS Although further studies are needed, it appears that MK-7 supplementation can be effective in improving PIVKAII levels, but not for improving dp-ucMGP, inflammatory status or the body composition indices of T2DM patients. TRIAL REGISTRATION NUMBER This study was prospectively registered at the Iranian Registry of Clinical Trials on the 20th of May 2019 (ID: IRCT20100123003140N22).
Collapse
Affiliation(s)
- Nahid Karamzad
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Faraji
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghayegh Adeli
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus.,Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Bahram Pourghassem Gargari
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Bansal V, Chatterjee I. Association of Vitamins and Neurotransmitters: Understanding the Effect on Schizophrenia. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Jeong IS, Gu SY, Park KH, Lee SY, Kim SG. A simultaneous determination and monitoring of vitamin K1 (phylloquinone) and vitamin K2 (menaquinone) in vegetable drinks and natto sold on the Korean market. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01147-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
44
|
Chetot T, Benoit E, Lambert V, Lattard V. Overexpression of protein disulfide isomerase enhances vitamin K epoxide reductase activity. Biochem Cell Biol 2022; 100:152-161. [PMID: 35007172 DOI: 10.1139/bcb-2021-0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is the target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and have been suspected to confer resistance to VKA and/or affect its velocity. Nevertheless, the results between studies have been conflicting, the functional characterization of these mutations in a cell system being complex due to the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to globally evaluate the vitamin K cycle in the HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when the VKORC1/VKORC1L1 were knocked out, the K/KO balance decreased significantly due to an accumulation of vitamin KO. On the contrary, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating a limitation of the VKOR activity. This limitation was shown to be due to an insufficient expression of the activation partner of VKORC1, as overexpressing the protein disulfide isomerase (PDI) overcomes the limitation. This study is the first to demonstrate a functional interaction between VKORC1 and the PDI enzyme.
Collapse
Affiliation(s)
| | | | | | - Virginie Lattard
- VetAgro Sup, 88622, USC1233 INRAe-VetAgroSup, Marcy-l'Etoile, France, 69280;
| |
Collapse
|
45
|
Yang X, Gil MI, Yang Q, Tomás-Barberán FA. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr Rev Food Sci Food Saf 2022; 21:4-45. [PMID: 34935264 DOI: 10.1111/1541-4337.12877] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Lettuce is one of the most commonly consumed leafy vegetables worldwide and is available throughout the entire year. Lettuce is also a significant source of natural phytochemicals. These compounds, including glycosylated flavonoids, phenolic acids, carotenoids, the vitamin B groups, ascorbic acid, tocopherols, and sesquiterpene lactones, are essential nutritional bioactive compounds. This review aims to provide a comprehensive understanding of the composition of health-promoting compounds in different types of lettuce, the potential health benefits of lettuce in reducing the risks of chronic diseases, and the effect of preharvest and postharvest practices on the biosynthesis and accumulation of health-promoting compounds in lettuce.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - María I Gil
- Centre for Applied Biology and Soil Science of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Francisco A Tomás-Barberán
- Centre for Applied Biology and Soil Science of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
46
|
Zhu S, Song Y, Pei J, Xue F, Cui X, Xiong X, Li C. The application of photodynamic inactivation to microorganisms in food. Food Chem X 2021; 12:100150. [PMID: 34761205 PMCID: PMC8566761 DOI: 10.1016/j.fochx.2021.100150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Nowadays, food safety issues have drawn increased attention due to the continual occurrence of infectious diseases caused by foodborne pathogens, which is an important factor causing food safety hazard. Meanwhile, the emergence of an increasing number of antibiotic-resistant pathogens is a worrisome phenomenon. Therefore, it is imperative to find new technologies with low-cost to inactivate pathogenic microorganisms and prevent cross-contamination. Compared with traditional preservatives, photodynamic inactivation (PDI) has emerged as a novel and promising strategy to eliminate foodborne pathogens with advantages such as non-toxic and low microbial resistance, which also meets the demand of current consumers for green treatment. Over the past few years, reports of using this technology for food safety have increased rapidly. This review summarizes recent progresses in the development of photodynamic inactivation of foodborne microorganisms. The mechanisms, factors influencing PDI and the application of different photosensitizers (PSs) in different food substrates are reviewed.
