1
|
Yue T, Zhang W, Pei H, Danzeng D, He J, Yang J, Luo Y, Zhang Z, Xiong S, Yang X, Ji Q, Yang Z, Hou J. Monascus pigment-protected bone marrow-derived stem cells for heart failure treatment. Bioact Mater 2024; 42:270-283. [PMID: 39285916 PMCID: PMC11403898 DOI: 10.1016/j.bioactmat.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in heart failure (HF) treatment. However, their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species (ROS) microenvironment. In this study, monascus pigment (MP) nanoparticle (PPM) was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs (BMSCs). Meanwhile, in order to load PPM and reduce the mechanical damage of BMSCs, injectable hydrogels based on Schiff base cross-linking were prepared. The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities, significantly enhancing BMSCs survival and activity in HF microenvironment. This hydrogel demonstrates superior biocompatibility, injectability, and tissue adhesion. With the synergistic effects of injectable, adhesive hydrogel and the microenvironment-modulating properties of MP, cardiac function was effectively improved in the pericardial sac of rats. Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Dunzhu Danzeng
- School of Medicine, Tibet University, Lhasa, Tibet, 850000, China
| | - Jian He
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Jiali Yang
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Yong Luo
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| | - Xiangbo Yang
- Ya'an Xunkang Pharmaceutical Co., LTD, Ya'an, Sichuan, 625015, China
| | - Qisen Ji
- Ya'an Xunkang Pharmaceutical Co., LTD, Ya'an, Sichuan, 625015, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu Institute of Cardiovascular Disease, Chengdu, Sichuan, 610031, China
| |
Collapse
|
2
|
Hu F, Dong B, Yu D, Zhao R, Chen W, Song Z, Lu P, Zhang F, Wang Z, Liu X, Wang H, Liu W, Li H. Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors. Carbohydr Polym 2024; 342:122357. [PMID: 39048189 DOI: 10.1016/j.carbpol.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
In this study, we address the challenge of developing highly conductive hydrogels with enhanced stretchability for use in wearable sensors, which are critical for the precise detection of human motion and subtle physiological strains. Our novel approach utilizes amylopectin, a biopolymer, for the uniform integration of liquid metal gallium into the hydrogel matrix. This integration results in a conductive hydrogel characterized by remarkable elasticity (up to 7100 % extensibility) and superior electrical conductance (Gauge Factor = 31.4), coupled with a minimal detection limit of less than 0.1 % and exceptional durability over 5000 cycles. The hydrogel demonstrates significant antibacterial activity, inhibiting microbial growth in moist environments, thus enhancing its applicability in medical settings. Employing a synthesis process that involves ambient condition polymerization of acrylic acid, facilitated by a hydrophobic associative framework, this hydrogel stands out for its rapid gelation and robust mechanical properties. The potential applications of this hydrogel extend beyond wearable sensors, promising advancements in human-computer interaction through technologies like wireless actuation of robotic systems. This study not only introduces a viable material for current wearable technologies but also sets a foundation for future innovations in bio-compatible sensors and interactive devices.
Collapse
Affiliation(s)
- Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Zhaoping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Zhaojiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong Province 250012, China.
