1
|
Brandhorst H, Olbrich M, Neumann A, Jahr H, Brandhorst D. Effect of Pretransplant Preconditioning by Whole Body Hyperthermia on Islet Graft Survival. Cell Transplant 2017; 16:707-15. [DOI: 10.3727/000000007783465163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous observations in heat-shocked pig islets revealed the ambivalent character of the stress response simultaneously inducing processes of protection and apoptosis. To clarify whether the proapoptotic character of the stress response is reduced in heat-exposed islets still embedded in their native environment, hyperthermia was performed in the present study either as whole body hyperthermia (WBH) prior to pancreas resection or as in vitro heat shock (HS) after isolation. HS (42°C/45 min) was induced in donors 12 h before isolation (WBH, n = 32) or in freshly isolated islets prior to 12 h of culture at 37°C (in vitro HS, n = 25). Islets continuously incubated at 37°C served as controls (n = 34). Proinflammatory treatment was performed with H2O2, DETA-NO, or a combination of IL-1β, TNF-α, and IFN-γ. Quality assessment included islet yield, viability staining, static glucose incubation, and nude mouse transplantation. WBH was significantly less effective than in vitro HS to induce HSP70 overexpression and to increase islet resistance against inflammatory mediators. Although characterized by an unaltered Bax to Bcl-2 ratio, islets subjected to WBH partially failed to restore sustained normoglycemia in diabetic nude mice. The inflammatory response observed in the pancreas of WBH-treated rats was associated with significantly reduced viability that seems to have a higher predictive value for posttransplant outcome compared to islet in vitro function or mitochondrial activity. In contrast, in vitro HS significantly decreased transcript levels of Bcl-2, but did not affect posttransplant function compared to sham-treated islets. These findings suggest that WBH is primarily associated with increased necrosis as a secondary tissue type-specific effect of pancreas damage while in vitro HS mainly induces apoptosis.
Collapse
Affiliation(s)
- H. Brandhorst
- Department of Oncology, Radiology & Clinical Immunology, University Hospital, 75185 Uppsala, Sweden
| | - M. Olbrich
- Department of Internal Medicine, University Hospital Eilbeck, 22081 Hamburg, Germany
| | - A. Neumann
- Third Medical Department, University Hospital, 35385 Giessen, Germany
| | - H. Jahr
- Third Medical Department, University Hospital, 35385 Giessen, Germany
| | - D. Brandhorst
- Department of Oncology, Radiology & Clinical Immunology, University Hospital, 75185 Uppsala, Sweden
| |
Collapse
|
2
|
Brandhorst D, Kumarasamy V, Maatoui A, Alt A, Bretzel RG, Brandhorst H. Porcine Islet Graft Function is Affected by Pretreatment with a Caspase-3 Inhibitor. Cell Transplant 2017; 15:311-7. [PMID: 16898224 DOI: 10.3727/000000006783981936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the isolation procedure and after transplantation islets are subjected to numerous variables associated with the induction of apoptosis. The present study investigated the effect of transient pretreatment with caspase inhibitors on function and survival of transplanted pig islets. Isolated porcine islets (3000 IEQ) were incubated overnight in 200 μM of the caspase-3 inhibitor DEVD-CMK prior to transplantation into diabetic nude mice. Glucose-stimulated insulin release of pretreated islets was assessed during static incubation. DEVD-CMK successfully prevented the expression of capase-3 and DFF as demonstrated in heat-shocked pig islets. Nevertheless, transient pretreatment of freshly isolated pig islets with DEVD-CMK resulted in a significantly decreased final graft function of 50.0% (n = 16) compared to 85.7% (n = 14) in control islets (p < 0.05). Glucose-stimulated insulin release of porcine islets (n = 6) was not significantly effected by overnight culture with DEVD-CMK. Morphological assessment revealed that this caspase-3 inhibitor significantly increased the percentage of necrosis to a small, but nevertheless significant, extent in comparison to control islets (p < 0.05). The study demonstrates that short-time pretreatment with the caspase-3 inhibitor DEVD-CMK reduces the capacity of transplanted porcine islets to restore normoglycemia in diabetic nude mice.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Department of Clinical Immunology, Rudbeck Laboratory, Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
3
