1
|
Hadley K, Wheat S, Rogers HH, Balakumar A, Gonzales-Pacheco D, Davis SS, Linstadt H, Cushing T, Ziska LH, Piper C, Sorensen C. Mechanisms underlying food insecurity in the aftermath of climate-related shocks: a systematic review. Lancet Planet Health 2023; 7:e242-e250. [PMID: 36774944 DOI: 10.1016/s2542-5196(23)00003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Food insecurity is prevalent, affecting 1·2 billion people globally in 2021. However, the effects of food insecurity are unequally distributed across populations and climate-related shocks threaten to exacerbate food insecurity and associated health consequences. The mechanisms underlying this exacerbation at the household level are largely unknown. We aimed to synthesise the available evidence on the mechanisms connecting extreme climate events to household-level food insecurity and highlight the research gaps that must be addressed to inform better food security and health policy. For this systematic review, a comprehensive literature search was done by a medical librarian in February, 2021 for articles about food security and climate-related shocks. Relevant publications were identified by searching the following databases with a combination of standardised index terms and keywords: MEDLINE, Embase, CINAHL, GreenFILE, Environment Complete, Web of Science Core Collection, and Global Health. Searches were limited to human studies published in English. Included studies measured food security outcomes using indicators developed by the UN Food and Agricultural Organization (ie, consumption patterns, livelihood change, malnutrition, and mortality) and explained the mechanism behind the household-level or population-level food insecurity. Purely theoretical, modelling, and review studies were excluded. Quality assessment was conducted using the appropriate Joanna Briggs Institute Critical Appraisal Tool. Data were analysed using thematic analysis of the categories of mechanism (interpreted using internationally accepted frameworks), risk and resilience factors, and author policy recommendations. We found a paucity of data with only 18 studies meeting criteria for inclusion out of 337 studies identified for full-text review. All the studies that were included in our analysis showed worse food security outcomes after climate-related shocks. Food availability was the most common mechanism cited (17 studies), although most studies addressed at least one additional mechanism (15 studies). Studies were of mixed methodologies with nuanced discussions of risk and resilience factors, and of policy recommendations. This systematic review shows that there is an incomplete assessment of food security at the household and community level after climate-related shocks in the literature and finds that food availability is the primary mechanism studied. The low number of studies on this topic limits subgroup analysis and generalisability; however, the good quality of the studies allows for important policy recommendations around improving resilience to climate shocks and suggestions for future research including the need for a more granular understanding of mechanisms and feasible adaptation solutions.
Collapse
Affiliation(s)
- Kristie Hadley
- Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Stefan Wheat
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Heidi Honegger Rogers
- College of Nursing and Office of Community Health, University of New Mexico, Albuquerque, NM, USA
| | - Arjun Balakumar
- Emergency Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Diana Gonzales-Pacheco
- College of Nursing and Office of Community Health, University of New Mexico, Albuquerque, NM, USA
| | - Sarah Shrum Davis
- College of Nursing and Office of Community Health, University of New Mexico, Albuquerque, NM, USA
| | | | - Tracy Cushing
- Strauss Health Sciences Library, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Lewis H Ziska
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christi Piper
- Strauss Health Sciences Library, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Cecilia Sorensen
- Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
De Guzman K, Stone G, Yang AR, Schaffer KE, Lo S, Kojok R, Kirkpatrick CR, Del Pozo AG, Le TT, DePledge L, Frost EL, Kayser GL. Drinking water and the implications for gender equity and empowerment: A systematic review of qualitative and quantitative evidence. Int J Hyg Environ Health 2023; 247:114044. [PMID: 36395654 DOI: 10.1016/j.ijheh.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Safe drinking water is a fundamental human right, yet more than 785 million people do not have access to it. The burden of water management disproportionately falls on women and young girls, and they suffer the health, psychosocial, political, educational, and economic effects. While water conditions and disease outcomes have been widely studied, few studies have summarized the research on drinking water and implications for gender equity and empowerment (GEE). METHODS A systematic review of primary literature published between 1980 and 2019 was conducted on drinking water exposures and management and the implications for GEE. Ten databases were utilized (EMBASE, PubMed, Web of Science, Cochrane, ProQuest, Campbell, the British Library for Development Studies, SSRN, 3ie International Initiative for Impact Evaluation, and clinicaltrials.gov). Drinking water studies with an all-female cohort or disaggregated findings according to gender were included. RESULTS A total of 1280 studies were included. GEE outcomes were summarized in five areas: health, psychosocial stress, political power and decision-making, social-educational conditions, and economic and time-use conditions. Water quality exposures and implications for women's health dominated the literature reviewed. Women experienced higher rates of bladder cancer when exposed to arsenic, trihalomethanes, and chlorine in drinking water and higher rates of breast cancer due to arsenic, trichloroethylene, and disinfection byproducts in drinking water, compared to men. Women that were exposed to arsenic experienced higher incidence rates of anemia and adverse pregnancy outcomes compared to those that were not exposed. Water-related skin diseases were associated with increased levels of psychosocial stress and social ostracization among women. Women had fewer decision-making responsibilities, economic independence, and employment opportunities around water compared to men. CONCLUSION This systematic review confirms the interconnected nature of gender and WaSH outcomes. With growing attention directed towards gender equity and empowerment within WaSH, this analysis provides key insights to inform future research and policy.