| |
Collapse
|
3
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
4
|
Fu D, Xie Y, Zhou L, Zhang L, Zheng T, Shen J. Triple physical cross-linking cellulose nanofibers-based poly(ionic liquid) hydrogel as wearable multifunctional sensors. Carbohydr Polym 2024; 325:121572. [PMID: 38008484 DOI: 10.1016/j.carbpol.2023.121572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/28/2023]
Abstract
A novel triple physical cross-linking poly(ionic liquid) hydrogel, composed of poly(acrylamide-co-dodecyl methacrylate-co-1-vinyl-3-methyluracil-imidazolium chloride)/cellulose nanofibers-Ca2+ (PADV/CNFs-Ca2+), was synthesized through micellar-copolymerization followed by a solvent-soaked procedure. The synergistic interactions in polymer network (i.e. the hydrophobic association of dodecyl methacrylate moiety in surfactant micelles, the hydrogen bondings between imidazolium monomer segments and other monomer segments in polymers, and the ionic coordination between Ca2+ and -COO- on cellulose nanofibers surface) endowed the hydrogel with excellent mechanical properties, including high strength (754 kPa of tensile strength and 1905 kPa of compressive strength), outstanding stretchability (1963 %), elastic modulus (56.5 kPa) and remarkable mechanical durability (200 cycles with 500 % deformations and 100 cycles at 50 % compression strain). Besides, this hydrogel exhibited other advantages, such as satisfied conductivity (28.7 mS/cm), high strain/pressure/temperature-sensitive behavior, precise and stable signal transmission, varying degrees of antibacterial activity, and biocompatibility. Owing to the exceptional comprehensive performance, the hydrogel was then assembled as a multifunctional sensor to monitor the joint motion, vocal cord vibration, tactile sensation and body temperature with remarkable sensitivity in real time. This work offered a new strategy for the fabrication of durable, biocompatible, antibacterial and conductive materials for wearable multifunctional electronic devices.
Collapse
Affiliation(s)
- Dong Fu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, PR China
| | - Yang Xie
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, PR China
| | - Lili Zhou
- Heilongjiang Academy of Sciences, Intelligent Manufacturing Institute, Harbin 150001, PR China
| | - Lili Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Ting Zheng
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Jun Shen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China; School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
5
|
Zheng S, Chen X, Shen K, Cheng Y, Ma L, Ming X. Hydrogen Bonds Reinforced Ionogels with High Sensitivity and Stable Autonomous Adhesion as Versatile Ionic Skins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4035-4044. [PMID: 38200632 DOI: 10.1021/acsami.3c16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Flexible wearable sensors have demonstrated enormous potential in various fields such as human health monitoring, soft robotics, and motion detection. Among them, sensors based on ionogels have garnered significant attention due to their wide range of applications. However, the fabrication of ionogels with high sensitivity and stable autonomous adhesion remains a challenge, thereby limiting their potential applications. Herein, we present an advanced ionogel (PACG-MBAA) with exceptional performances based on multiple hydrogen bonds, which is fabricated through one-step radical polymerization of N-acryloylglycine (ACG) in 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) in the presence of N,N'-methylenebis(acrylamide) (MBAA). Compared with the ionogel (PAA-MBAA) formed by polymerization of acrylic acid (AA) in EMIES, the resulting ionogel exhibits tunable mechanical strength (35-130 kPa) and Young's modulus comparable to human skin (60-70 kPa) owing to the multiple hydrogen bonds formation. Importantly, they demonstrate stable autonomous adhesion to various substrates and good self-healing capabilities. Furthermore, the ionogel-based sensor shows high sensitivity (with a gauge factor up to 6.16 in the tensile range of 300-700%), enabling the detection of both gross and subtle movements in daily human activities. By integration of the International Morse code, the ionogel-based sensor enables the encryption, decryption, and transmission of information, thus expanding its application prospects.