Collapse
Affiliation(s)
- Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiliu Pei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaowen Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
47
|
Yildirim E, Ilina L, Laptev G, Filippova V, Brazhnik E, Dunyashev T, Dubrovin A, Novikova N, Tiurina D, Tarlavin N, Laishev K. The structure and functional profile of ruminal microbiota in young and adult reindeers ( Rangifer tarandus) consuming natural winter-spring and summer-autumn seasonal diets. PeerJ 2021; 9:e12389. [PMID: 34900412 PMCID: PMC8627130 DOI: 10.7717/peerj.12389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background The key natural area of Russian reindeer (Rangifer tarandus, Nenets breed) is arctic zones, with severe climatic conditions and scarce feed resources, especially in the cold winter season. The adaptation of reindeer to these conditions is associated not only with the genetic potential of the animal itself. The rumen microbiome provides significant assistance in adapting animals to difficult conditions by participating in the fiber digestion. The aim of our study is to investigate the taxonomy and predicted metabolic pathways of the ruminal microbiota (RM) during the winter–spring (WS) and summer–autumn (SA) seasons, in calves and adult reindeer inhabiting the natural pastures of the Yamalo-Nenetsky Autonomous District of the Russian Federation. Methods The RM in reindeer was studied using the Next Generation Sequencing method with the MiSeq (Illumina, San Diego, CA, USA) platform. Reconstruction and prediction of functional profiles of the metagenome, gene families, and enzymes were performed using the software package PICRUSt2 (v.2.3.0). Results The nutritional value of WS and SA diets significantly differed. Crude fiber content in the WS diet was higher by 22.4% (p < 0.05), compared to SA, indicating possibly poorer digestibility and necessity of the adaptation of the RM to this seasonal change. A total of 22 bacterial superphyla and phyla were found in the rumen, superphylum Bacteroidota and phylum Firmicutes being the dominating taxa (up to 48.1% ± 4.30% and 46.1% ± 4.80%, respectively); while only two archaeal phyla presented as minor communities (no more then 0.54% ± 0.14% totally). The percentages of the dominating taxa were not affected by age or season. However, significant changes in certain minor communities were found, with seasonal changes being more significant than age-related ones. The percentage of phylum Actinobacteriota significantly increased (19.3-fold) in SA, compared to WS (p = 0.02) in adults, and the percentage of phylum Cyanobacteria increased up to seven-fold (p = 0.002) in adults and calves. Seasonal changes in RM can improve the ability of reindeer to withstand the seasons characterized by a low availability of nutrients. The PICRUSt2 results revealed 257 predicted metabolic pathways in RM: 41 pathways were significantly (p < 0.05) influenced by season and/or age, including the processes of synthesis of vitamins, volatile fatty acids, and pigments; metabolism of protein, lipids, and energy; pathogenesis, methanogenesis, butanediol to pyruvate biosynthesis, cell wall biosynthesis, degradation of neurotransmitters, lactic acid fermentation, and biosynthesis of nucleic acids. A large part of these changeable pathways (13 of 41) was related to the synthesis of vitamin K homologues. Conclusion The results obtained improve our knowledge on the structure and possible metabolic pathways of the RM in reindeer, in relation to seasonal changes.
