1
|
Huynh DT, Nolfi E, Medfai L, van Ulsen P, Jong WSP, Sijts AJAM, Luirink J. Intranasal delivery of Salmonella OMVs decorated with Chlamydia trachomatis antigens induces specific local and systemic immune responses. Hum Vaccin Immunother 2024; 20:2330768. [PMID: 38517203 PMCID: PMC10962599 DOI: 10.1080/21645515.2024.2330768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.
Collapse
Affiliation(s)
- Dung T. Huynh
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emanuele Nolfi
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lobna Medfai
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Ulsen
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joen Luirink
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Laotee S, Arunmanee W. Genetically surface-modified Escherichia coli outer membrane vesicles targeting MUC1 antigen in cancer cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00854. [PMID: 39290790 PMCID: PMC11406022 DOI: 10.1016/j.btre.2024.e00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Outer membrane vesicles (OMVs), non-replicating spherical liposomes derived from Gram-negative bacteria, are a promising vaccine platform and multifunctional delivery systems. Their ability to be modified via genetic engineering for the incorporation and display of heterologous proteins enhances their functionality. In this study, we demonstrated a bio-ligation approach to display single-chain variable fragments (scFv) on the OMV surface using the SpyTag/SpyCatcher system. SpyTag-fused scFv, expressed by mammalian cells, bound to OMVs with SpyCatcher-fused Lpp'OmpA after a simple incubation. Biophysical analysis indicated that the conjugated OMVs maintained their physicochemical properties. We used an scFv targeting mucin 1 protein (MUC1) for specific cell targeting. Confocal microscopy revealed that conjugated OMVs specifically bound to and were internalized by MUC1-presenting cells, but not by MUC1-deficient cells. In conclusion, this rapid and efficient bio-ligation system facilitates the display of functional scFv on OMV surfaces, offering a promising approach for targeted delivery to MUC1-expressing cancer cells.
Collapse
Affiliation(s)
- Sedthawut Laotee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Liu J, Zhang Z, Pu W, Pan X, Li P, Bai Q, Liang S, Li C, Yu Y, Yao H, Ma J. A multi-epitope subunit vaccine providing broad cross-protection against diverse serotypes of Streptococcus suis. NPJ Vaccines 2024; 9:216. [PMID: 39543108 PMCID: PMC11564553 DOI: 10.1038/s41541-024-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Wanxia Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Song Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
4
|
Cong Z, Li Y, Xie L, Chen Q, Tang M, Thongpon P, Jiao Y, Wu S. Engineered Microrobots for Targeted Delivery of Bacterial Outer Membrane Vesicles (OMV) in Thrombus Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400847. [PMID: 38801399 DOI: 10.1002/smll.202400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Indexed: 05/29/2024]
Abstract
In the realm of thrombosis treatment, bioengineered outer membrane vesicles (OMVs) offer a novel and promising approach, as they have rich content of bacterial-derived components. This study centers on OMVs derived from Escherichia coli BL21 cells, innovatively engineered to encapsulate the staphylokinase-hirudin fusion protein (SFH). SFH synergizes the properties of staphylokinase (SAK) and hirudin (HV) to enhance thrombolytic efficiency while reducing the risks associated with re-embolization and bleeding. Building on this foundation, this study introduces two cutting-edge microrobotic platforms: SFH-OMV@H for venous thromboembolism (VTE) treatment, and SFH-OMV@MΦ, designed specifically for cerebral venous sinus thrombosis (CVST) therapy. These platforms have demonstrated significant efficacy in dissolving thrombi, with SFH-OMV@H showcasing precise vascular navigation and SFH-OMV@MΦ effectively targeting cerebral thrombi. The study shows that the integration of these bioengineered OMVs and microrobotic systems marks a significant advancement in thrombosis treatment, underlining their potential to revolutionize personalized medical approaches to complex health conditions.
Collapse
Affiliation(s)
- Zhaoqing Cong
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
- South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Yangyang Li
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
| | - Leiming Xie
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
| | - Qiwei Chen
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Phonpilas Thongpon
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Yanxiao Jiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, 95817, USA
| | - Song Wu
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, 518000, P. R. China
- South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| |
Collapse
|
5
|
Mertes V, Saragliadis A, Mascherin E, Tysvær EB, Roos N, Linke D, Winther-Larsen HC. Recombinant expression of Yersinia ruckeri outer membrane proteins in Escherichia coli extracellular vesicles. Protein Expr Purif 2024; 215:106409. [PMID: 38040272 DOI: 10.1016/j.pep.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.
Collapse
Affiliation(s)
- Verena Mertes
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Elisa Mascherin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
| | - Ellen-Beate Tysvær
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Norbert Roos
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Norway
| | - Hanne C Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
| |
Collapse
|
6
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Abstract
Outer membrane vesicles (OMVs) are spontaneously released by many gram-negative bacteria during their growth and constitute an important virulence factor for bacteria, helping them to survive through harsh environmental conditions. Native OMVs, naturally-released from bacteria, are produced at a level too low for vaccine manufacturing, requiring chemical treatment (detergent-extracted) or genetic manipulation, resulting in generalized modules for membrane antigens (GMMAs). Over the years, the nature and properties of OMVs have made them a viable platform for vaccine development. There are a few licensed OMV vaccines mainly for the prevention of meningitis caused by Neisseria meningitidis serogroup B (MenB) and Haemophilus influenzae type b (Hib). There are several candidates in clinical development against other gram-negative organisms from which the OMVs are derived, but also against heterologous targets in which the OMVs are used as carriers (e.g. coronavirus disease 2019 [COVID-19]). The use of OMVs for targets other than those from which they are derived is a major advancement in OMV technology, improving its versatility by being able to deliver protein or polysaccharide antigens. Other advances include the range of genetic modifications that can be made to improve their safety, reduce reactogenicity, and increase immunogenicity and protective efficacy. However, significant challenges remain, such as identification of general tools for high-content surface expression of heterologous proteins on the OMV surface. Here, we outline the progress of OMV vaccines to date, particularly discussing licensed OMV-based vaccines and candidates in clinical development. Recent trends in preclinical research are described, mainly focused on genetic manipulation and chemical conjugation for the use of OMVs as carriers for heterologous protein and polysaccharide antigens. Remaining challenges with the use of OMVs and directions for future research are also discussed.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy.