Collapse
Affiliation(s)
- Shuquan Zheng
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xuelian Chen
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Ma
- College of Science, Chan'an University, Xi'an 710064, China
| | - Xiaoqing Ming
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Wang Z, Wang S, Zhang L, Liu H, Xu X. Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions. RESEARCH (WASHINGTON, D.C.) 2024; 7:0298. [PMID: 38222114 PMCID: PMC10786319 DOI: 10.34133/research.0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Despite the promise of high flexibility and conformability of hydrogel ionic conductors, existing polymeric conductive hydrogels have long suffered from compromises in mechanical, electrical, and cryoadaptive properties due to monotonous functional improvement strategies, leading to lingering challenges. Here, we propose an all-in-one strategy for the preparation of poly(acrylic acid)/cellulose (PAA/Cel) hydrogel ionic conductors in a facile yet effective manner combining acrylic acid and salt-dissolved cellulose, in which abundant zinc ions simultaneously form strong coordination interactions with the two polymers, while free solute salts contribute to ionic conductivity and bind water molecules to prevent freezing. Therefore, the developed PAA/Cel hydrogel simultaneously achieved excellent mechanical, conductive, and cryogenically adaptive properties, with performances of 42.5 MPa for compressive strength, 1.6 MPa for tensile strength, 896.9% for stretchability, 9.2 MJ m-3 for toughness, 59.5 kJ m-2 for fracture energy, and 13.9 and 6.2 mS cm-1 for ionic conductivity at 25 and -70 °C, respectively. Enabled by these features, the resultant hydrogel ionic conductor is further demonstrated to be assembled as a self-powered electronic skin (e-skin) with high signal-to-noise ratio for use in monitoring movement and physiological signals regardless of cold temperatures, with hinting that could go beyond high-performance hydrogel ionic conductors.
Collapse
Affiliation(s)
- Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
- College of Chemical Engineering, Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources,
Nanjing Forestry University, Nanjing 210037, China
| | - Siheng Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
Chinese Academy of Forestry, Nanjing 210042, China
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources,
Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Lu QL, Wu J, Wang H, Huang B, Zeng H. Plant-inspired multifunctional fluorescent cellulose nanocrystals intelligent nanocomposite hydrogel. Int J Biol Macromol 2023; 249:126019. [PMID: 37542759 DOI: 10.1016/j.ijbiomac.2023.126019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Intelligent hydrogel has great application potentials in flexible sensing and artificial intelligence devices due to its intrinsic characteristics. However, developing an intelligent hydrogel with favorable properties including high strength, superior toughness, excellent conductivity and ionic sensing via a facile route is still a challenge. Herein, inspired by biologically chelating interactions of phytic acid (PA) in plants, a plant-inspired versatile intelligent nanocomposite hydrogel was readily fabricated by incorporating PA into the interface of fluorescent cellulose nanocrystals (F-CNC). Under PA "molecular bridge", the hydrogel simultaneously realized superflexibility (1000 %), high strength, superb self-healing ability, remarkable fluorescence and chloride ion sensibility as well as good ionic conductivity (2.4 S/m). The hydrogel could be assembled as a flexible sensor for real-time monitoring of human motion with excellent sensitivity and stability since high sensitivity toward both strain and pressure. F-CNC acted as a functional trigger could confer the hydrogel good fluorescence and high sensitivity toward chloride ion. This design confirms the synergy of F-CNC in boosting strength, ionic sensing, and ionic conductivity, addressing a long-standing dilemma among strength, stretchability, and sensitivity for intelligent hydrogel. The one-step incorporating tactic under mild ambient conditions may open an innovative avenue for the construction of intelligent hydrogel with novel properties.
Collapse
Affiliation(s)
- Qi-Lin Lu
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.
| | - Jiayin Wu
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanchen Wang
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Biao Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.