Collapse
Affiliation(s)
- Elena Yildirim
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Larisa Ilina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Georgy Laptev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | | | - Evgeni Brazhnik
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Timur Dunyashev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Andrey Dubrovin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Natalia Novikova
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Daria Tiurina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Nikolay Tarlavin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Kasim Laishev
- Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, Pushkin, Saint-Petersurg, Russia
| |
Collapse
|
48
|
The Effects of Osteoporotic and Non-osteoporotic Medications on Fracture Risk and Bone Mineral Density. Drugs 2021; 81:1831-1858. [PMID: 34724173 PMCID: PMC8578161 DOI: 10.1007/s40265-021-01625-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Osteoporosis is a highly prevalent bone disease affecting more than 37.5 million individuals in the European Union (EU) and the United States of America (USA). It is characterized by low bone mineral density (BMD), impaired bone quality, and loss of structural and biomechanical properties, resulting in reduced bone strength. An increase in morbidity and mortality is seen in patients with osteoporosis, caused by the approximately 3.5 million new osteoporotic fractures occurring every year in the EU. Currently, different medications are available for the treatment of osteoporosis, including anti-resorptive and osteoanabolic medications. Bisphosphonates, which belong to the anti-resorptive medications, are the standard treatment for osteoporosis based on their positive effects on bone, long-term experience, and low costs. However, not only medications used for the treatment of osteoporosis can affect bone: several other medications are suggested to have an effect on bone as well, especially on fracture risk and BMD. Knowledge about the positive and negative effects of different medications on both fracture risk and BMD is important, as it can contribute to an improvement in osteoporosis prevention and treatment in general, and, even more importantly, to the individual's health. In this review, we therefore discuss the effects of both osteoporotic and non-osteoporotic medications on fracture risk and BMD. In addition, we discuss the underlying mechanisms of action.
Collapse
|
49
|
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 2021; 95:35-53. [PMID: 34798467 DOI: 10.1016/j.nutres.2021.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays important roles in the maintenance of host health and the pathogenesis of many diseases. Diet is a key modulator of the gut microbiome. There is increasing evidence that nutrients other than fermentable fiber affect the gut microbial composition. In this review, we discuss the effects of vitamins on the gut microbiome, and related gastrointestinal health, based on in vitro, animal and human studies. Some vitamins, when provided in large doses or when delivered to the large intestine, have been shown to beneficially modulate the gut microbiome by increasing the abundance of presumed commensals (vitamins A, B2, D, E, and beta-carotene), increasing or maintaining microbial diversity (vitamins A, B2, B3, C, K) and richness (vitamin D), increasing short chain fatty acid production (vitamin C), or increasing the abundance of short chain fatty acid producers (vitamins B2, E). Others, such as vitamins A and D, modulate the gut immune response or barrier function, thus, indirectly influencing gastrointestinal health or the microbiome. Future research is needed to explore these potential effects and to elucidate the underlying mechanisms and host health benefits.
Collapse
Affiliation(s)
- Van T Pham
- DSM Nutritional Products, Kaiseraugst, Switzerland.
| | - Susanne Dold
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Enhancing in vitro oocyte maturation competence and embryo development in farm animals: roles of vitamin-based antioxidants – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Oocyte/embryo in vitro culture is one of the most important assisted reproductive technologies used as a tool for maintaining genetic resources biodiversity and the inheritance of valuable genetic resources through generations. The success of such processes affects the final goal of the in vitro culture, getting viable and healthy offspring. In common in vitro oocyte maturation and/or embryo development techniques, the development of oocytes/embryos is carried out at 5% carbon dioxide and roughly 20% atmosphere-borne oxygen ratios in cell culture incubators due to their reduced cost in comparison with low atmospheric oxygen-tension incubators. These conditions are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles, as well as genetic material. The present review mainly focuses on the antioxidant roles of different vitamins on in vitro oocyte maturation competence and embryo development in farm animals. Because, the conditions of in vitro embryo production (IVEP) are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles as well as genetic material. The use of antioxidant agents may prevent the extreme augmentation of ROS generation and enhance in vitro matured oocyte competence and embryo development. Therefore, this review aimed to provide an updated outline of the impact of antioxidant vitamin (Vit) supplementations during in vitro maturation (IVM) and in vitro fertilization (IVF) on oocyte maturation and consequent embryo development, in various domestic animal species. Thus, the enrichment of the culture media with antioxidant agents may prevent and neutralize the extreme augmentation of ROS generation and enhance the in vitro embryo production (IVEP) outcomes.
Collapse
|