Collapse
Affiliation(s)
- Kimberly De Guzman
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Gabriela Stone
- Department of Global Health, University of California, San Diego, United States
| | - Audrey R Yang
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Kristen E Schaffer
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Shelton Lo
- T.H. Chan School of Public Health, Harvard University, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Rola Kojok
- Department of Health Promotion and Behavioral Science, Public Health Program, San Diego State University, San Diego, CA, United States
| | - Colette R Kirkpatrick
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Ada G Del Pozo
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | - Tina T Le
- Department of Family Medicine and Public Health, University of California, San Diego, United States
| | | | - Elizabeth L Frost
- School of Public Health, San Diego State University, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA; The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Georgia L Kayser
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Romanello M, Di Napoli C, Drummond P, Green C, Kennard H, Lampard P, Scamman D, Arnell N, Ayeb-Karlsson S, Ford LB, Belesova K, Bowen K, Cai W, Callaghan M, Campbell-Lendrum D, Chambers J, van Daalen KR, Dalin C, Dasandi N, Dasgupta S, Davies M, Dominguez-Salas P, Dubrow R, Ebi KL, Eckelman M, Ekins P, Escobar LE, Georgeson L, Graham H, Gunther SH, Hamilton I, Hang Y, Hänninen R, Hartinger S, He K, Hess JJ, Hsu SC, Jankin S, Jamart L, Jay O, Kelman I, Kiesewetter G, Kinney P, Kjellstrom T, Kniveton D, Lee JKW, Lemke B, Liu Y, Liu Z, Lott M, Batista ML, Lowe R, MacGuire F, Sewe MO, Martinez-Urtaza J, Maslin M, McAllister L, McGushin A, McMichael C, Mi Z, Milner J, Minor K, Minx JC, Mohajeri N, Moradi-Lakeh M, Morrissey K, Munzert S, Murray KA, Neville T, Nilsson M, Obradovich N, O'Hare MB, Oreszczyn T, Otto M, Owfi F, Pearman O, Rabbaniha M, Robinson EJZ, Rocklöv J, Salas RN, Semenza JC, Sherman JD, Shi L, Shumake-Guillemot J, Silbert G, Sofiev M, Springmann M, Stowell J, Tabatabaei M, Taylor J, Triñanes J, Wagner F, Wilkinson P, Winning M, Yglesias-González M, Zhang S, Gong P, Montgomery H, Costello A. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet 2022; 400:1619-1654. [PMID: 36306815 PMCID: PMC7616806 DOI: 10.1016/s0140-6736(22)01540-9] [Citation(s) in RCA: 361] [Impact Index Per Article: 180.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022]
Abstract
The 2022 report of the Lancet Countdown is published as the world confronts profound and concurrent systemic shocks. Countries and health systems continue to contend with the health, social, and economic impacts of the COVID-19 pandemic, while Russia’s invasion of Ukraine and a persistent fossil fuel overdependence has pushed the world into global energy and cost-of-living crises. As these crises unfold, climate change escalates unabated. Its worsening impacts are increasingly affecting the foundations of human health and wellbeing, exacerbating the vulnerability of the world’s populations to concurrent health threats. During 2021 and 2022, extreme weather events caused devastation across every continent, adding further pressure to health services already grappling with the impacts of the COVID-19 pandemic. Floods in Australia, Brazil, China, western Europe, Malaysia, Pakistan, South Africa, and South Sudan caused thousands of deaths, displaced hundreds of thousands of people, and caused billions of dollars in economic losses. Wildfires caused devastation in Canada, the USA, Greece, Algeria, Italy, Spain, and Türkiye, and record temperatures were recorded in many countries, including