1
|
Wei Y, Bai Q, Ning X, Bai X, Lv J, Li M. Covalent organic framework derived single-atom copper nanozymes for the detection of amyloid-β peptide and study of amyloidogenesis. Anal Bioanal Chem 2024:10.1007/s00216-024-05683-1. [PMID: 39681699 DOI: 10.1007/s00216-024-05683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Sensitive and accurate detection of the amyloid-β (Aβ) monomer is of fundamental significance for early diagnosis of Alzheimer's disease (AD). Herein, inspired by the specific Cu-Aβ monomer coordination, a cutting-edge colorimetric assay based on single-atom Cu anchored N-doped carbon nanospheres (Cu-NCNSs) was developed for Aβ monomer detection and an amyloidogenesis study. By directly pyrolyzing Cu2+-incorporated covalent organic frameworks (COFs), the resulting Cu-NCNSs with a high loading of Cu (8.04 wt %) exhibited outstanding peroxidase-like activity. The strong binding affinity of Aβ monomer to Cu-NCNSs effectively inhibited their catalytic activity, providing the basis for the colorimetric assay. The Cu-NCNSs-based sensor showed a detection limit of 1.182 nM for Aβ monomer, surpassing traditional techniques in terms of efficiency, accuracy and simplicity. Moreover, the system was successfully utilized for Aβ monomer detection in rat cerebrospinal fluid (CSF). Notably, the distinct inhibitory effects of monomeric and aggregated Aβ species on the catalytic activity of Cu-NCNSs were allowed for monitoring of the dynamic aggregation process of Aβ. Compared to thioflavin T (ThT), the most widely used amyloid dye, the detection system exhibited greater sensitivity towards toxic Aβ oligomers, which was crucial for early AD diagnosis and treatment. Our work not only sheds light on the rational design of highly active single-atom nanozymes from COFs but also expands the potential applications of nanozymes in early disease diagnosis.
Collapse
Affiliation(s)
- Yuxin Wei
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingqing Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xinlu Ning
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaofan Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
- Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Hou T, Yang Q, Ding M, Wang X, Mei K, Guan P, Wang C, Hu X. Blood-brain barrier permeable carbon nano-assemblies for amyloid-β clearance and neurotoxic attenuation. Colloids Surf B Biointerfaces 2024; 244:114182. [PMID: 39216441 DOI: 10.1016/j.colsurfb.2024.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Abnormal amyloid β-protein (Aβ42) fibrillation is a key event in Alzheimer's disease (AD), and photodynamic therapy (PDT) possesses great potential in modulating Aβ42 self-assembly. However, the poor blood-brain barrier (BBB) penetration, low biocompatibility, and limited tissue penetration depth of existing photosensitizers limit the progress of photo-oxidation strategies. In this paper, novel indocyanine green-modified graphene quantum dot nano-assemblies (NBGQDs-ICGs) were synthesized based on a molecular assembly strategy of electrostatic interactions for PDT inhibition of Aβ42 self-assembly process and decomposition of preformed fibrils under near-infrared light. Combining the small-size structure of graphene quantum dots and the near-infrared light-responsive properties of ICGs, the NBGQDs-ICGs could achieve BBB penetration under 808 nm irradiation. More importantly, the neuroprotective mechanism of NBGQDs-ICG was studied for the first time by AFM, which effectively weakened the adhesion of Aβ42 aggregates to the cell surface by blocking the interaction between Aβ42 and the cell membrane, and restored the mechanical stability and adhesion of the neuron membrane. Meanwhile, NBGQDs-ICG promoted phagocytosis of Aβ42 by microglia. In addition, the good biocompatibility and stability ensured the biosafety of NBGQDs-ICG in future clinical applications. We anticipate that such multifunctional nanocomponents may provide promising avenues for the development of novel AD inhibitors.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Qian Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Kun Mei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
3
|
Goel H, Rana I, Jain K, Ranjan KR, Mishra V. Atomically dispersed single-atom catalysts (SACs) and enzymes (SAzymes): synthesis and application in Alzheimer's disease detection. J Mater Chem B 2024; 12:10466-10489. [PMID: 39291791 DOI: 10.1039/d4tb01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Conventional diagnostic methods, such as neuroimaging and cerebrospinal fluid analysis, typically detect AD at advanced stages, limiting the efficacy of therapeutic interventions. Early detection is crucial for improving patient condition by enabling timely administration of treatments that may decelerate disease progression. In this context, single-atom catalysts (SACs) and single-atom nanozymes (SAzymes) have emerged as promising tools offering highly sensitive and selective detection of Alzheimer's biomarkers. SACs, consisting of isolated metal atoms on a support surface, deliver unparalleled atomic efficiency, increased reactivity, and reduced operational costs, although certain challenges in terms of stability, aggregation, and other factors persist. The advent of SAzymes, which integrate SACs with natural metalloprotease catalysts, has further advanced this field by enabling controlled electronic exchange, synergistic productivity, and enhanced biosafety. Particularly, M-N-C SACs with M-Nx active sites mimic the selectivity and sensitivity of natural metalloenzymes, providing a robust platform for early detection of AD. This review encompasses the advancements in SACs and SAzymes, highlighting their pivotal role in bridging the gap between conventional enzymes and nanozyme and offering enhanced catalytic efficiency, controlled electron transfer, and improved biosafety for Alzheimer's detection.