| | | | - Usman Nakakana
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
8
|
Weyant KB, Oloyede A, DeLisa MP. On-Demand Vaccine Production via Dock-and-Display of Biotinylated Antigens on Bacterial Extracellular Vesicles. Methods Mol Biol 2024; 2843:195-216. [PMID: 39141302 DOI: 10.1007/978-1-0716-4055-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising vaccine technology for developing immunity against diverse pathogens. However, antigen display on OMVs can be challenging to control and highly variable due to bottlenecks in protein expression and localization to the bacterial host cell's outer membrane, especially for bulky and complex antigens. Here, we describe methods related to a universal vaccine technology called AvidVax (avidin-based vaccine antigen crosslinking) for rapid and simplified assembly of antigens on the exterior of OMVs during vaccine development. The AvidVax platform involves remodeling the OMV surface with multiple copies of a synthetic antigen-binding protein (SNAP), which is an engineered fusion protein comprised of an outer membrane scaffold protein linked to a biotin-binding protein. The resulting SNAPs enable efficient decoration of OMVs with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, nucleic acids, and short peptides. We detail the key steps in the AvidVax vaccine production pipeline including preparation and isolation of SNAP-OMVs, biotinylation and enrichment of vaccine antigens, and formulation and characterization of antigen-loaded SNAP-OMVs.
Collapse
Affiliation(s)
| | - Ayomide Oloyede
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Hall, Ithaca, NY, USA
| | - Matthew P DeLisa
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Hall, Ithaca, NY, USA.
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
10
|
Viviani V, Fantoni A, Tomei S, Marchi S, Luzzi E, Bodini M, Muzzi A, Giuliani MM, Maione D, Derrick JP, Delany I, Pizza M, Biolchi A, Bartolini E. OpcA and PorB are novel bactericidal antigens of the 4CMenB vaccine in mice and humans. NPJ Vaccines 2023; 8:54. [PMID: 37045859 PMCID: PMC10097807 DOI: 10.1038/s41541-023-00651-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The ability of Neisseria meningitidis Outer Membrane Vesicles (OMV) to induce protective responses in humans is well established and mainly attributed to Porin A (PorA). However, the contribution of additional protein antigens to protection remains to be elucidated. In this study we dissected the immunogenicity of antigens originating from the OMV component of the 4CMenB vaccine in mice and humans. We collected functional data on a panel of strains for which bactericidal responses to 4CMenB in infants was attributable to the OMV component and evaluated the role of 30 OMV-specific protein antigens in cross-coverage. By using tailor-made protein microarrays, the immunosignature of OMV antigens was determined. Three of these proteins, OpcA, NspA, and PorB, triggered mouse antibodies that were bactericidal against several N. meningitidis strains. Finally, by genetic deletion and/or serum depletion studies, we demonstrated the ability of OpcA and PorB to induce functional immune responses in infant sera after vaccination. In conclusion, while confirming the role of PorA in eliciting protective immunity, we identified two OMV antigens playing a key role in protection of infants vaccinated with the 4CMenB vaccine against different N. meningitidis serogroup B strains.
Collapse
Affiliation(s)
- Viola Viviani
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | |
Collapse
|
11
|
Li Q, Zhou G, Fei X, Tian Y, Wang S, Shi H. Engineered Bacterial Outer Membrane Vesicles with Lipidated Heterologous Antigen as an Adjuvant-Free Vaccine Platform for Streptococcus suis. Appl Environ Microbiol 2023; 89:e0204722. [PMID: 36809058 PMCID: PMC10057044 DOI: 10.1128/aem.02047-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are considered a promising vaccine platform for their high built-in adjuvanticity and ability to efficiently induce immune responses. OMVs can be engineered with heterologous antigens based on genetic engineering strategies. However, several critical issues should still be validated, including optimal exposure to the OMV surface, increased production of foreign antigens, nontoxicity, and induction of powerful immune protection. In this study, engineered OMVs with the lipoprotein transport machinery (Lpp) were designed to present SaoA antigen as a vaccine platform against Streptococcus suis. The results suggest that Lpp-SaoA fusions can be delivered on the OMV surface and do not have significant toxicity. Moreover, they can be engineered as lipoprotein and significantly accumulated in OMVs at high levels, thus accounting for nearly 10% of total OMV proteins. Immunization with OMVs containing Lpp-SaoA fusion antigen induced strong specific antibody responses and high levels of cytokines, as well as a balanced Th1/Th2 immune response. Furthermore, the decorated OMV vaccination significantly enhanced microbial clearance in a mouse infection model. It was found that antiserum against lipidated OMVs significantly promoted the opsonophagocytic uptake of S. suis in RAW246.7 macrophages. Lastly, OMVs engineered with Lpp-SaoA induced 100% protection against a challenge with 8× the 50% lethal dose (LD50) of S. suis serotype 2 and 80% protection against a challenge with 16× the LD50 in mice. Altogether, the results of this study provide a promising versatile strategy for the engineering of OMVs and suggest that Lpp-based OMVs may be a universal adjuvant-free vaccine platform for important pathogens. IMPORTANCE Bacterial outer membrane vesicles (OMVs) have become a promising vaccine platform due to their excellent built-in adjuvanticity properties. However, the location and amount of the expression of the heterologous antigen in the OMVs delivered by the genetic engineering strategies should be optimized. In this study, we exploited the lipoprotein transport pathway to engineer OMVs with heterologous antigen. Not only did lapidated heterologous antigen accumulate in the engineered OMV compartment at high levels, but also it was engineered to be delivered on the OMV surface, thus leading to the optimal activation of antigen-specific B cells and T cells. Immunization with engineered OMVs induced a strong antigen-specific antibodies in mice and conferred 100% protection against S. suis challenge. In general, the data of this study provide a versatile strategy for the engineering of OMVs and suggest that OMVs engineered with lipidated heterologous antigens may be a vaccine platform for significant pathogens.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xia Fei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yichen Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens. Nat Commun 2023; 14:464. [PMID: 36709333 PMCID: PMC9883832 DOI: 10.1038/s41467-023-36101-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/15/2023] [Indexed: 01/29/2023] Open
Abstract
Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. However, antigen display on OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. Here, we describe a universal approach for avidin-based vaccine antigen crosslinking (AvidVax) whereby biotinylated antigens are linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen-binding protein (SNAP) comprised of an outer membrane scaffold protein fused to a biotin-binding protein. We show that SNAP-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations are injected in mice, strong antigen-specific antibody responses are observed that depend on the physical coupling between the antigen and SNAP-OMV delivery vehicle. Overall, these results demonstrate AvidVax as a modular platform that enables rapid and simplified assembly of antigen-studded OMVs for application as vaccines against pathogenic threats.