Australia, Canada, India, Italy, Oman, Türkiye, Pakistan, and the UK. With advancements in the science of detection and attribution studies, the influence of climate change over many events has now been quantified. Because of the rapidly increasing temperatures, vulnerable populations (adults older than 65 years, and children younger than one year of age) were exposed to 3·7 billion more heatwave days in 2021 than annually in 1986–2005 (indicator 1.1.2 ), and heat-related deaths increased by 68% between 2000–04 and 2017–21 (indicator 1.1.5 ), a death toll that was significantly exacerbated by the confluence of the COVID-19 pandemic. Simultaneously, the changing climate is affecting the spread of infectious diseases, putting populations at higher risk of emerging diseases and co-epidemics. Coastal waters are becoming more suitable for the transmission of Vibrio pathogens; the number of months suitable for malaria transmission increased by 31·3% in the highland areas of the Americas and 13·8% in the highland areas of Africa from 1951–60 to 2012–21, and the likelihood of dengue transmission rose by 12% in the same period (indicator 1.3.1). The coexistence of dengue outbreaks with the COVID-19 pandemic led to aggravated pressure on health systems, misdiagnosis, and difficulties in management of both diseases in many regions of South America, Asia, and Africa. The economic losses associated with climate change impacts are also increasing pressure on families and economies already challenged with the synergistic effects of the COVID-19 pandemic and the international cost-of-living and energy crises, further undermining the socioeconomic determinants that good health depends on. Heat exposure led to 470 billion potential labour hours lost globally in 2021 (indicator 1.1.4 ), with potential income losses equivalent to 0·72% of the global economic output, increasing to 5·6% of the GDP in low Human Development Index (HDI) countries, where workers are most vulnerable to the effects of financial fluctuations (indicator 4.1.3 ). Meanwhile, extreme weather events caused damage worth US$253 billion in 2021, particularly burdening people in low HDI countries in which almost none of the losses were insured (indicator 4.1.1 ). Through multiple and interconnected pathways, every dimension of food security is being affected by climate change, aggravating the impacts of other coexisting crises. The higher temperatures threaten crop yields directly, with the growth seasons of maize on average 9 days shorter in 2020, and the growth seasons of winter wheat and spring wheat 6 days shorter than for 1981–2010 globally (indicator 1.4 ). The threat to crop yields adds to the rising impact of extreme weather on supply chains, socioeconomic pressures, and the risk of infectious disease transmission, undermining food availability, access, stability, and utilisation. New analysis suggests that extreme heat was associated with 98 million more people reporting moderate to severe food insecurity in 2020 than annually in 1981–2010, in 103 countries analysed (indicator 1.4 ). The increasingly extreme weather worsens the stability of global food systems, acting in synergy with other concurrent crises to reverse progress towards hunger eradication. Indeed, the prevalence of undernourishment increased during the COVID-19 pandemic, and up to 161 million more people faced hunger during the COVID-19 pandemic in 2020 than in 2019. This situation is now worsened by Russia’s invasion of Ukraine and the energy and cost-of-living crises, with impacts on international agricultural production and supply chains threatening to result in 13 million additional people facing undernutrition in 2022.