Collapse
Affiliation(s)
- Himanshi Goel
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | - Ishika Rana
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | - Kajal Jain
- Amity Institute of Applied Sciences, Amity University Noida, UP, India.
| | | | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, UP, India.
| |
Collapse
|
4
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
5
|
Liu L, Sun X, Li Y, Zhang XD. Nonmetal Doping Modulates Fe Single-Atom Catalysts for Enhancement in Peroxidase Mimicking via Symmetry Disruption, Distortion, and Charge Transfer. ACS OMEGA 2024; 9:35144-35153. [PMID: 39157134 PMCID: PMC11325499 DOI: 10.1021/acsomega.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Developing biomimetic catalysts with excellent peroxidase (POD)-like activity has been a long-standing goal for researchers. Doping nonmetallic atoms with different electronegativity to boost the POD-like activity of Fe-N-C single-atom catalysts (SACs) has been successfully realized. However, the introduction of heteroatoms to regulate the coordination environment of the central Fe atom and thus influence the activation of the H2O2 molecule in the POD-like reaction has not been extensively explored. Herein, the effect of different doping sites and numbers of heteroatoms (P, S, B, and N) on the adsorption and activation of H2O2 molecules of Fe-N sites is thoroughly investigated by density functional theory (DFT) calculations. In general, alternation in the catalytic efficiency directly depends on the transfer of electrons and the geometrical shifts near the Fe-N site. First, the symmetry disruption of the Fe-N4 site by P, S, and B doping is beneficial to the activation of H2O2 due to a significant reduction in the adsorption energies. In some cases, without Fe-N4 site disruption, the configurations fail to modulate the adsorption behavior of H2O2. Second, Fe-N-P/S configurations exhibit a stronger affinity for H2O2 molecules due to the significant out-of-plane distortions induced by larger atomic radii of P and S. Moreover, the synergistic effects of Fe and doping atoms P, S, and B with weaker electronegativity than that of N atoms promote electron donation to generated oxygen-containing intermediates, thus facilitating subsequent electron transfer with other substrates. This work demonstrates the critical role of tuning the coordinating environment of Fe-N active centers by heteroatom doping and provides theoretical guidance for controlling the types by breaking the symmetry of SACs to achieve optimal POD-like catalytic activity and selectivity.
Collapse
Affiliation(s)
- Ling Liu
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Sun
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yonghui Li
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin
Key Laboratory of Brain Science and Neural Engineering, Academy of
Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Chen C, Fu Y, Sparks SS, Lyu Z, Pradhan A, Ding S, Boddeti N, Liu Y, Lin Y, Du D, Qiu K. 3D-Printed Flexible Microfluidic Health Monitor for In Situ Sweat Analysis and Biomarker Detection. ACS Sens 2024; 9:3212-3223. [PMID: 38820602 DOI: 10.1021/acssensors.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yonghao Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Sonja S Sparks
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Arijit Pradhan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Narasimha Boddeti
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yun Liu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Kaiyan Qiu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
7
|
Yu S, Jia P, Xing K, Yao L, Chen M, Ding L, Huang J, Cheng Y, Xu Z. Novel Immunosensor Based on Metal Single-Atom Nanozymes with Enhanced Oxidase-Like Activity for Capsaicin Analysis in Spicy Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12832-12841. [PMID: 38785419 DOI: 10.1021/acs.jafc.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Capsaicin (CAP) is a primary indicator for assessing the level of pungency. Herein, iron-based single-atom nanozymes (SAzymes) (Fe/NC) with exceptional oxidase-like activity were used to construct an immunosensor for CAP analysis. Fe/NC could imitate oxidase actions by transforming O2 to •O2- radicals in the absence of hydrogen peroxide (H2O2), which could avoid complex operations and unstable results. By regulating the Fe atom loads, an optimal Fe0.7/NC atom usage rate could improve the catalytic activity (Michaelis-Menten constant (Km) = 0.09 mM). Fe0.7/NC was integrated with goat antimouse IgG by facile mix incubation to develop a competitive enzyme-linked immunosorbent assay (ELISA). Our Fe0.7/NC immunosensing platform is anticipated to outperform the conventional ELISA in terms of stability and shelf life. The proposed immunosensor provided color responses across 0.01-1000 ng/mL CAP concentrations, with a detection limit of 0.046 ng/mL. Fe/NC may have potential as nanozymes for CAP detection in spicy foods, with promising applications in food biosensing.
Collapse
Affiliation(s)
- Shaoyi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Pei Jia
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Keyu Xing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Li Yao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Maolong Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Li Ding
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Jin Huang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, Hunan, China
| |
Collapse
|
8
|
Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management. J Nanobiotechnology 2024; 22:139. [PMID: 38555420 PMCID: PMC10981335 DOI: 10.1186/s12951-024-02406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathogenesis and effective clinical treatment strategies for this disease remain elusive. Interestingly, nanomedicines are under extensive investigation for AD management. Currently, existing redox molecules show highly bioactive property but suffer from instability and high production costs, limiting clinical application for neurological diseases. Compared with natural enzymes, artificial enzymes show high stability, long-lasting catalytic activity, and versatile enzyme-like properties. Further, the selectivity and performance of artificial enzymes can be modulated for neuroinflammation treatments through external stimuli. In this review, we focus on the latest developments of metal, metal oxide, carbon-based and polymer based nanozymes and their catalytic mechanisms. Recent developments in nanozymes for diagnosing and treating AD are emphasized, especially focusing on their potential to regulate pathogenic factors and target sites. Various applications of nanozymes with different stimuli-responsive features were discussed, particularly focusing on nanozymes for treating oxidative stress-related neurological diseases. Noninvasiveness and focused application to deep body regions makes ultrasound (US) an attractive trigger mechanism for nanomedicine. Since a complete cure for AD remains distant, this review outlines the potential of US responsive nanozymes to develop future therapeutic approaches for this chronic neurodegenerative disease and its emergence in AD management.
Collapse
Affiliation(s)
- Viswanathan Karthika
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Daehun Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Cai X, Luo Y, Song Y. Palladium nanoballs coupled with smartphone-thermal reader for photothermal lateral flow immunoassay of Aβ 1-40. J Mater Chem B 2024; 12:2610-2617. [PMID: 38372378 DOI: 10.1039/d3tb02641h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Amyloid beta 1-40 (Aβ 1-40) is one of the most abundant substances in the body with the capacity to form insoluble aggregates and is a universal biomarker for the prediction of Alzheimer's disease. Here, a palladium nanoball (PNB)-strip was developed and coupled with a smartphone-thermal reader as an ultrasensitive and cost-effective platform for Aβ 1-40 detection. In this study, PNB was synthesized and introduced into lateral flow strips as an alternative signal source to gold nanoparticles to improve sensitivity because the PNB has a better heat generation ability. Quantitative analysis was performed using a self-developed smartphone-thermal reader, which is portable and cost-effective. The detection limit of the system was determined to be 20 pg mL-1, which fulfils the need for clinical diagnosis at the point-of-care. This work highlights a PNB-strip coupled smartphone-thermal reader for ultrasensitive and cost-effective Aβ 1-40 detection.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yangxing Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Song
- NANOGENE LLC, Gainesville, Florida 32611, USA.