Collapse
|
13
|
Sun J, Lin X, He Y, Zhang B, Zhou N, Huang JD. A bacterial outer membrane vesicle-based click vaccine elicits potent immune response against Staphylococcus aureus in mice. Front Immunol 2023; 14:1088501. [PMID: 36742310 PMCID: PMC9892643 DOI: 10.3389/fimmu.2023.1088501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus infection is a severe public health concern with the growing number of multidrug-resistant strains. S. aureus can circumvent the defense mechanisms of host immunity with the aid of multiple virulence factors. An efficacious multicomponent vaccine targeting diverse immune evasion strategies developed by S. aureus is thus crucial for its infection control. In this study, we exploited the SpyCatcher-SpyTag system to engineer bacterial outer membrane vesicles (OMVs) for the development of a multitargeting S. aureus click vaccine. We decorated OMVs with surface exposed SpyCatcher via a truncated OmpA(a.a 1-155)-SpyCatcher fusion. The engineered OMVs can flexibly bind with various SpyTag-fused S. aureus antigens to generate an OMV-based click vaccine. Compared with antigens mixed with alum adjuvant, the click vaccine simultaneously induced more potent antigen-specific humoral and Th1-based cellular immune response, which afforded protection against S. aureus Newman lethal challenge in a mouse model. Our study provided a flexible and versatile click vaccine strategy with the potential for fighting against emerging S. aureus clinical isolates.
Collapse
Affiliation(s)
- Jingjing Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yige He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Baozhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Nan Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Hu K, Palmieri E, Samnuan K, Ricchetti B, Oldrini D, McKay PF, Wu G, Thorne L, Fooks AR, McElhinney LM, Goharriz H, Golding M, Shattock RJ, Micoli F. Generalized Modules for Membrane Antigens (GMMA), an outer membrane vesicle-based vaccine platform, for efficient viral antigen delivery. J Extracell Vesicles 2022; 11:e12247. [PMID: 36377074 PMCID: PMC9663859 DOI: 10.1002/jev2.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vaccine platforms enable fast development, testing, and manufacture of more affordable vaccines. Here, we evaluated Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles (OMVs) generated by genetically modified Gram-negative bacteria, as a vaccine platform for viral pathogens. Influenza A virus hemagglutinin (HA), either physically mixed with GMMA (HA+STmGMMA mix), or covalently linked to GMMA surface (HA-STmGMMA conjugate), significantly increased antigen-specific humoral and cellular responses, with HA-STmGMMA conjugate inducing further enhancement than HA+STmGMMA mix. HA-STmGMMA conjugate protected mice from lethal challenge. The versatility for this platform was confirmed by conjugation of rabies glycoprotein (RABVG) onto GMMA through the same method. RABVG+STmGMMA mix and RABVG-STmGMMA conjugate exhibited similar humoral and cellular response patterns and protection efficacy as the HA formulations, indicating relatively consistent responses for different vaccines based on the GMMA platform. Comparing to soluble protein, GMMA was more efficiently taken up in vivo and exhibited a B-cell preferential uptake in the draining lymph nodes (LNs). Together, GMMA enhances immunity against viral antigens, and the platform works well with different antigens while retaining similar immunomodulatory patterns. The findings of our study imply the great potential of GMMA-based vaccine platform also against viral infectious diseases.
Collapse
Affiliation(s)
- Kai Hu
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Karnyart Samnuan
- Department of Infectious Diseases, Imperial College London, London, UK
| | | | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Guanghui Wu
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Leigh Thorne
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Lorraine M McElhinney
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Hooman Goharriz
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Megan Golding
- Animal and Plant Health Agency (APHA), OIE Rabies Reference Laboratory, New Haw, Addlestone, Surrey, UK
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
15
|
Alfini R, Brunelli B, Bartolini E, Carducci M, Luzzi E, Ferlicca F, Buccato S, Galli B, Lo Surdo P, Scarselli M, Romagnoli G, Cartocci E, Maione D, Savino S, Necchi F, Delany I, Micoli F. Investigating the Role of Antigen Orientation on the Immune Response Elicited by Neisseria meningitidis Factor H Binding Protein on GMMA. Vaccines (Basel) 2022; 10:1182. [PMID: 35893831 PMCID: PMC9331691 DOI: 10.3390/vaccines10081182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.
Collapse
Affiliation(s)
- Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Brunella Brunelli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Erika Bartolini
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Enrico Luzzi
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Ferlicca
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Scilla Buccato
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Barbara Galli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Paola Lo Surdo
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Maria Scarselli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Giacomo Romagnoli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Elena Cartocci
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Domenico Maione
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Silvana Savino
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Isabel Delany
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| |
Collapse
|
16
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
17
|
Krishnan N, Kubiatowicz LJ, Holay M, Zhou J, Fang RH, Zhang L. Bacterial membrane vesicles for vaccine applications. Adv Drug Deliv Rev 2022; 185:114294. [PMID: 35436569 DOI: 10.1016/j.addr.2022.114294] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
Abstract
Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Luke J Kubiatowicz
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Maya Holay
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Kunjantarachot A, Phanaksri T. Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria. J Microbiol Biotechnol 2022; 32:621-629. [PMID: 32522965 PMCID: PMC9628879 DOI: 10.4014/jmb.2003.03023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.
Collapse
Affiliation(s)
- Anthicha Kunjantarachot
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand,Corresponding author Phone: +662-564 4440-9 Ext. 4453 Fax: +662-564-4440-9 E-mail:
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
19
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
20
|
Micoli F, Nakakana UN, Berlanda Scorza F. Towards a Four-Component GMMA-Based Vaccine against Shigella. Vaccines (Basel) 2022; 10:328. [PMID: 35214786 PMCID: PMC8880054 DOI: 10.3390/vaccines10020328] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Shigellosis remains a major public health problem around the world; it is one of the leading causes of diarrhoeal disease in low- and middle-income countries, particularly in young children. The increasing reports of Shigella cases associated with anti-microbial resistance are an additional element of concern. Currently, there are no licensed vaccines widely available against Shigella, but several vaccine candidates are in development. It has been demonstrated that the incidence of disease decreases following a prior Shigella infection and that serum and mucosal antibody responses are predominantly directed against the serotype-specific Shigella O-antigen portion of lipopolysaccharide membrane molecules. Many Shigella vaccine candidates are indeed O-antigen-based. Here we present the journey towards the development of a potential low-cost four-component Shigella vaccine, eliciting broad protection against the most prevalent Shigella serotypes, that makes use of the GMMA (Generalized Modules for Membrane Antigens) technology, a novel platform based on bacterial outer membranes for delivery of the O-antigen to the immune system.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (U.N.N.); (F.B.S.)