| |
Collapse
|
8
|
Gong T, Li ZN, Liang H, Li Y, Tang X, Chen F, Hu Q, Wang H. High-Sensitivity Wearable Sensor Based On a MXene Nanochannel Self-Adhesive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19349-19361. [PMID: 37036936 DOI: 10.1021/acsami.3c01748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To address the shortcomings of traditional filler-based wearable hydrogels, a new type of nanochannel hydrogel sensor is fabricated in this work through a combination of the unique structure of electrospun fiber textile and the properties of a double network hydrogel. Unlike the traditional Ti3C2Tx MXene-based hydrogels, the continuously distributed Ti3C2Tx MXene in the nanochannels of the hydrogel forms a tightly interconnected structure similar to the neuron network. As a result, they have more free space to flip and perform micromovements, which allows one to significantly increase the electrical conductivity and sensitivity of the hydrogel. According to the findings, the Ti3C2Tx MXene nanochannel hydrogel has excellent mechanical properties as well as self-adhesion and antifreezing characteristics. The hydrogel sensor successfully detects different human motions and physiological signals (e.g., low pulse signals) with high stability and sensitivity. Therefore, the proposed Ti3C2Tx MXene-based hydrogel with a unique structure and properties is very promising in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Tao Gong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zo Ngyang Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huanyi Liang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Youming Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xia Tang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fengyue Chen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qinghua Hu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - HongQing Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
9
|
Chen J, Wang Y, Li L, Miao YE, Zhao X, Yan XP, Zhang C, Feng W, Liu T. Visible-Light Transparent, Ultrastretchable, and Self-Healable Semicrystalline Fluorinated Ionogels for Underwater Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16109-16117. [PMID: 36939056 DOI: 10.1021/acsami.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of ultrastretchable ionogels with a combination of high transparency and unique waterproofness is central to the development of emerging skin-inspired sensors. In this study, an ultrastretchable semicrystalline fluorinated ionogel (SFIG) with visible-light transparency and underwater stability is prepared through one-pot copolymerization of acrylic acid and fluorinated acrylate monomers in a mixed solution of poly(ethylene oxide) (PEO) and fluorinated ionic liquids. Benefiting from the formation of the PEO-chain semicrystalline microstructures and the abundant noncovalent interactions (reversible hydrogen bonds and ion-dipole interactions) in an ionogel, SFIG is rendered with room-temperature stable cross-linking structures, providing high mechanical elasticity as well as high chain segment dynamics for self-healing and efficient energy absorption during the deformation. The resultant SFIG exhibits excellent stretchability (>2500%), improved mechanical toughness (7.4 MJ m-3), and room-temperature self-healability. Due to the high compatibility and abundance of hydrophobic fluorinated moieties in the ionogel, the SFIG demonstrates high visible-light transparency (>97%) and excellent waterproofness. Due to these unique advantages, the as-prepared SFIG is capable of working as an ultrastretchable ionic conductor in capacitive-type strain sensors, demonstrating excellent underwater strain-sensing performances with high sensitivity, large detecting range, and exceptional durability. This work might provide a straightforward and efficient method for obtaining waterproof ionogel elastomers for application in next-generation underwater sensors and communications.
Collapse
Affiliation(s)
- Jingxiao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China
| | - Yue-E Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
10
|
Fu D, Huang G, Xie Y, Zheng M, Feng J, Kan K, Shen J. Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11062-11075. [PMID: 36787995 DOI: 10.1021/acsami.2c21819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conductive hydrogel-based ionic skins have attracted immense attention due to their great application prospects in wearable electronic devices. However, simultaneously achieving a combination of a single hydrogel system and excellent comprehensive performance (i.e., mechanical durability, electrical sensitivity, broad-spectrum antibacterial activity, and biocompatibility) remains a challenge. Thus, a novel poly(ionic liquid) hydrogel consisting of poly(acrylamide-co-lauryl methacrylate-co-methyl-uracil-imidazolium chloride-co-2-acryloylamino-2-methyl-1-propane sulfonic acid) (AAm-LMA-MUI-AMPS) was prepared by a micellar copolymerization method. Herein, MUI serves as a supramolecular crosslinker and conductive and bacteriostatic components. Owing to the multiple supramolecular crosslinks and hydrophobic association in the network, the hydrogel exhibits excellent mechanical properties (624 kPa of breaking stress and 1243 kPa of compression stress), skin-like modulus (46.2 kPa), stretchability (1803%), and mechanical durability (200 cycles under 500% strain can be completely recovered). Moreover, with the coordinated combination of each monomer, the hydrogel exhibits the unique advantage of high conductivity (up to 59.34 mS/cm). Hence, the hydrogel was further assembled as an ionic skin sensor, which exhibited a gauge factor (GF) of 10.74 and 7.27 with and without LiCl over a broad strain range (1-1000%), respectively. Furthermore, the hydrogel sensor could monitor human movement in different strain ranges, including body movement and vocal cord vibration. In addition, the antibacterial activity and biocompatibility of the hydrogel sensor were investigated. These findings present a new strategy for the design of new-generation wearable devices with multiple functions.