| |
Collapse
|
10
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Ding S, Barr JA, Lyu Z, Zhang F, Wang M, Tieu P, Li X, Engelhard MH, Feng Z, Beckman SP, Pan X, Li JC, Du D, Lin Y. Effect of Phosphorus Modulation in Iron Single-Atom Catalysts for Peroxidase Mimicking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209633. [PMID: 36722360 DOI: 10.1002/adma.202209633] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Fe-N-C single-atom catalysts (SACs) exhibit excellent peroxidase (POD)-like catalytic activity, owing to their well-defined isolated iron active sites on the carbon substrate, which effectively mimic the structure of natural peroxidase's active center. To further meet the requirements of diverse biosensing applications, SAC POD-like activity still needs to be continuously enhanced. Herein, a phosphorus (P) heteroatom is introduced to boost the POD-like activity of Fe-N-C SACs. A 1D carbon nanowire (FeNCP/NW) catalyst with enriched Fe-N4 active sites is designed and synthesized, and P atoms are doped in the carbon matrix to affect the Fe center through long-range interaction. The experimental results show that the P-doping process can boost the POD-like activity more than the non-P-doped one, with excellent selectivity and stability. The mechanism analysis results show that the introduction of P into SAC can greatly enhance POD-like activity initially, but its effect becomes insignificant with increasing amount of P. As a proof of concept, FeNCP/NW is employed in an enzyme cascade platform for highly sensitive colorimetric detection of the neurotransmitter acetylcholine.
Collapse
Affiliation(s)
- Shichao Ding
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jordan Alysia Barr
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Zhaoyuan Lyu
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Xin Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Scott P Beckman
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), Department of Physics and Astronomy, Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jin-Cheng Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
Li Y, Feng J, Yao T, Han H, Ma Z, Yang H. Novel dual-responsive hydrogel composed of polyacrylamide/Fe-MOF/zinc finger peptide for construction of electrochemical sensing platform. Anal Chim Acta 2024; 1289:342201. [PMID: 38245204 DOI: 10.1016/j.aca.2024.342201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Responsive hydrogels have received much attention for improving the detection performance of electrochemical sensors because of their special responsiveness. However, current responsive hydrogels generally suffer from long response times, ranging from tens of minutes to several hours. This situation severely limits the detection performance and practical application of electrochemical sensors. Here, an electrochemical sensing platform was constructed by employing dual-responsive polyacrylamide/zinc finger peptide/Fe-MOF hydrogel (PZFH) as the silent layer, sodium alginate-Ni2+-graphene oxide hydrogel as the signal layer. GOx@ZIF-8, as the immunoprobe, catalyzed glucose to H2O2 and gluconic acid, resulting in the cleavage of immunoprobe as the pH decreased and subsequent release of Zn2+ ions. During the process of Fe-MOF converting from Fe3+ to Fe2+, free radicals were generated and used to destroy the structure of the PZFH. Cysteine and histidine in the zinc finger peptide can specifically bind to Zn2+ to create many pores in PZFH, exposing the signal layer. These synergistic effects rapidly decreased the impedance of PZFH and increased the electrochemical signal of Ni2+. The electrochemical sensing platform was used to detect pro-gastrin-releasing peptide with response times as short as 7 min of PZFH, a wide linear range from 100 ng mL-1 to 100 fg mL-1, and an ultra-low limit of detection of 14.24 fg mL-1 (S/N = 3). This strategy will provide a paradigm for designing electrochemical sensors.
Collapse
Affiliation(s)
- Youyu Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiejie Feng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tao Yao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Haijun Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
13
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
14
|
Sun J, Wang Z, Guan J. Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring. Food Chem 2023; 425:136518. [PMID: 37290237 DOI: 10.1016/j.foodchem.2023.136518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Electrochemical sensors and biosensors play an important role in many fields, including biology, clinical trials, and food industry. For health and food safety monitoring, accurate and quantitative sensing is needed to ensure that there is no significantly negative impact on human health. It is difficult for traditional sensors to meet these requirements. In recent years, single-atom nanozymes (SANs) have been successfully used in electrochemical sensors due to their high electrochemical activity, good stability, excellent selectivity and high sensitivity. Here, we first summarize the detection principle of SAN-based electrochemical sensors. Then, we review the detection performances of small molecules on SAN-based electrochemical sensors, including H2O2, dopamine (DA), uric acid (UA), glucose, H2S, NO, and O2. Subsequently, we put forward the optimization strategies to promote the development of SAN-based electrochemical sensors. Finally, the challenges and prospects of SAN-based sensors are proposed.