Collapse
Affiliation(s)
- Marina Romanello
- Institute for Global Health, University College London, London, UK.
| | - Claudia Di Napoli
- School of Agriculture Policy and Development, University of Reading, Reading, UK
| | - Paul Drummond
- Institute for Sustainable Resources, University College London, London, UK
| | - Carole Green
- Department of Global Health, Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Harry Kennard
- UCL Energy Institute, University College London, London, UK
| | - Pete Lampard
- Department of Health Sciences, University of York, York, UK
| | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | - Nigel Arnell
- Department of Meteorology, University of Reading, Reading, UK
| | - Sonja Ayeb-Karlsson
- Institute for Risk and Disaster Reduction, University College London, London, UK
| | | | - Kristine Belesova
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kathryn Bowen
- School of Population Health, University of Melbourne, Melbourne, VIC, Australia
| | - Wenjia Cai
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Diarmid Campbell-Lendrum
- Department of Environment, Climate Change, and Health, World Health Organization, Geneva, Switzerland
| | - Jonathan Chambers
- Institute of Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Carole Dalin
- Institute for Sustainable Resources, University College London, London, UK
| | - Niheer Dasandi
- School of Government, University of Birmingham, Birmingham, UK
| | - Shouro Dasgupta
- Economic Analysis of Climate Impacts and Policy Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici, Venice, Italy
| | - Michael Davies
- Institute for Environmental Design and Engineering, University College London, London, UK
| | | | - Robert Dubrow
- Department of Environmental Health Sciences and Yale Center on Climate Change and Health, Yale University, New Haven, CT, USA
| | - Kristie L Ebi
- Department of Global Health, Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Matthew Eckelman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Paul Ekins
- Institute for Sustainable Resources, University College London, London, UK
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Hilary Graham
- Department of Health Sciences, University of York, York, UK
| | - Samuel H Gunther
- NUS Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ian Hamilton
- UCL Energy Institute, University College London, London, UK
| | - Yun Hang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Stella Hartinger
- Facultad de Salud Publica y Administracion, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kehan He
- Bartlett Faculty of the Built Environment, University College London, London, UK
| | - Jeremy J Hess
- Department of Global Health, Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Shih-Che Hsu
- UCL Energy Institute, University College London, London, UK
| | - Slava Jankin
- Data Science Lab, Hertie School, Berlin, Germany
| | | | - Ollie Jay
- Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Ilan Kelman
- Institute for Global Health, University College London, London, UK
| | | | - Patrick Kinney
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Tord Kjellstrom
- Health and Environmental International Trust, Nelson, New Zealand
| | | | - Jason K W Lee
- NUS Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Bruno Lemke
- School of Health, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Yang Liu
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhao Liu
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Melissa Lott
- Air Quality and Greenhouse Gases Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Martin Lotto Batista
- Barcelona Supercomputing Center, Centro Nacional de Supercomputacion, Barcelona, Spain
| | - Rachel Lowe
- Catalan Institution for Research and Advanced Studies and Barcelona Supercomputing Center, Barcelona, Spain
| | - Frances MacGuire
- Institute for Global Health, University College London, London, UK
| | - Maquins Odhiambo Sewe
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | | | - Mark Maslin
- Department of Geography, University College London, London, UK
| | - Lucy McAllister
- Center for Energy Markets, Technical University of Munich, Munich, Germany
| | - Alice McGushin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Celia McMichael
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Zhifu Mi
- Barlett School of Sustainable Construction, University of London, London, UK
| | - James Milner
- Department of Public Health, Environment, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Kelton Minor
- Copenhagen Center for Social Data Science, University of Copenhagen, Copenhagen, Denmark
| | - Jan C Minx
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Nahid Mohajeri
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Maziar Moradi-Lakeh
- Preventative Medicine and Public Health Research Centre, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Karyn Morrissey
- Department of Technology, Management and Economics Sustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Kris A Murray
- MRC Unit The Gambia at LSHTM, London School of Hygiene & Tropical Medicine, London, UK
| | - Tara Neville
- Department of Environment, Climate Change, and Health, World Health Organization, Geneva, Switzerland
| | - Maria Nilsson
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Nick Obradovich
- Centre for Humans and Machines, Max Planck Institute for Human Development, Berlin, Germany
| | - Megan B O'Hare
- Institute for Global Health, University College London, London, UK
| | - Tadj Oreszczyn
- UCL Energy Institute, University College London, London, UK