| | | | | |
Collapse
|
21
|
Huang Y, Nan L, Xiao C, Dong J, Li K, Cheng J, Ji Q, Wei Q, Bao G, Liu Y. Outer Membrane Vesicles Coating Nano-Glycyrrhizic Acid Confers Protection Against Borderella bronchiseptica Through Th1/Th2/Th17 Responses. Int J Nanomedicine 2022; 17:647-663. [PMID: 35177904 PMCID: PMC8846627 DOI: 10.2147/ijn.s350846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Outer membrane vesicles (OMVs) are spherical nano-sized proteolipids secreted by numerous pathogenic Gram-negative bacteria. Due to the immunostimulatory properties and protective efficacy, OMVs have received increasing attention as a candidate for the vaccine to prevent and treat bacterial infections. However, the immune response remains elusive due to the low structural stability and poor size homogeneity of the vesicles. In this study, OMVs were used to coat self-assembled glycyrrhizic acid nanoparticles (GANs) and obtain a stable OMV vaccine. The immunoprotective effects and anti-infection efficacy were evaluated in vivo and in vitro. Methods The OMVs were prepared by ultrafiltration method and fused with GAN through mechanical extrusion. The characteristics, including morphology, hydrodynamic size, zeta potential, and stability were evaluated. The in vitro immunological function of GAN-OMV on the macrophages and in vivo immune efficacy and anti-infection effect were examined and compared. Results The results showed that the GAN-OMV were homogenous with a size of 130 nm and a stable core-shell structure. Micropinocytosis-dependent and clathrin-mediated endocytotic pathways effectively internalized the GAN-OMV into the macrophages and promoted cell proliferation, cytokine secretion, and M1 polarization. Furthermore, subcutaneous GAN-OMV vaccination contributed to significantly higher Borderella bronchiseptica (Bb)-specific antibody production and lymphocyte proliferation. The splenic lymphocytes of mice immunized with GAN-OMVs displayed a higher ratio of CD4+/CD8+ T cells and CD19+ B cells and produced significantly higher levels of Th1/Th2/Th17 cytokines. GAN-OMV also effectively prevented Bb reinfection. Conclusion In this study, GAN-OMV was developed successfully to stimulate Th1/Th2/Th17 immune responses against Bb and provide a promising strategy for novel vaccine development against the microbial pathogen.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Li Nan
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Jvfen Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
- Correspondence: Guolian Bao; Yan Liu, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China, Email ;
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, People’s Republic of China
| |
Collapse
|
22
|
Izadi M, Dehghan Marvast L, Rezvani ME, Zohrabi M, Aliabadi A, Mousavi SA, Aflatoonian B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front Microbiol 2022; 12:785622. [PMID: 35095800 PMCID: PMC8792933 DOI: 10.3389/fmicb.2021.785622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Some microbial sexually transmitted infections (STIs) have adverse effects on the reproductive tract, sperm function, and male fertility. Given that STIs are often asymptomatic and cause major complications such as urogenital inflammation, fibrosis, and scarring, optimal treatments should be performed to prevent the noxious effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most common asymptomatic preventable bacterial STI. C. trachomatis can affect both sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs) derived exosomes have been considered as a new therapeutic medicine due to their immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without consequences through the stem cell transplantation based therapies. Inflammation of the genital tract and sperm dysfunction are the consequences of the microbial infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive approach has shown promising results on the ability to regenerate the damaged sperm and treating asthenozoospermia. Recent experimental methods may be helpful in the novel treatments of male infertility. Thus, it is demonstrated that exosomes play an important role in preventing the consequences of infection, and thereby preventing inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation. This review aimed to overview the studies about the potential therapeutic roles of MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Keshavarz Alikhani H, Shokoohian B, Rezasoltani S, Hossein-khannazer N, Yadegar A, Hassan M, Vosough M. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Front Microbiol 2021; 12:785856. [PMID: 34917064 PMCID: PMC8669997 DOI: 10.3389/fmicb.2021.785856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
24
|
Potential Applications of Microparticulate-Based Bacterial Outer Membrane Vesicles (OMVs) Vaccine Platform for Sexually Transmitted Diseases (STDs): Gonorrhea, Chlamydia, and Syphilis. Vaccines (Basel) 2021; 9:vaccines9111245. [PMID: 34835176 PMCID: PMC8618863 DOI: 10.3390/vaccines9111245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Sexually transmitted diseases (STDs) are a major global health issue. Approximately 250 million new cases of STDs occur each year globally. Currently, only three STDs (human papillomavirus (HPV), hepatitis A, and hepatitis B) are preventable by vaccines. Vaccines for other STDs, including gonorrhea, chlamydia, and syphilis, await successful development. Currently, all of these STDs are treated with antibiotics. However, the efficacy of antibiotics is facing growing challenge due to the emergence of bacterial resistance. Therefore, alternative therapeutic approaches, including the development of vaccines against these STDs, should be explored to tackle this important global public health issue. Mass vaccination could be more efficient in reducing the spread of these highly contagious diseases. Bacterial outer membrane vesicle (OMV) is a potential antigen used to prevent STDs. OMVs are released spontaneously during growth by many Gram-negative bacteria. They present a wide range of surface antigens in native conformation that possess interesting properties such as immunogenicity, adjuvant potential, and the ability to be taken up by immune cells, all of which make them an attractive target for application as vaccines against pathogenic bacteria. The major challenge associated with the use of OMVs is its fragile structure and stability. However, a particulate form of the vaccine could be a suitable delivery system that can protect the antigen from degradation by a harsh acidic or enzymatic environment. The particulate form of the vaccine can also act as an adjuvant by itself. This review will highlight some practical methods for formulating microparticulate OMV-based vaccines for STDs.