Collapse
Affiliation(s)
- Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
15
|
Hou T, Shao X, Ding M, Mei K, Wang X, Guan P, Hu X. Photooxidative inhibition and decomposition of β-amyloid in Alzheimer's by nano-assemblies of transferrin and indocyanine green. Int J Biol Macromol 2023; 241:124432. [PMID: 37086772 DOI: 10.1016/j.ijbiomac.2023.124432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Photoinduced modulation of Aβ42 aggregation has emerged as a therapeutic option for treating Alzheimer's disease (AD) due to its high spatiotemporal controllability, noninvasive nature, and low systemic toxicity. However, existing photo-oxidants have the poor affinity for Aβ42, low depolymerization efficiency, and difficulty in crossing the blood-brain barrier (BBB), hindering their application in the treatment of AD. Here, through hydrophobic interactions and hydrogen bonding, we integrated the near-infrared (NIR) photosensitizer indocyanine green with transferrin (denoted as TF-ICG), a protein with a high affinity for Aβ42, and demonstrated its anti-amyloid activity in vitro. TF-ICG was shown to bind to Aβ42 residues via hydrophobic interaction, impeding π-π stacking of Aβ42 peptide monomers and disassembling mature Aβ42 protofibrils in a concentration-dependent manner. More importantly, under NIR (808 nm, 0.6w/cm2) irradiation, TF-ICG completely inhibited the fibrillation process of Aβ42 to generate amorphous aggregates, with an inhibition rate of 96 % at only 65 nM. Meanwhile, TF-ICG could photo-oxidize rigid Aβ42 aggregates and break them down into small amorphous structures. Tyrosine fluorescence assay further demonstrated the intrinsic affinity and targeting of TF-ICG to Aβ42 fibrils. In vitro studies validated the anti-amyloid activity of TF-ICG, which provided a theoretical basis for further in vivo application as a BBB-penetrating nanotherapeutic platform.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Kun Mei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
16
|
Dong JM, Wang RQ, Yuan NN, Guo JH, Yu XY, Peng AH, Cai JY, Xue L, Zhou ZL, Sun YH, Chen YY. Recent advances in optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of hepatocellular carcinoma. Front Cell Dev Biol 2023; 11:1160544. [PMID: 37143897 PMCID: PMC10152369 DOI: 10.3389/fcell.2023.1160544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancers and is one of the main malignant tumor types globally. It is essential to develop rapid, ultrasensitive, and accurate strategies for the diagnosis and surveillance of HCC. In recent years, aptasensors have attracted particular attention owing to their high sensitivity, excellent selectivity, and low production costs. Optical analysis, as a potential analytical tool, offers the advantages of a wide range of targets, rapid response, and simple instrumentation. In this review, recent progress in several types of optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of HCC is summarized. Furthermore, we evaluate the strengths and limitations of these sensors and discuss the challenges and future perspectives for their use in HCC diagnosis and surveillance.
Collapse
Affiliation(s)
- Jia-Mei Dong
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ning-Ning Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin-Yang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ang-Hui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Jia-Yi Cai
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Xue
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Yi-Hao Sun
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Ying-Yin Chen
- Department of Pharmacy, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Zhang D, Lin H, Chen L, Wu Y, Xie J, Shi X, Guo Z. Cluster-bomb type magnetic biosensor for ultrasensitive detection of Vibrio parahaemolyticus based on low field nuclear magnetic resonance. Anal Chim Acta 2023; 1248:340906. [PMID: 36813458 DOI: 10.1016/j.aca.2023.340906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Herein, a novel cluster-bomb type signal sensing and amplification strategy in low field nuclear magnetic resonance was proposed, and a magnetic biosensor for ultrasensitive homogeneous immunoassay of Vibrio parahaemolyticus (VP) was developed. The capture unit MGO@Ab was magnetic graphene oxide (MGO) immobilized by VP antibody (Ab) to capture VP. And, the signal unit PS@Gd-CQDs@Ab was polystyrene (PS) pellets covered by Ab to recognize VP and Gd-CQDs i.e. carbon quantum dots (CQDs) containing lots of magnetic signal labels Gd3+. In presence of VP, the immunocomplex signal unit-VP-capture unit could be formed and separated by magnetic force conveniently from the sample matrix. With the successive introduction of disulfide threitol and hydrochloric acid, signal units were cleaved and disintegrated, resulting in a homogeneous dispersion of Gd3+. Thus, cluster-bomb type dual signal amplification was achieved through increasing the amount and the dispersity of signal labels simultaneously. Under optimal experimental conditions, VP could be detected in the concentration range of 5-1.0 × 106 CFU/mL, with a limit of quantitation (LOQ) 4 CFU/mL. In addition, satisfactory selectivity, stability and reliability could be obtained. Therefore, this cluster-bomb type signal sensing and amplification strategy is powerful in designing magnetic biosensor and detecting pathogenic bacteria.
Collapse
Affiliation(s)
- Dongyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
18
|
Lyu Z, Ding S, Fang L, Li X, Li T, Xu M, Pan X, Zhu W, Zhou Y, Du D, Lin Y. Two-Dimensional Fe-N-C Single-Atomic-Site Catalysts with Boosted Peroxidase-Like Activity for a Sensitive Immunoassay. Anal Chem 2023; 95:4521-4528. [PMID: 36843270 DOI: 10.1021/acs.analchem.2c05633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Single-atomic-site catalysts (SASCs) with peroxidase (POD)-like activities have been widely used in various sensing platforms, like the enzyme-linked immunosorbent assay (ELISA). Herein, a two-dimensional Fe-N-C-based SASC (2D Fe-SASC) is successfully synthesized with excellent POD-like activity (specific activity = 90.11 U/mg) and is used to design the ELISA for herbicide detection. The 2D structure of Fe-SASC enables the exposure of numerous single atomic active sites on the surface as well as boosts the POD-like activity, thereby enhancing the sensing performance. 2D Fe-SASC is assembled into competitive ELISA kit, which achieves an excellent detection performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Fe-SASC has great potential in replacing high-cost natural enzymes and working on various advanced sensing platforms with high sensitivity for the detection of various target biomarkers.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Xin Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States.,X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mingjie Xu
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- DL ADV-Tech, Pullman, Washington 99163, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
19
|
Lv S, Wang H, Zhou Y, Tang D, Bi S. Recent advances in heterogeneous single-atom nanomaterials: From engineered metal-support interaction to applications in sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Sun B, Kan L, Gao C, Shi H, Yang L, Zhao T, Ma Q, Shi X, Sang C. Investigating immunosensor for determination of SD-biomarker-Aβ based on AuNPs/AC@PANI@CS modified electrodes with amplifying the signal. Anal Biochem 2023; 661:114996. [PMID: 36427556 DOI: 10.1016/j.ab.2022.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Sleep debt (SD) is one of the important triggers for causing not only physiological and mental illness but also dangerous work. Therefore, achieving an early and objective assessment of SD is of great significance in the precaution against SD-related diseases and unsafe work. Here, an ultrasensitive electrochemical immunosensor was constructed for analysis of SD biomarker amyloid-β (Aβ). The gold nanoparticles/chitosan-coated polyaniline-functionalized activated carbon (AuNPs/AC@PANI@CS) composites were employed as the sensing platforms. Since PANI and AC can form an effective conductive path, it can effectively enhance the penetration of electrolytes on the electrode surface and the rapid transport of charges and ions, significantly enhancing the electrochemical response signal of the immunosensor. Under the optimized experimental conditions, the fabricated immunosensor had a wide linear range of 1.95 pg mL-1 to 1000.00 pg mL-1, with a low detection limit of 0.014 pg mL-1. This study not only provides an effective method for the accurate and rapid detection of Aβ, but also offers a novel evaluation strategy for the objective assessment of SD and the study of related pathological mechanisms.