Collapse
Affiliation(s)
- Dong Fu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Guoqing Huang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Yang Xie
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Mingming Zheng
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Ji Feng
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Kan Kan
- Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150029, P. R. China
| | - Jun Shen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
11
|
Wu B, Xue Y, Ali I, Lu H, Yang Y, Yang X, Lu W, Zheng Y, Chen T. The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0015. [PMID: 39290972 PMCID: PMC11407522 DOI: 10.34133/research.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 09/19/2024]
Abstract
Natural locomotion such as walking, crawling, and swimming relies on spatially controlled deformation of soft tissues, which could allow efficient interaction with the external environment. As one of the ideal candidates for biomimetic materials, hydrogels can exhibit versatile bionic morphings. However, it remains an enormous challenge to transfer these in situ deformations to locomotion, particularly above complex terrains. Herein, inspired by the crawling mode of inchworms, an isotropic hydrogel with thermoresponsiveness could evolve to an anisotropic hydrogel actuator via interfacial diffusion polymerization, further evolving to multisection structure and exhibiting adaptive deformation with diverse degrees of freedom. Therefore, a dynamic mortise-and-tenon interlock could be generated through the interaction between the self-deformation of the hydrogel actuator and rough terrains, inducing continual multidimensional locomotion on various artificial rough substrates and natural sandy terrain. Interestingly, benefiting from the powerful mechanical energy transfer capability, the crawlable hydrogel actuators could also be utilized as hydrogel motors to activate static cargos to overstep complex terrains, which exhibit the potential application of a biomimetic mechanical discoloration device. Therefore, we believe that this design principle and control strategy may be of potential interest to the field of deformable materials, soft robots, and biomimetic devices.
Collapse
Affiliation(s)
- Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yaoting Xue
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Israt Ali
- INRS-EMT, 1650 Boul. Lionel Boulet, Varennes J3X 0A1, Canada
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
| | - Yuming Yang
- Key Laboratory for Biomedical Engineering of Ministry of Education Ministry of China, Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuxu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yinfei Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education Ministry of China, Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Zhang J, Hu Y, Zhang L, Zhou J, Lu A. Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics. NANO-MICRO LETTERS 2022; 15:8. [PMID: 36477664 PMCID: PMC9729505 DOI: 10.1007/s40820-022-00980-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/23/2023]
Abstract
To date, hydrogels have gained increasing attentions as a flexible conductive material in fabricating soft electronics. However, it remains a big challenge to integrate multiple functions into one gel that can be used widely under various conditions. Herein, a kind of multifunctional hydrogel with a combination of desirable characteristics, including remarkable transparency, high conductivity, ultra-stretchability, toughness, good fatigue resistance, and strong adhesive ability is presented, which was facilely fabricated through multiple noncovalent crosslinking strategy. The resultant versatile sensors are able to detect both weak and large deformations, which owns a low detection limit of 0.1% strain, high stretchability up to 1586%, ultrahigh sensitivity with a gauge factor up to 18.54, as well as wide pressure sensing range (0-600 kPa). Meanwhile, the fabrication of conductive hydrogel-based sensors is demonstrated for various soft electronic devices, including a flexible human-machine interactive system, the soft tactile switch, an integrated electronic skin for unprecedented nonplanar visualized pressure sensing, and the stretchable triboelectric nanogenerators with excellent biomechanical energy harvesting ability. This work opens up a simple route for multifunctional hydrogel and promises the practical application of soft and self-powered wearable electronics in various complex scenes.