| | - Matthias Otto
- Department of Arts, Media, and Digital Technologies, Nelson Marlborough Institute of Technology, Nelson, New Zealand
| | - Fereidoon Owfi
- Iranian Fisheries Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Olivia Pearman
- Cooperative Institute of Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Mahnaz Rabbaniha
- Iranian Fisheries Research Institute, Agricultural Research, Education, and Extension Organisation, Tehran, Iran
| | - Elizabeth J Z Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science, London, UK
| | - Joacim Rocklöv
- Heidelberg Institute for Global Health and Interdisciplinary Centre forScientific Computing, University of Heidelberg, Heidelberg, Germany
| | - Renee N Salas
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jan C Semenza
- Heidelberg Institute for Global Health and Interdisciplinary Centre forScientific Computing, University of Heidelberg, Heidelberg, Germany
| | - Jodi D Sherman
- Department of Anesthesiology, Yale University, New Haven, CT, USA
| | - Liuhua Shi
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Grant Silbert
- Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | | | - Marco Springmann
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jennifer Stowell
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Malaysia
| | - Jonathon Taylor
- Department of Civil Engineering, Tampere University, Tampere, Finland
| | - Joaquin Triñanes
- Department of Electronics and Computer Science, Universidade de Santiago de Compostela, Santiago, Spain
| | - Fabian Wagner
- Energy, Climate, and Environment Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Paul Wilkinson
- Department of Public Health, Environment, and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Winning
- Institute for Sustainable Resources, University College London, London, UK
| | - Marisol Yglesias-González
- Centro Latinoamericano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Shihui Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Peng Gong
- Department of Geography, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hugh Montgomery
- Centre for Human Health and Performance, University College London, London, UK
| | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
4
|
Tiwari I, Tilstra M, Campbell SM, Nielsen CC, Hodgins S, Osornio Vargas AR, Whitfield K, Sapkota BP, Yamamoto SS. Climate change impacts on the health of South Asian children and women subpopulations - A scoping review. Heliyon 2022; 8:e10811. [PMID: 36203903 PMCID: PMC9529585 DOI: 10.1016/j.heliyon.2022.e10811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background and objectives Climate change impacts are felt unequally worldwide; populations that experience geographical vulnerability, those living in small island states and densely populated coastal areas, and children and women are affected disproportionately. This scoping review aims to synthesize evidence from relevant studies centred on South Asia, identify research gaps specifically focused on children and women's health, and contribute to knowledge about South Asia's existing mitigation and adaptation strategies. Methods A research librarian executed the search on six databases using controlled vocabulary (e.g., MeSH, Emtree, etc.) and keywords representing the concepts “vulnerable populations” and “climate change” and “health impacts” and “South Asia.” Databases were searched from January 2010 to May 2020. Papers were screened independently by two researchers. Results Forty-two studies were included, of which 23 were based in India, 14 in Bangladesh, and five in other South Asian countries. Nineteen studies focused on meteorological factors as the primary exposure. In contrast, thirteen focused on extreme weather events, nine on air pollution, and one on salinity in coastal areas. Thirty-four studies focused on the health impacts on children related to extreme weather events, meteorological factors, and air pollution, while only eight studies looked at health impacts on women. Undernutrition, ARI (acute respiratory infection), diarrheal diseases, low birth weight, and premature mortality were the major health impacts attributed to extreme weather events, meteorological factors, and air pollution exposure in children and women in the region. Conclusion Extreme weather events, meteorological factors and air pollution have affected the health of children and women in South Asia. However, the gap in the literature across the South Asian countries concerning relationships between exposure to extreme weather events, meteorological factors, air pollution and health effects, including mental health problems in children and women, are opportunities for future work.
Collapse
Affiliation(s)
- Ishwar Tiwari
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Corresponding author.
| | - McKenzie Tilstra
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Sandra M. Campbell
- John W. Scott Health Science Library, University of Alberta, Edmonton AB, T6G 2R7, Canada
| | - Charlene C. Nielsen
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Stephen Hodgins
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Alvaro R. Osornio Vargas
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Kyle Whitfield
- School of Urban and Regional Planning, Faculty of Science, University of Alberta, 116 & 85 Ave, Edmonton, AB
| | - Bhim Prasad Sapkota
- Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany
- Ministry of Health and Population, Government of Nepal, Ram Shah Path, Kathmandu, Nepal
| | - Shelby S. Yamamoto
- School of Public Health, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| |
Collapse
|