Collapse
|
25
|
Di Benedetto R, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, Palmieri E, Giannelli C, Necchi F, Saul A, Micoli F. Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens. Int J Mol Sci 2021; 22:10180. [PMID: 34638530 PMCID: PMC8508390 DOI: 10.3390/ijms221910180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (R.D.B.); (R.A.); (M.C.); (M.G.A.); (L.L.); (A.A.); (E.P.); (C.G.); (F.N.); (A.S.)
| |
Collapse
|
26
|
Mancini F, Micoli F, Necchi F, Pizza M, Berlanda Scorza F, Rossi O. GMMA-Based Vaccines: The Known and The Unknown. Front Immunol 2021; 12:715393. [PMID: 34413858 PMCID: PMC8368434 DOI: 10.3389/fimmu.2021.715393] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Generalized Modules for Membrane Antigens (GMMA) are outer membrane vesicles derived from Gram-negative bacteria engineered to provide an over-vesiculating phenotype, which represent an attractive platform for the design of affordable vaccines. GMMA can be further genetically manipulated to modulate the risk of systemic reactogenicity and to act as delivery system for heterologous polysaccharide or protein antigens. GMMA are able to induce strong immunogenicity and protection in animal challenge models, and to be well-tolerated and immunogenic in clinical studies. The high immunogenicity could be ascribed to their particulate size, to their ability to present to the immune system multiple antigens in a natural conformation which mimics the bacterial environment, as well as to their intrinsic self-adjuvanticity. However, GMMA mechanism of action and the role in adjuvanticity are still unclear and need further investigation. In this review, we discuss progresses in the development of the GMMA vaccine platform, highlighting successful applications and identifying knowledge gaps and potential challenges.
Collapse
Affiliation(s)
- Francesca Mancini
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Francesca Micoli
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Francesca Necchi
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | - Mariagrazia Pizza
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | - Omar Rossi
- GlaxoSmithKline (GSK) Vaccines Institute for Global Health (GVGH), Siena, Italy
| |
Collapse
|
27
|
Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol 2021; 75:609-630. [PMID: 34351789 DOI: 10.1146/annurev-micro-052821-031444] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secretion of cellular components across the plasma membrane is an essential process that enables organisms to interact with their environments. Production of extracellular vesicles in bacteria is a well-documented but poorly understood process. Outer membrane vesicles (OMVs) are produced in gram-negative bacteria by blebbing of the outer membrane. In addition to their roles in pathogenesis, cell-to-cell communication, and stress responses, OMVs play important roles in immunomodulation and the establishment and balance of the gut microbiota. In this review, we discuss the multiple roles of OMVs and the current knowledge of OMV biogenesis. We also discuss the growing and promising biotechnological applications of OMV. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mariana G Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Evan J Pardue
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
| | - M Florencia Haurat
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA;
| |
Collapse
|
28
|
Zhao Y, Li X, Zhang W, Yu L, Wang Y, Deng Z, Liu M, Mo S, Wang R, Zhao J, Liu S, Hao Y, Wang X, Ji T, Zhang L, Wang C. Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharm Sin B 2021; 11:2114-2135. [PMID: 34522580 PMCID: PMC8424226 DOI: 10.1016/j.apsb.2021.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Natural extracellular vesicles (EVs) play important roles in many life processes such as in the intermolecular transfer of substances and genetic information exchanges. Investigating the origins and working mechanisms of natural EVs may provide an understanding of life activities, especially regarding the occurrence and development of diseases. Additionally, due to their vesicular structure, EVs (in small molecules, nucleic acids, proteins, etc.) could act as efficient drug-delivery carriers. Herein, we describe the sources and biological functions of various EVs, summarize the roles of EVs in disease diagnosis and treatment, and review the application of EVs as drug-delivery carriers. We also assess the challenges and perspectives of EVs in biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ruonan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Shuli Liu
- Department of Clinical Laboratory, Peking University Civil Aviation School of Clinical Medicine, Beijing 100123, China
| | - Yun Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Corresponding authors. Tel./fax: +86 10 69156463.
| |
Collapse
|
29
|
Neisseria meningitidis Factor H Binding Protein Surface Exposure on Salmonella Typhimurium GMMA Is Critical to Induce an Effective Immune Response against Both Diseases. Pathogens 2021; 10:pathogens10060726. [PMID: 34207575 PMCID: PMC8229706 DOI: 10.3390/pathogens10060726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
GMMA, outer membrane vesicles resulting from hyperblebbing mutated bacterial strains, are a versatile vaccine platform for displaying both homologous and heterologous antigens. Periplasmic expression is a popular technique for protein expression in the lumen of the blebs. However, the ability of internalized antigens to induce antibody responses has not been extensively investigated. Herein, the Neisseria meningitidis factor H binding protein (fHbp) was heterologously expressed in the lumen of O-antigen positive (OAg+) and O-antigen negative (OAg−) Salmonella Typhimurium GMMA. Only the OAg− GMMA induced an anti-fHbp IgG response in mice if formulated on Alum, although it was weak and much lower compared to the recombinant fHbp. The OAg− GMMA on Alum showed partial instability, with possible exposure of fHbp to the immune system. When we chemically conjugated fHbp to the surface of both OAg+ and OAg− GMMA, these constructs induced a stronger functional response compared to the fHbp immunization alone. Moreover, the OAg+ GMMA construct elicited a strong response against both the target antigens (fHbp and OAg), with no immune interference observed. This result suggests that antigen localization on GMMA surface can play a critical role in the induction of an effective immune response and can encourage the development of GMMA based vaccines delivering key protective antigens on their surface.
Collapse
|
30
|
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile tools for therapeutic approaches. MICROLIFE 2021; 2:uqab006. [PMID: 37223254 PMCID: PMC10117751 DOI: 10.1093/femsml/uqab006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Budding of the bacterial surface results in the formation and secretion of outer membrane vesicles, which is a conserved phenomenon observed in Gram-negative bacteria. Recent studies highlight that these sphere-shaped facsimiles of the donor bacterium's surface with enclosed periplasmic content may serve multiple purposes for their host bacterium. These include inter- and intraspecies cell-cell communication, effector delivery to target cells and bacterial adaptation strategies. This review provides a concise overview of potential medical applications to exploit outer membrane vesicles for therapeutic approaches. Due to the fact that outer membrane vesicles resemble the surface of their donor cells, they represent interesting nonliving candidates for vaccine development. Furthermore, bacterial donor species can be genetically engineered to display various proteins and glycans of interest on the outer membrane vesicle surface or in their lumen. Outer membrane vesicles also possess valuable bioreactor features as they have the natural capacity to protect, stabilize and enhance the activity of luminal enzymes. Along these features, outer membrane vesicles not only might be suitable for biotechnological applications but may also enable cell-specific delivery of designed therapeutics as they are efficiently internalized by nonprofessional phagocytes. Finally, outer membrane vesicles are potent modulators of our immune system with pro- and anti-inflammatory properties. A deeper understanding of immunoregulatory effects provoked by different outer membrane vesicles is the basis for their possible future applications ranging from inflammation and immune response modulation to anticancer therapy.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Himadri B Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
31
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
32
|
White JR, Dauros-Singorenko P, Hong J, Vanholsbeeck F, Phillips A, Swift S. The complex, bidirectional role of extracellular vesicles in infection. Biochem Soc Trans 2021; 49:881-891. [PMID: 33860784 PMCID: PMC8106493 DOI: 10.1042/bst20200788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.