Collapse
Affiliation(s)
- Bolu Sun
- School of Life Science and Engineering, Wenzhou Engineering Institute of Pump&Valve, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Lei Kan
- School of Life Science and Engineering, Wenzhou Engineering Institute of Pump&Valve, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Chengyang Gao
- School of Life Science and Engineering, Wenzhou Engineering Institute of Pump&Valve, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Shi
- Lanzhou Zhongjianke Testing Technology Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Lin Yang
- School of Life Science and Engineering, Wenzhou Engineering Institute of Pump&Valve, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Tiankun Zhao
- School of Life Science and Engineering, Wenzhou Engineering Institute of Pump&Valve, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Quhuan Ma
- Gansu Academy of Medical Science, Lanzhou, 730050, China
| | - Xiaofeng Shi
- Gansu Academy of Medical Science, Lanzhou, 730050, China.
| | - Chunyan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| |
Collapse
|
21
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|
22
|
Debela AM, Gonzalez C, Pucci M, Hudie SM, Bazin I. Surface Functionalization Strategies of Polystyrene for the Development Peptide-Based Toxin Recognition. SENSORS (BASEL, SWITZERLAND) 2022; 22:9538. [PMID: 36502240 PMCID: PMC9735437 DOI: 10.3390/s22239538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The development of a robust surface functionalization method is indispensable in controlling the efficiency, sensitivity, and stability of a detection system. Polystyrene (PS) has been used as a support material in various biomedical fields. Here, we report various strategies of polystyrene surface functionalization using siloxane derivative, divinyl sulfone, cyanogen bromide, and carbonyl diimidazole for the immobilization of biological recognition elements (peptide developed to detect ochratoxin A) for a binding assay with ochratoxin A (OTA). Our objective is to develop future detection systems that would use polystyrene cuvettes such as immobilization support of biological recognition elements. The goal of this article is to demonstrate the proof of concept of this immobilization support. The results obtained reveal the successful modification of polystyrene surfaces with the coupling agents. Furthermore, the immobilization of biological recognition elements, for the OTA binding assay with horseradish peroxidase conjugated to ochratoxin A (OTA-HRP) also confirms that the characteristics of the functionalized peptide immobilized on polystyrene retains its ability to bind to its ligand. The presented strategies on the functionalization of polystyrene surfaces will offer alternatives to the possibilities of immobilizing biomolecules with excellent order- forming monolayers, due to their robust surface chemistries and validate a proof of concept for the development of highly efficient, sensitive, and stable future biosensors for food or water pollution monitoring.
Collapse
Affiliation(s)
- Ahmed M. Debela
- HSM, University Montpellier, MT Mines Ales, CNRS, IRD, Ales, 30119 Ales, France
| | - Catherine Gonzalez
- HSM, University Montpellier, MT Mines Ales, CNRS, IRD, Ales, 30119 Ales, France
| | - Monica Pucci
- LMGC, University Montpellier, IMT Mines Ales, CNRS, Ales, 30119 Ales, France
| | - Shemsia M. Hudie
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ingrid Bazin
- HSM, University Montpellier, MT Mines Ales, CNRS, IRD, Ales, 30119 Ales, France
| |
Collapse
|
23
|
Wei X, Song S, Song W, Wen Y, Xu W, Chen Y, Wu Z, Qin Y, Jiao L, Wu Y, Sha M, Huang J, Cai X, Zheng L, Hu L, Gu W, Eguchi M, Asahi T, Yamauchi Y, Zhu C. Tuning iron spin states in single-atom nanozymes enables efficient peroxidase mimicking. Chem Sci 2022; 13:13574-13581. [PMID: 36507158 PMCID: PMC9682990 DOI: 10.1039/d2sc05679h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
The large-scale application of nanozymes remains a significant challenge owing to their unsatisfactory catalytic performances. Featuring a unique electronic structure and coordination environment, single-atom nanozymes provide great opportunities to vividly mimic the specific metal catalytic center of natural enzymes and achieve superior enzyme-like activity. In this study, the spin state engineering of Fe single-atom nanozymes (FeNC) is employed to enhance their peroxidase-like activity. Pd nanoclusters (PdNC) are introduced into FeNC, whose electron-withdrawing properties rearrange the spin electron occupation in Fe(ii) of FeNC-PdNC from low spin to medium spin, facilitating the heterolysis of H2O2 and timely desorption of H2O. The spin-rearranged FeNC-PdNC exhibits greater H2O2 activation activity and rapid reaction kinetics compared to those of FeNC. As a proof of concept, FeNC-PdNC is used in the immunosorbent assay for the colorimetric detection of prostate-specific antigen and achieves an ultralow detection limit of 0.38 pg mL-1. Our spin-state engineering strategy provides a fundamental understanding of the catalytic mechanism of nanozymes and facilitates the design of advanced enzyme mimics.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 P. R. China
| | - Yating Wen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Zhichao Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Meng Sha
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Jiajia Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing Synchrotron Radiation Facility Beijing 100049 P. R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| |
Collapse
|
24
|
Yan C, Wang C, Shao X, Teng Y, Chen P, Hu X, Guan P, Wu H. Multifunctional Carbon-Dot-Photosensitizer Nanoassemblies for Inhibiting Amyloid Aggregates, Suppressing Microbial Infection, and Overcoming the Blood-Brain Barrier. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47432-47444. [PMID: 36254877 DOI: 10.1021/acsami.2c14118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid aggregation, microbial infection, and the blood-brain barrier (BBB) are considered critical obstructions for the treatment of Alzheimer's disease (AD). At present, existing treatment strategies are rarely able to overcome these critical factors. Herein, we propose an innovative treatment strategy and design multifunctional nanoassemblies (yCDs-Ce6) from coassembling photosensitizers (chlorine e6) and yellow fluorescent carbon dots, which endow yCDs-Ce6 with the functions for photodynamic and photothermal therapy (PDT and PTT). Compared with reported inhibitors, yCDs-Ce6 can suppress amyloid aggregation for 7 days, disaggregate aggregates, reduce amyloid aggregation-induced cytotoxicity, and prevent microbial growth by PDT and PTT. Moreover, yCDs-Ce6 can specifically target amyloid aggregates and visually label amyloid aggregates. yCDs-Ce6 can also cross the BBB upon near-infrared light irradiation and clear amyloid deposition in APP/PS1 mice by PDT and PTT. Meanwhile, yCDs-Ce6 did not cause significant negative effects on normal cells or tissues. Based on the methods of PPT and PTT treatment, the research deeply explores the effect of the novel nanoassemblies on two hypotheses of AD, opening a novel therapeutic paradigm for research amyloid-related diseases.