Collapse
Affiliation(s)
- Jipeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
13
|
Zhang B, Zhang X, Song H, Nguyen DH, Zhang C, Liu T. Strong-Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32551-32560. [PMID: 35796233 DOI: 10.1021/acsami.2c07963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The requirement of ionic conductive hydrogels with tailor-made superelasticity and high chain mobility is highly desired while meeting a challenge. Herein, ionic conductive hydrogels with the design of strong-weak response networks were synthesized via the free-radical copolymerization of monomers of 1-methyl-3-(4-vinylbenzyl)imidazolium chloride and sodium 2-acrylamino-2-methylpropanesulfonate in water. The as-formed strong-weak response networks in ionic conductive hydrogels included binary interactions of strong electrostatic forces and weak hydrogen bonds. The electrostatic forces imparted excellent mechanical elasticity, and the hydrogen-bonded interactions served as highly active and reversible networks to dissipate fracture energy during the deformation. Importantly, the resultant ionic conductive hydrogels exhibited high toughness of ∼2205 kJ m-3, satisfying fatigue resistance, and excellent healing efficiency of >90%. Moreover, the tailoring of counterion concentrations in hydrogels by adding various concentrations of inorganic salts could regulate the electrostatic forces within hydrogels as well as the finally mechanical strengths. Ascribing to the combination of large stretchability and large chain mobility, the resultant ionic conductive hydrogels could directly act as a stretchable ionic conductor for the assembly of self-healable and self-adhesive capacitance-type ionic sensors which are capable of detecting large and tiny human activities. This study could offer a promising strategy for the design and manufacturing of emerging ionic conductors with high mechanical elasticity and large segment mobility.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
14
|
Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling. COATINGS 2022. [DOI: 10.3390/coatings12070988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Capsaicin has been extensively studied for its excellent antifouling activity and very low environmental toxicity. However, mixing natural capsaicin with coatings can cause rapid capsaicin leakage, severely shortening its antifouling cycle. In this study, we describe the preparation and performance of a new capsaicin-modified marine antifouling organofluorosilicone, which is based on silicone and fluorine acrylate monomers covalently bound to an organic antimicrobial monomer, HMBA (N-(4-hydroxy-3-methoxybenzyl)-acrylamide) on a polymer network. The chemical grafting of HMBA into the polymer has improved the problem of short antifouling life of the coating due to antifouling agent leakage and the environmental pollution caused by the leakage. The study focused on the synthesis of pristine acrylate monomers with organic bioactive groups prepared from vanillin amine salts and their co-polymerization in the presence of distal acrylate oligomers. The resulting cross-linked films were characterized using infrared spectroscopy, contact angle, and adhesion analyses. The results indicate that the materials had good adhesion, low surface energy, and were resistant to prolonged immersion in water. The polyacrylate coating synthesized from acrylate exhibited antibacterial and anti-algae activity. Biological tests on the marine microorganisms, Pseudomonas species, Shewanella species, and Navicula incerta, revealed a 97%, 98%, and 99% reduction compared to the blank control group, respectively, indicating that the coating has strong anti-adhesive ability. This work is expected to develop a promising material for marine antifouling.