Collapse
Affiliation(s)
- Joni Renee White
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland 1010, University of Auckland, New Zealand
| | - Priscila Dauros-Singorenko
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, The University of Auckland, 22-30 Park Avenue, Auckland, New Zealand
| | - Jiwon Hong
- Surgical and Translational Research Centre, Department of Surgery, The University of Auckland, 22-30 Park Avenue, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland 1010, University of Auckland, New Zealand
- Department of Physics, The University of Auckland, 38 Princes Street, Auckland, New Zealand
| | - Anthony Phillips
- Surgical and Translational Research Centre, Department of Surgery, The University of Auckland, 22-30 Park Avenue, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, New Zealand
| |
Collapse
|
33
|
Cheng K, Zhao R, Li Y, Qi Y, Wang Y, Zhang Y, Qin H, Qin Y, Chen L, Li C, Liang J, Li Y, Xu J, Han X, Anderson GJ, Shi J, Ren L, Zhao X, Nie G. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat Commun 2021; 12:2041. [PMID: 33824314 PMCID: PMC8024398 DOI: 10.1038/s41467-021-22308-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
An effective tumor vaccine vector that can rapidly display neoantigens is urgently needed. Outer membrane vesicles (OMVs) can strongly activate the innate immune system and are qualified as immunoadjuvants. Here, we describe a versatile OMV-based vaccine platform to elicit a specific anti-tumor immune response via specifically presenting antigens onto OMV surface. We first display tumor antigens on the OMVs surface by fusing with ClyA protein, and then simplify the antigen display process by employing a Plug-and-Display system comprising the tag/catcher protein pairs. OMVs decorated with different protein catchers can simultaneously display multiple, distinct tumor antigens to elicit a synergistic antitumour immune response. In addition, the bioengineered OMVs loaded with different tumor antigens can abrogate lung melanoma metastasis and inhibit subcutaneous colorectal cancer growth. The ability of the bioengineered OMV-based platform to rapidly and simultaneously display antigens may facilitate the development of these agents for personalized tumour vaccines.
Collapse
Affiliation(s)
- Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, China
| | - Yingqiu Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yazhou Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yujing Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine 2021; 39:2965-2975. [PMID: 33771390 DOI: 10.1016/j.vaccine.2021.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Collapse
Affiliation(s)
- Sam M Murray
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
35
|
Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1490732. [PMID: 33834062 PMCID: PMC8016564 DOI: 10.1155/2021/1490732] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.
Collapse
|
36
|
Peng Y, Yin S, Wang M. Extracellular vesicles of bacteria as potential targets for immune interventions. Hum Vaccin Immunother 2021; 17:897-903. [PMID: 32873124 DOI: 10.1080/21645515.2020.1799667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial infection is one of the most common and serious diseases. Extracellular vesicles (EVs) expressed by bacterial cells during infection and their biological functions have been a growing field in recent years. The study of the immune interaction mechanism between EVs and bacteria has become more significant. EVs are released into the extracellular microenvironment during bacterial infection. EVs carry various lipids, proteins, nucleic acids, and other substances of host bacteria and participate in various physiological and pathological processes. EV-based vaccines against bacterial infection are also being evaluated. This review focuses on the biological characteristics of EVs, the interaction between EVs and the host immune system, and the potential of EVs as new vaccines. A deeper understanding of the interaction between EVs and the immune system informs on the biological function and heterogeneity of EVs. This knowledge also can facilitate the development and application of EVs and their potential as vaccines.
Collapse
Affiliation(s)
- Yizhi Peng
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Balhuizen MD, Veldhuizen EJA, Haagsman HP. Outer Membrane Vesicle Induction and Isolation for Vaccine Development. Front Microbiol 2021; 12:629090. [PMID: 33613498 PMCID: PMC7889600 DOI: 10.3389/fmicb.2021.629090] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria release vesicular structures from their outer membrane, so called outer membrane vesicles (OMVs). OMVs have a variety of functions such as waste disposal, communication, and antigen or toxin delivery. These vesicles are the promising structures for vaccine development since OMVs carry many surface antigens that are identical to the bacterial surface. However, isolation is often difficult and results in low yields. Several methods to enhance OMV yield exist, but these do affect the resulting OMVs. In this review, our current knowledge about OMVs will be presented. Different methods to induce OMVs will be reviewed and their advantages and disadvantages will be discussed. The effects of the induction and isolation methods used in several immunological studies on OMVs will be compared. Finally, the challenges for OMV-based vaccine development will be examined and one example of a successful OMV-based vaccine will be presented.
Collapse
Affiliation(s)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
38
|
The Koala Immune Response to Chlamydial Infection and Vaccine Development-Advancing Our Immunological Understanding. Animals (Basel) 2021; 11:ani11020380. [PMID: 33546104 PMCID: PMC7913230 DOI: 10.3390/ani11020380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Chlamydia is a major pathogen of the Australian marsupial, the koala (Phascolarctos cinereus). One approach to improving this situation is to develop a vaccine. Human Chlamydia research suggests that an effective anti-chlamydial response will involve a balance between a cell-mediated Th1 response and a humoral Th2 responses, involving systemic IgG and mucosal IgA. Characterization of koalas with chlamydial disease suggests that increased expression for similar immunological pathways and monitoring of koalas’ post-vaccination can be successful and subsequently lead to improved vaccines. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Abstract Chlamydia is a significant pathogen for many species, including the much-loved Australian marsupial, the koala (Phascolarctos cinereus). To combat this situation, focused research has gone into the development and refinement of a chlamydial vaccine for koalas. The foundation of this process has involved characterising the immune response of koalas to both natural chlamydial infection as well as vaccination. From parallels in human and mouse research, it is well-established that an effective anti-chlamydial response will involve a balance of cell-mediated Th1 responses involving interferon-gamma (IFN-γ), humoral Th2 responses involving systemic IgG and mucosal IgA, and inflammatory Th17 responses involving interleukin 17 (IL-17) and neutrophils. Characterisation of koalas with chlamydial disease has shown increased expression within all three of these major immunological pathways and monitoring of koalas’ post-vaccination has detected further enhancements to these key pathways. These findings offer optimism that a chlamydial vaccine for wider distribution to koalas is not far off. Recent advances in marsupial genetic knowledge and general nucleic acid assay technology have moved koala immunological research a step closer to other mammalian research systems. However, koala-specific reagents to directly assay cytokine levels and cell-surface markers are still needed to progress our understanding of koala immunology.