Collapse
Affiliation(s)
- Chaoren Yan
- School of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang, Shaanxi 712082, China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Yonggang Teng
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Peng Chen
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China
| | - Hong Wu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
25
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
26
|
Jiang B, Guo Z, Liang M. Recent progress in single-atom nanozymes research. NANO RESEARCH 2022; 16:1878-1889. [PMID: 36118987 PMCID: PMC9465666 DOI: 10.1007/s12274-022-4856-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Single-atom nanozyme (SAzyme) is the hot topic of the current nanozyme research. Its intrinsic properties, such as high activity, stability, and low cost, present great substitutes to natural enzymes. Moreover, its fundamental characteristics, i.e., maximized atom utilizations and well-defined geometric and electronic structures, lead to higher catalytic activities and specificity than traditional nanozymes. SAzymes have been applied in many biomedical areas, such as anti-tumor therapy, biosensing, antibiosis, and anti-oxidation therapy. Here, we will discuss a series of representative examples of SAzymes categorized by their biomedical applications in this review. In the end, we will address the future opportunities and challenges SAzymes facing in their designs and applications.
Collapse
Affiliation(s)
- Bing Jiang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Zhanjun Guo
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
27
|
Lyu Z, Ding S, Tieu P, Fang L, Li X, Li T, Pan X, Engelhard MH, Ruan X, Du D, Li S, Lin Y. Single-Atomic Site Catalyst Enhanced Lateral Flow Immunoassay for Point-of-Care Detection of Herbicide. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9823290. [PMID: 36082212 PMCID: PMC9435159 DOI: 10.34133/2022/9823290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022]
Abstract
Point-of-care (POC) detection of herbicides is of great importance due to their impact on the environment and potential risks to human health. Here, we design a single-atomic site catalyst (SASC) with excellent peroxidase-like (POD-like) catalytic activity, which enhances the detection performance of corresponding lateral flow immunoassay (LFIA). The iron single-atomic site catalyst (Fe-SASC) is synthesized from hemin-doped ZIF-8, creating active sites that mimic the Fe active center coordination environment of natural enzyme and their functions. Due to its atomically dispersed iron active sites that result in maximum utilization of active metal atoms, the Fe-SASC exhibits superior POD-like activity, which has great potential to replace its natural counterparts. Also, the catalytic mechanism of Fe-SASC is systematically investigated. Utilizing its outstanding catalytic activity, the Fe-SASC is used as label to construct LFIA (Fe-SASC-LFIA) for herbicide detection. The 2,4-dichlorophenoxyacetic acid (2,4-D) is selected as a target here, since it is a commonly used herbicide as well as a biomarker for herbicide exposure evaluation. A linear detection range of 1-250 ng/mL with a low limit of detection (LOD) of 0.82 ng/mL has been achieved. Meanwhile, excellent specificity and selectivity towards 2,4-D have been obtained. The outstanding detection performance of the Fe-SASC-LFIA has also been demonstrated in the detection of human urine samples, indicating the practicability of this POC detection platform for analyzing the 2,4-D exposure level of a person. We believe this proposed Fe-SASC-LFIA has potential as a portable, rapid, and high-sensitive POC detection strategy for pesticide exposure evaluation.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Shichao Ding
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Xin Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark H. Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiaofan Ruan
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| | | | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
28
|
Zhang S, Li Y, Sun S, Liu L, Mu X, Liu S, Jiao M, Chen X, Chen K, Ma H, Li T, Liu X, Wang H, Zhang J, Yang J, Zhang XD. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat Commun 2022; 13:4744. [PMID: 35961961 PMCID: PMC9374753 DOI: 10.1038/s41467-022-32411-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/29/2022] [Indexed: 01/10/2023] Open
Abstract
Regenerable nanozymes with high catalytic stability and sustainability are promising substitutes for naturally-occurring enzymes but are limited by insufficient and non-selective catalytic activities. Herein, we developed single-atom nanozymes of RhN4, VN4, and Fe-Cu-N6 with catalytic activities surpassing natural enzymes. Notably, Rh/VN4 preferably forms an Rh/V-O-N4 active center to decrease reaction energy barriers and mediates a "two-sided oxygen-linked" reaction path, showing 4 and 5-fold higher affinities in peroxidase-like activity than the FeN4 and natural horseradish peroxidase. Furthermore, RhN4 presents a 20-fold improved affinity in the catalase-like activity compared to the natural catalase; Fe-Cu-N6 displays selectivity towards the superoxide dismutase-like activity; VN4 favors a 7-fold higher glutathione peroxidase-like activity than the natural glutathione peroxidase. Bioactive sutures with Rh/VN4 show recyclable catalytic features without apparent decay in 1 month and accelerate the scalp healing from brain trauma by promoting the vascular endothelial growth factor, regulating the immune cells like macrophages, and diminishing inflammation.
Collapse
Affiliation(s)
- Shaofang Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Xinzhu Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Tuo Li
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyu Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
29
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
30
|
Lyu Z, Ding S, Du D, Qiu K, Liu J, Hayashi K, Zhang X, Lin Y. Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv Drug Deliv Rev 2022; 185:114269. [PMID: 35398244 DOI: 10.1016/j.addr.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
Significant progress has been made in developing two-dimensional (2D) nanomaterials owing to their ultra-thin structure, high specific surface area, and many other advantages. Recently, 2D nanomaterials with enzyme-like properties, especially peroxidase (POD)-like activity, are highly desirable for many biomedical applications. In this review, we first classify the types of 2D POD-like nanomaterials and then summarize various strategies for endowing 2D nanomaterials with POD-like properties. Representative examples of biomedical applications are reviewed, emphasizing in antibacterial, biosensing, and cancer therapy. Last, the future challenges and prospects of 2D POD-like nanomaterials are discussed. This review is expected to provide an in-depth understanding of 2D POD-like materials for biomedical applications.