Collapse
|
15
|
Wang L, Zhu T, Kang Y, Zhang J, Du J, Gao H, Chen S, Jiang J, Zhao J. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact Mater 2022; 16:149-161. [PMID: 35386329 PMCID: PMC8958472 DOI: 10.1016/j.bioactmat.2022.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospun fibers, with proven ability to promote tissue regeneration, are widely being explored for rotator cuff repairing. However, without post treatment, the microstructure of the electrospun scaffold is vastly different from that of natural extracellular matrix (ECM). Moreover, during mechanical loading, the nanofibers slip that hampers the proliferation and differentiation of migrating stem cells. Here, electrospun nanofiber scaffolds, with crimped nanofibers and welded joints to biomimic the intricate natural microstructure of tendon-to-bone insertion, were prepared using poly(ester-urethane)urea and gelatin via electrospinning and double crosslinking by a multi-bonding network densification strategy. The crimped nanofiber scaffold (CNS) features bionic tensile stress and induces chondrogenic differentiation, laying credible basis for in vivo experimentation. After repairing a rabbit massive rotator cuff tear using a CNS for 3 months, the continuous translational tendon-to-bone interface was fully regenerated, and fatty infiltration was simultaneously inhibited. Instead of micro-CT, μCT was employed to visualize the integrity and intricateness of the three-dimensional microstructure of the CNS-induced-healed tendon-to-bone interface at an ultra-high resolution of less than 1 μm. This study sheds light on the correlation between nanofiber post treatment and massive rotator cuff repair and provides a general strategy for crimped nanofiber preparation and tendon-to-bone interface imaging characterization. Electrospun scaffold mimicking the microstructure of ECM was fabricated. The translational microstructure of tendon-to-bone interface was regenerated. Tendon-to-bone interface was 3D visualized with resolution less than 1 μm. Muscle fatty infiltration was inhibited for massive rotator cuff tear.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Jianguang Zhang
- Department of Medgen Group Research Laboratory, 18 Qinglan 3 Rd, Shenzhen, 518118, China
| | - Juan Du
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China
| | - Haihan Gao
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China.,Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Sihao Chen
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
16
|
Stretchable and self-healable double-network ionogel with strong adhesion and temperature tolerance for information encryption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zhang B, Feng Q, Song H, Zhang X, Zhang C, Liu T. Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8404-8416. [PMID: 35112831 DOI: 10.1021/acsami.1c22602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of solvent-free ionic conductive elastomers with high mechanical stretchability and large dynamic reversibility of chain segments is highly desired yet challenging. Here, a hierarchical response network strategy is presented for preparing highly stretchable yet mechanical robust ionic conductive elastomer composites (ICECs), among which poly(ethylene oxide) (PEO) microcrystalline serves as a physical cross-linking site providing high mechanical strength and elasticity, while dense hydrogen bonds endow superior mechanical toughness and dynamic reversibility. Due to the formation of the hierarchical response network, the resultant ICECs exhibit intrinsically high stretchability (>1500%), large tensile strength (∼2.1 MPa), and high fracture toughness (∼28 MJ m-3). Intriguingly, due to the high reversibility of hydrogen-bonded networks, the ICECs after being crushed are capable of healing and recycling by simple hot-pressing for multiple cycles. Moreover, the ICECs are dissolvable under an alkaline condition and easily regenerated in an acid solution for manifold cycles. Importantly, the healed, recycled, and regenerated ICECs are capable of maintaining their initial mechanical elasticity and ionic conducting performance. Due to the integration of high stretchability, fatigue resistance, and ionic conductivity, the ICECs can readily work as a stretchable ionic conductor for skin-inspired ionic sensors for real-time and accurately sensing complex human motions. This study thus provides a promising strategy for the development of healable and renewable ionic sensing materials with high stretchability and mechanical robustness, demonstrating great potential in soft ionotronics.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Qichun Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Xu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
18
|
Feng Q, Wan K, Zhu T, Fan X, Zhang C, Liu T. Stretchable, Environment-Stable, and Knittable Ionic Conducting Fibers Based on Metallogels for Wearable Wide-Range and Durable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4542-4551. [PMID: 35034447 DOI: 10.1021/acsami.1c22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of fibrous ionic conductors and sensors with large stretchability, low-temperature tolerance, and environmental stability is highly desired for practical wearable devices yet is challenging. Herein, metallogels (MOGs) with a rapidly reversible force-stimulated sol-gel transition were employed and encapsulated into a hollow thermoplastic elastomer (TPE) microfiber through a simple coaxial spinning. The resultant MOG@TPE coaxial fiber exhibited a high stretchability (>100%) in a broad temperature range (-50 to 50 °C). The MOG@TPE fibrous strain sensor demonstrated a high-yet-linear working curve, fast response time (<100 ms), highly stable conductivity under large deformation, and excellent cycling stability (>3000 cycles). The MOG@TPE fibrous sensors were demonstrated to be directly attached to the human skin to monitor the real-time movements of large/facet joints of the elbow, wrist, finger, and knee. It is believed that the present work for preparing the stretchable ionic conductive fibers holds great promise for applications in fibrous wearable sensors with broad temperature range, large stretchability, stable conductivity, and high wearing comfort.