Collapse
|
39
|
Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol 2020; 50:101433. [PMID: 33309166 DOI: 10.1016/j.smim.2020.101433] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Outer Membrane Vesicles (OMV) have received increased attention in recent years as a vaccine platform against bacterial pathogens. OMV from Neisseria meningitidis serogroup B have been extensively explored. Following the success of the MeNZB OMV vaccine in controlling an outbreak of N. meningitidis B in New Zealand, additional research and development resulted in the licensure of the OMV-containing four-component 4CMenB vaccine, Bexsero. This provided broader protection against multiple meningococcal B strains. Advances in the field of genetic engineering have permitted further improvements in the platform resulting in increased yields, reduced endotoxicity and decoration with homologous and heterologous antigens to enhance immuno genicity and provide broader protection. The OMV vaccine platform has been extended to many other pathogens. In this review, we discuss progress in the development of the OMV vaccine delivery platform, highlighting successful applications, together with potential challenges and gaps.
Collapse
Affiliation(s)
| | - Calman A MacLennan
- Bill & Melinda Gates Foundation, 62 Buckingham Gate, London, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Mohammadzadeh R, Ghazvini K, Farsiani H, Soleimanpour S. Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Crit Rev Microbiol 2020; 47:13-33. [PMID: 33044878 DOI: 10.1080/1040841x.2020.1830749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is a fatal epidemic disease usually caused by Mycobacterium tuberculosis (Mtb). Pervasive latent infection, multidrug- and extensively drug-resistant tuberculosis (MDR- and XDR-TB), and TB/HIV co-infection make TB a global health problem, which emphasises the design and development of efficient vaccines and diagnostic biomarkers. Extracellular vesicles (EVs) secretion is a conserved phenomenon in all the domains of life. Various cargos such as nucleic acids, toxins, lipoproteins, and enzymes have been recognised in these nano-sized vesicles that may be involved in bacterial physiology and pathogenesis. The intrinsic adjuvant effect, native immunogenic cargo, sensing by host immune cells, circulation in all body fluids, and comprehensive distribution of antigens introduce EVs as a promising tool for designing novel vaccines, diagnostic biomarkers, and drug delivery systems. Genetic engineering of the EV-producing bacteria and the subsequent production of proper EVs could facilitate the development of the EV-based therapeutic applications. Recently, it was demonstrated that thick-walled mycobacteria release EVs, which contain immunodominant cargos such as lipoglycans and lipoproteins. The present article is a comprehensive review on the recent findings of Mtb EVs biology and the exploitation of EVs for the vaccine technology and diagnostic methods.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Pal S, Mirzakhanyan Y, Gershon P, Tifrea DF, de la Maza LM. Induction of protection in mice against a respiratory challenge by a vaccine formulated with exosomes isolated from Chlamydia muridarum infected cells. NPJ Vaccines 2020; 5:87. [PMID: 33014435 PMCID: PMC7501220 DOI: 10.1038/s41541-020-00235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The goal of this study was to determine if exosomes, isolated from Chlamydia muridarum infected HeLa cells (C. muridarum-exosomes), induce protective immune responses in mice following vaccination using CpG plus Montanide as adjuvants. Exosomes, collected from uninfected HeLa cells and PBS, formulated with the same adjuvants, were used as negative controls. Mass spectrometry analyses identified 113 C. muridarum proteins in the C. muridarum-exosome preparation including the major outer membrane protein and the polymorphic membrane proteins. Vaccination with C. muridarum-exosomes elicited robust humoral and cell-mediated immune responses to C. muridarum elementary bodies. Following vaccination, mice were challenged intranasally with C. muridarum. Compared to the negative controls, mice immunized with C. muridarum-exosomes were significantly protected as measured by changes in body weight, lungs' weight, and number of inclusion forming units recovered from lungs. This is the first report, of a vaccine formulated with Chlamydia exosomes, shown to elicit protection against a challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
| | - Paul Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
42
|
OMV Vaccines and the Role of TLR Agonists in Immune Response. Int J Mol Sci 2020; 21:ijms21124416. [PMID: 32575921 PMCID: PMC7352230 DOI: 10.3390/ijms21124416] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/26/2022] Open
Abstract
Outer Membrane Vesicles (OMVs) are bacterial nanoparticles that are spontaneously released during growth both in vitro and in vivo by Gram-negative bacteria. They are spherical, bilayered membrane nanostructures that contain many components found within the external surface of the parent bacterium. Naturally, OMVs serve the bacteria as a mechanism to deliver DNA, RNA, proteins, and toxins, as well as to promote biofilm formation and remodel the outer membrane during growth. On the other hand, as OMVs possess the optimal size to be uptaken by immune cells, and present a range of surface-exposed antigens in native conformation and Toll-like receptor (TLR) activating components, they represent an attractive and powerful vaccine platform able to induce both humoral and cell-mediated immune responses. This work reviews the TLR-agonists expressed on OMVs and their capability to trigger individual TLRs expressed on different cell types of the immune system, and then focuses on their impact on the immune responses elicited by OMVs compared to traditional vaccines.