Collapse
|
31
|
Xia N, Liu G, Zhang S, Shang Z, Yang Y, Li Y, Liu L. Oxidase-mimicking peptide-copper complexes and their applications in sandwich affinity biosensors. Anal Chim Acta 2022; 1214:339965. [DOI: 10.1016/j.aca.2022.339965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
|
32
|
Deng Z, Zhao L, Zhou H, Xu X, Zheng W. Recent advances in electrochemical analysis of hydrogen peroxide towards in vivo detection. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JCY, Zhao H, Zhang J. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Anal Chem 2022; 94:1499-1509. [PMID: 35014271 DOI: 10.1021/acs.analchem.1c04496] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.
Collapse
Affiliation(s)
- Huan Jin
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lihua Shen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ruixue Fu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ya Tang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Joey Chung-Yen Jung
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
34
|
Yun G, Kim HJ, Kim HG, Lee KM, Hong IK, Kim SH, Rhee HY, Jahng GH, Yoon SS, Park KC, Hwang KS, Lee JS. Association Between Plasma Amyloid-β and Neuropsychological Performance in Patients With Cognitive Decline. Front Aging Neurosci 2021; 13:736937. [PMID: 34759814 PMCID: PMC8573146 DOI: 10.3389/fnagi.2021.736937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: To investigate the association between plasma amyloid-β (Aβ) levels and neuropsychological performance in patients with cognitive decline using a highly sensitive nano-biosensing platform. Methods: We prospectively recruited 44 patients with cognitive decline who underwent plasma Aβ analysis, amyloid positron emission tomography (PET) scanning, and detailed neuropsychological tests. Patients were classified into a normal control (NC, n = 25) or Alzheimer’s disease (AD, n = 19) group based on amyloid PET positivity. Multiple linear regression was performed to determine whether plasma Aβ (Aβ40, Aβ42, and Aβ42/40) levels were associated with neuropsychological test results. Results: The plasma levels of Aβ42/40 were significantly different between the NC and AD groups and were the best predictor of amyloid PET positivity by receiver operating characteristic curve analysis [area under the curve of 0.952 (95% confidence interval, 0.892–1.000)]. Although there were significant differences in the neuropsychological performance of cognitive domains (language, visuospatial, verbal/visual memory, and frontal/executive functions) between the NC and AD groups, higher levels of plasma Aβ42/40 were negatively correlated only with verbal and visual memory performance. Conclusion: Our results demonstrated that plasma Aβ analysis using a nano-biosensing platform could be a useful tool for diagnosing AD and assessing memory performance in patients with cognitive decline.
Collapse
Affiliation(s)
- Gyihyaon Yun
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Il Ki Hong
- Department of Nuclear Medicine, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Sung Sang Yoon
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Key-Chung Park
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
Xu W, Song W, Kang Y, Jiao L, Wu Y, Chen Y, Cai X, Zheng L, Gu W, Zhu C. Axial Ligand-Engineered Single-Atom Catalysts with Boosted Enzyme-Like Activity for Sensitive Immunoassay. Anal Chem 2021; 93:12758-12766. [PMID: 34476936 DOI: 10.1021/acs.analchem.1c02842] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inspired by the key role of the coordination environment in the catalytic activity of enzymes, a rational design of the coordination structure of active sites at the atom scale is expected to develop high-performance enzyme-like catalysts. Here, we design a simple model system involving pentacoordinated and tetracoordinated Fe-N-C single-atom catalysts (named NG-Heme and G-Heme, respectively) to investigate structure-activity relationships. NG-Heme with axial ligand-engineered Fe sites exhibits superior enzyme-like activity to G-Heme, achieving the goal of vivid mimicking of the active sites of peroxidase. Experiments and theoretical studies reveal that the enhanced intrinsic catalytic activity originates from the "push effect" of the additional axial ligand, which can strengthen the interaction between the active site and the intermediate. Based on the outstanding catalytic activity, an NG-Heme-linked immunosorbent assay was constructed for colorimetric detection of carcinoembryonic antigen, exhibiting satisfactory sensitivity and feasibility in the analysis of clinical samples.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
36
|
Wang X, Xue CH, Yang D, Jia ST, Ding YR, Lei L, Gao KY, Jia TT. Modification of a nitrocellulose membrane with nanofibers for sensitivity enhancement in lateral flow test strips. RSC Adv 2021; 11:26493-26501. [PMID: 35479983 PMCID: PMC9037416 DOI: 10.1039/d1ra04369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/23/2021] [Indexed: 01/16/2023] Open
Abstract
Lateral-flow analysis (LFA) is a convenient, low-cost, and rapid detection method, which has been widely used for screening of diseases. However, sensitivity enhancement in LFA is still a focus in this field and remains challenging. Herein, we propose an electrospinning coating method to modify the conventional nitrocellulose (NC) membrane and optimize the liquid flow rate for enhancing the sensitivity of the NC based LFA strips in the detection of human chorionic gonadotropin (HCG) and luteinizing hormone (LH). It can be seen that coating the NC membrane with nitrocellulose fibers could obtain a NC based strip with HCG and LH detection limits of 0.22 and 0.36 mIU mL-1 respectively, and a quantitative linear range of 0.5-500 mIU mL-1. The results show that electrospinning is effective in modifying conventional NC membranes for LFA applications.