Collapse
Affiliation(s)
- Qichun Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Kening Wan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P.R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| |
Collapse
|
19
|
Yu X, Wang Y, Zhang H, Fan X, Liu T. Ultrastretchable and Stable Conductive Elastomer Based on Micro-Ionicgel for Wide-Working-Range Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53091-53098. [PMID: 34704734 DOI: 10.1021/acsami.1c16061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A facile route to novel stretchable conductive elastomers with micro-ionicgel acting as conductive fillers was developed via oil-in-oil Pickering emulsion polymerization of nonpolar monomers A and a mixture of polar monomers B and ionic liquids (ILs). Oil-in-oil Pickering emulsions were first fabricated by mixing n-butyl acrylate (n-BA), acrylic acid (AA), ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [EMIM]+[BF4]-), and alkyl vinyl-functionalized silica particles. The emulsion structure was directly observed using the dye-labeled AA-IL phase by confocal fluorescence microscopy. Upon polymerization, the IL-based conductive composite elastomers were obtained, where the continuous phase and the dispersed phase are poly(n-butyl acrylate) (PnBA) and poly(acrylic acid) containing ILs (PAA-ILs, referred to as micro-ionicgel), respectively. The PnBA matrix endows the formed elastomer with extremely large stretchability (up to 12 000% strain) and insensitivity to moisture. The micro-ionicgels PAA-ILs not only contribute to good conductivity but can also prevent the leakage of ILs upon stretching or folding. The electrical impedance-based stretchable sensors fabricated using this IL elastomer could detect various human motions including the bending of a finger, wrist, elbow, and knee. Therefore, the as-developed sensors show promising applications for human-machine interfaces of flexible wearable sensors.
Collapse
Affiliation(s)
- Xiaohui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Yufei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Haopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
20
|
Shi P, Wang Y, Tjiu WW, Zhang C, Liu T. Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49358-49368. [PMID: 34632775 DOI: 10.1021/acsami.1c16081] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of waterproof ionogels with high stretchability and fast self-healing performance is essential for stretchable ionic conductors in sophisticated skin-inspired wearable sensors but can be rarely met in one material. Herein, a semicrystalline fluorinated copolymer ionogel (SFCI) with extremely high stretchability, underwater stability, and fast self-healability was fabricated, among which hydrophobic ionic liquids ([BMIM][TFSI]) were selectively enriched in fluoroacrylate segment domains of the fluorinated copolymer matrix through unique ion-dipole interactions. Benefiting from the reversible ion-dipole interactions between the [BMIM][TFSI] and fluoroacrylate segment domains as well as the physical cross-linking effects of semicrystalline oligoethylene glycol domains, the SFCI exhibited ultrastretchability (>6000%), fast room-temperature self-healability (>96% healing efficiency after cutting and self-healing for 30 min), and outstanding elasticity. In addition, the representative SFCI also exhibited high-temperature tolerance up to 300 °C, antifreezing performance as low as -35 °C, and high transparency (>93% visible-light transmittance). As a result, the as-obtained SFCI can readily be used as a highly stretchable ionic conductor in skin-inspired wearable sensors with waterproof performance for real-time detecting physiological human activities. These attractive features illustrate that the developed ultrastretchable and rapidly self-healable ionogels with unique waterproofness are promising candidates especially for sophisticated wearable strain sensing applications in complex and extreme environments.
Collapse
Affiliation(s)
- Peiru Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|