Collapse
|
43
|
Cheng K, Kang Q, Zhao X. Biogenic nanoparticles as immunomodulator for tumor treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1646. [DOI: 10.1002/wnan.1646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province College of Materials, Xiamen University Xiamen Fujian China
| | - Qinglin Kang
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland Australia
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST) Beijing China
| |
Collapse
|
44
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
45
|
Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904106. [PMID: 31799752 DOI: 10.1002/adma.201904106] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Indexed: 05/17/2023]
Abstract
Bacterial infection is one of the top ten leading causes of death globally and the worst killer in low-income countries. The overuse of antibiotics leads to ever-increasing antibiotic resistance, posing a severe threat to human health. Recent advances in nanotechnology provide new opportunities to address the challenges in bacterial infection by killing germs without using antibiotics. Antibiotic-free antibacterial strategies enabled by advanced nanomaterials are presented. Nanomaterials are classified on the basis of their mode of action: nanomaterials with intrinsic or light-mediated bactericidal properties and others that serve as vehicles for the delivery of natural antibacterial compounds. Specific attention is given to antibacterial mechanisms and the structure-performance relationship. Practical antibacterial applications employing these antibiotic-free strategies are also introduced. Current challenges in this field and future perspectives are presented to stimulate new technologies and their translation to fight against bacterial infection.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiru Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
46
|
Identification of lipid A deacylase as a novel, highly conserved and protective antigen against enterohemorrhagic Escherichia coli. Sci Rep 2019; 9:17014. [PMID: 31745113 PMCID: PMC6863877 DOI: 10.1038/s41598-019-53197-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/23/2019] [Indexed: 02/04/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a major cause of large outbreaks worldwide associated with hemorrhagic colitis and hemolytic uremic syndrome. While vaccine development is warranted, a licensed vaccine, specific for human use, against EHEC is not yet available. In this study, the reverse vaccinology approach combined with genomic, transcriptional and molecular epidemiology data was applied on the EHEC O157:H7 genome to select new potential vaccine candidates. Twenty-four potential protein antigens were identified and one of them (MC001) was successfully expressed onto Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing this vaccine candidate was immunogenic, raising a specific antibody response. Immunization with the MC001 candidate was able to reduce the bacterial load of EHEC O157:H7 strain in feces, colon and caecum tissues after murine infection. MC001 is homologue to lipid A deacylase enzyme (LpxR), and to our knowledge, this is the first study describing it as a potential vaccine candidate. Gene distribution and sequence variability analysis showed that MC001 is present and conserved in EHEC and in enteropathogenic E. coli (EPEC) strains. Given the high genetic variability among and within E. coli pathotypes, the identification of such conserved antigen suggests that its inclusion in a vaccine might represent a solution against major intestinal pathogenic strains.
Collapse
|
47
|
Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc Natl Acad Sci U S A 2019; 116:21780-21788. [PMID: 31591215 PMCID: PMC6815149 DOI: 10.1073/pnas.1905112116] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) represent an interesting vaccine platform for their built-in adjuvanticity and simplicity of production process. Moreover, OMVs can be decorated with foreign antigens using different synthetic biology approaches. However, the optimal OMV engineering strategy, which should guarantee the OMV compartmentalization of most heterologous antigens in quantities high enough to elicit protective immune responses, remains to be validated. In this work we exploited the lipoprotein transport pathway to engineer OMVs with foreign proteins. Using 5 Staphylococcus aureus protective antigens expressed in Escherichia coli as fusions to a lipoprotein leader sequence, we demonstrated that all 5 antigens accumulated in the vesicular compartment at a concentration ranging from 5 to 20% of total OMV proteins, suggesting that antigen lipidation could be a universal approach for OMV manipulation. Engineered OMVs elicited high, saturating antigen-specific antibody titers when administered to mice in quantities as low as 0.2 μg/dose. Moreover, the expression of lipidated antigens in E. coli BL21(DE3)ΔompAΔmsbBΔpagP was shown to affect the lipopolysaccharide structure, with the result that the TLR4 agonist activity of OMVs was markedly reduced. These results, together with the potent protective activity of engineered OMVs observed in mice challenged with S. aureus Newman strain, makes the 5-combo-OMVs a promising vaccine candidate to be tested in clinics.
Collapse
|
48
|
Zhang Y, Fang Z, Li R, Huang X, Liu Q. Design of Outer Membrane Vesicles as Cancer Vaccines: A New Toolkit for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091314. [PMID: 31500086 PMCID: PMC6769604 DOI: 10.3390/cancers11091314] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer vaccines have been extensively studied in recent years and have contributed to exceptional achievements in cancer treatment. They are some of the most newly developed vaccines, although only two are currently approved for use, Provenge and Talimogene laherparepvec (T-VEC). Despite the approval of these two vaccines, most vaccines have been terminated at the clinical trial stage, which indicates that although they are effective in theory, concerns still exist, including low antigenicity of targeting antigens and tumor heterogeneity. In recent years, with new understanding of the biological function and vaccine potential of outer membrane vesicles (OMVs), their potential application in cancer vaccine design deserves our attention. Therefore, this review focuses on the mechanisms, advantages, and prospects of OMVs as antigen-carrier vaccines in cancer vaccine development. We believe that OMV-based vaccines present a safe and effective cancer therapeutic option with broad application prospects.
Collapse
Affiliation(s)
- Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Zheyan Fang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
- Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
49
|
Gerritzen MJH, Salverda MLM, Martens DE, Wijffels RH, Stork M. Spontaneously released Neisseria meningitidis outer membrane vesicles as vaccine platform: production and purification. Vaccine 2019; 37:6978-6986. [PMID: 31383485 DOI: 10.1016/j.vaccine.2019.01.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 02/04/2023]
Abstract
Outer membrane vesicles (OMVs) are nanoparticles produced by Gram-negative bacteria that can be used as vaccines. The application of OMVs as vaccine component can be expanded by expressing heterologous antigens on OMVs, creating an OMV-based antigen presenting platform. This study aims to develop a production process for such OMV-based vaccines and studies a production method based on meningococcal OMVs that express heterologous antigens on their surface. As a proof of concept, the Borrelia burgdorferi antigens OspA and OspC were expressed on Neisseria meningitidis OMVs to create a concept anti-Lyme disease vaccine. Production of OMVs released in the culture supernatant was induced by high dissolved oxygen concentrations and purification was based on scalable unit operations. A crude recovery of 90 mg OMV protein could be obtained per liter culture. Expressing heterologous antigens on the OMVs did result in minor reduction of bacterial growth, while OMV production remained constant. The antigen expression did not alter the OMV characteristics. This study shows that production of well characterized OMVs containing heterologous antigens is possible with high yields by combining high oxygen concentrations with an optimized purification process. It is concluded that heterologous OMVs show potential as a vaccine platform.
Collapse
Affiliation(s)
- Matthias J H Gerritzen
- Institute for Translational Vaccinology (Intravacc), Process Development Bacterial Vaccines, P.O. Box 450, 3720 AL Bilthoven, the Netherlands; Wageningen University, Bioprocess Engineering, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Merijn L M Salverda
- Institute for Translational Vaccinology (Intravacc), Exploratory & Clinical Research, P.O. Box 450, 3720 AL Bilthoven, the Netherlands
| | - Dirk E Martens
- Wageningen University, Bioprocess Engineering, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - René H Wijffels
- Wageningen University, Bioprocess Engineering, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Nord University, Faculty of Biosciences and Aquaculture, P.O. Box 1409, 8049 Bodø, Norway
| | - Michiel Stork
- Institute for Translational Vaccinology (Intravacc), Process Development Bacterial Vaccines, P.O. Box 450, 3720 AL Bilthoven, the Netherlands.
| |
Collapse
|
50
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|