Collapse
Affiliation(s)
- Xue Wang
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Chao-Hua Xue
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Shun-Tian Jia
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ya-Ru Ding
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lei Lei
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Ke-Yi Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
37
|
Kandathil V, Patil SA. Single-atom nanozymes and environmental catalysis: A perspective. Adv Colloid Interface Sci 2021; 294:102485. [PMID: 34274722 DOI: 10.1016/j.cis.2021.102485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
The nanomaterials intrinsic enzyme-like activity has gained enormous traction since its discovery in 2007 by Gao and colleagues. The wide range of applications with nanozymes made it more attractive among the scientific community across the world. The area of artificial-enzymes is still evolving, with the development of Single-Atom Nanozymes (SANs), and there is a lot of opportunity in the design and development of SANs that has plenty of real-time applications. The irregular active site distribution or truncated densities of active sites present on the surface of nanozymes can be result in the reduced activity and specificity of nanozymes. Individually spreading these active sites evenly on a solid support will help to curtail the uneven distribution of active sites, resulting in the formation of SANs. SANs, like homogeneous catalysts, are very effective and active due to the nearly uniform distribution of active sites on solid support, and their recovery and recyclability, like heterogeneous catalysts, make them green and sustainable. This review provides a brief overview of architecture, synthesis, and implementations of SANs in various fields. Also, the possibility of SANs in environmental catalysis is discussed along with the key challenges and prospects lying ahead in this field.
Collapse
Affiliation(s)
- Vishal Kandathil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
| |
Collapse
|
38
|
Lyu Z, Ding S, Wang M, Pan X, Feng Z, Tian H, Zhu C, Du D, Lin Y. Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells. NANO-MICRO LETTERS 2021; 13:146. [PMID: 34146178 PMCID: PMC8214641 DOI: 10.1007/s40820-021-00661-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 05/04/2023]
Abstract
Fe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs' performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.
Collapse
Affiliation(s)
- Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Maoyu Wang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Xiaoqing Pan
- Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, 92697, USA
| | - Zhenxing Feng
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Hangyu Tian
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Chengzhou Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
39
|
Ding S, Lyu Z, Fang L, Li T, Zhu W, Li S, Li X, Li JC, Du D, Lin Y. Single-Atomic Site Catalyst with Heme Enzymes-Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100664. [PMID: 34028983 DOI: 10.1002/smll.202100664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Indexed: 05/28/2023]
Abstract
Heme enzymes, with the pentacoordinate heme iron active sites, possess high catalytic activity and selectivity in biosensing applications. However, they are still subject to limited catalytic stability in the complex environment and high cost for broad applications in electrochemical sensing. It is meaningful to develop a novel substitute that has a similar structure to some heme enzymes and mimics their enzyme activities. One emerging strategy is to design the Fe-N-C based single-atomic site catalysts (SASCs). The obtained atomically dispersed Fe-Nx active sites can mimic the active sites of heme enzymes effectively. In this work, a SASC (Fe-SASC/NW) is synthesized by doping single iron atoms in polypyrrole (PPy) derived carbon nanowire via a zinc-atom-assisted method. The proposed Fe-SASC/NW shows high heme enzyme-like catalytic performance for hydrogen peroxide (H2 O2 ) with a specific activity of 42.8 U mg-1 . An electrochemical sensor based on Fe-SASC/NW is developed for the detection of H2 O2 . This sensor exhibits a wide detection concentration range from 5.0 × 10-10 m to 0.5 m and an excellent limit of detection (LOD) of 46.35 × 10-9 m. Such excellent catalytic activity and electrochemical sensing sensitivity are attributed to the isolated Fe-Nx active sites and their structural similarity with natural metalloproteases.
Collapse
Affiliation(s)
- Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | | | - Xin Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jin-Cheng Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
40
|
Zhou X, Wang S, Zhang C, Lin Y, Lv J, Hu S, Zhang S, Li M. Colorimetric determination of amyloid-β peptide using MOF-derived nanozyme based on porous ZnO-Co 3O 4 nanocages. Mikrochim Acta 2021; 188:56. [PMID: 33502585 DOI: 10.1007/s00604-021-04705-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and rapid colorimetric biosensor has been developed for determination of amyloid-β peptide (Aβ) and study of amyloidogenesis based on the high peroxidase-like activity of porous bimetallic ZnO-Co3O4 nanocages (NCs). Due to the high binding ability of Aβ monomer to ZnO-Co3O4 NCs, the catalytic activity of ZnO-Co3O4 NCs can be significantly suppressed by Aβ monomer. This finding forms the basis for a colorimetric assay for Aβ monomer detection. The detection limit for Aβ monomer is 3.5 nM with a linear range of 5 to 150 nM (R2 = 0.997). The system was successfully applied to the determination of Aβ monomer in rat cerebrospinal fluid. Critically, the different inhibition effects of monomeric and aggregated Aβ species on the catalytic activity of ZnO-Co3O4 NCs enabled the sensor to be used for tracking the dynamic progress of Aβ aggregation and screening Aβ inhibitors. Compared with the commonly used thioflavin T fluorescence assay, this method provided higher sensitivity to the formation of Aβ oligomer at the very early assembly stage. Our assay shows potential application in early diagnosis and therapy of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xi Zhou
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Cong Zhang
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Yulong Lin
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuyang Hu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shanshan Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng Li
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
41
|
Wang H, Fang Q, Gu W, Du D, Lin Y, Zhu C. Noble Metal Aerogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52234-52250. [PMID: 33174718 DOI: 10.1021/acsami.0c14007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Noble metal-based nanomaterials have been a hot research topic during the past few decades. Particularly, self-assembled porous architectures have triggered tremendous interest. At the forefront of porous nanostructures, there exists a research endeavor of noble metal aerogels (NMAs), which are unique in terms of macroscopic assembly systems and three-dimensional (3D) porous network nanostructures. Combining excellent features of noble metals and the unique structural traits of porous nanostructures, NMAs are of high interest in diverse fields, such as catalysis, sensors, and self-propulsion devices. Regardless of these achievements, it is still challenging to rationally design well-tailored NMAs in terms of ligament sizes, morphologies, and compositions and profoundly investigate the underlying gelation mechanisms. Herein, an elaborate overview of the recent progress on NMAs is given. First, a simple description of typical synthetic methods and some advanced design engineering are provided, and then, the gelation mechanism models of NMAs are discussed in detail. Furthermore, promising applications particularly focusing on electrocatalysis and biosensors are highlighted. In the final section, brief conclusions and an outlook on the existing challenges and future chances of NMAs are also proposed.
Collapse
Affiliation(s)
- Hengjia Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Qie Fang
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|