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
4
|
Brandhorst H, Theisinger B, Guenther B, Johnson PR, Brandhorst D. Pancreatic L-Glutamine Administration Protects Pig Islets From Cold Ischemic Injury and Increases Resistance Toward Inflammatory Mediators. Cell Transplant 2015; 25:531-8. [PMID: 26177261 DOI: 10.3727/096368915x688623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The isolation and transplantation of porcine islets represent a future option for the treatment of type 1 diabetic patients. Stringent product release criteria and limited availability of transgenic and specific pathogen-free pigs will essentially require processing of explanted pig pancreata in specialized, possibly remote isolation facilities, whereby pancreata are exposed to cold ischemia due to prolonged tissue transit time. In the present study we investigated whether pancreas oxygenation can be efficiently combined with an antioxidant strategy utilizing intraductal L-glutamine administration. Pig pancreata were intraductally perfused after retrieval and after cold storage in oxygen-precharged perfluorohexyloctane utilizing University of Wisconsin solution supplemented with (n = 16) or without (n = 14) 5 mmol/L L-glutamine. After isolation purified islets were subjected to extensive quality assessment. Islet recovery postpurification was significantly higher in glutamine-treated pancreata (77.0 ± 3.3% vs. 60.3 ± 6.0%, p < 0.05). Glutamine administration increased intraislet content of reduced glutathione (117.8 ± 16.5 vs. 15.9 ± 2.8 ng/ng protein, p < 0.001) associated with increased islet recovery after culture (65.8 ± 12.1% vs. 40.3 ± 11.7%, p < 0.05), enhanced glucose stimulation index (1.82 ± 0.16 vs. 1.38 ± 0.10, p < 0.05), and improved posttransplant function in diabetic nude mice (p < 0.05). Furthermore, intraductally administered glutamine increased pig islet resistance toward reactive oxygen species, nitric oxide, and high-dose proinflammatory cytokines. The present study demonstrates that quality and function of pig islets exposed to warm and cold ischemia can significantly be improved using intraductal l-glutamine administration. As the efficiency of the intraductal route may be inferior compared to intravascular administration further studies should aim on assessment of l-glutamine as supplement for pancreas perfusion during organ procurement.
Collapse
Affiliation(s)
- Heide Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
5
|
Kimura Y, Okitsu T, Xibao L, Teramae H, Okonogi A, Toyoda K, Uemoto S, Fukushima M. Improved hypothermic short-term storage of isolated mouse islets by adding serum to preservation solutions. Islets 2013; 5:45-52. [PMID: 23552019 PMCID: PMC3655792 DOI: 10.4161/isl.24025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Preserving isolated islets at low temperature appears attractive because it can keep islet quantity comparable to freshly isolated islets. In this study, we evaluated the effect of serum as an additive to preservation solutions on islet quality after short-term hypothermic storage. Isolated mouse islets were preserved at 4°C in University of Wisconsin solution (UW) alone, UW with serum, M-Kyoto solution (MK) alone or MK with serum. We then assessed islet quantity, morphology, viability and function in vitro as well as in vivo. Islet quantity after storage in all four solutions was well maintained for up to 120 h. However, islets functioned for different duration; glucose-stimulated insulin release assay revealed that the duration was 72 h when islets were stored in UW with serum and MK with serum, but only 24 h in UW alone, and the islet function disappeared immediately in MK alone. Viability assay confirmed that more than 70% islet cells survived for up to 48 h when islets are preserved in UW with serum and MK with serum, but the viability decreased rapidly in UW alone and MK alone. In in vivo bioassays using 48-h preserved isogeneic islets, all recipient mice restored normal blood glucose concentrations by transplants preserved in UW with serum or MK with serum, whereas 33.3% recipients and no recipient restored diabetes by transplants preserved in UW alone and in MK alone respectively. Adding serum to both UW and MK improves their capability to store isolated islets by maintaining islet functional viability.
Collapse
Affiliation(s)
- Yasuko Kimura
- Translational Research Informatics Center; Foundation for Biomedical Research and Innovation; Kobe, Japan
| | - Teru Okitsu
- Institute of Industrial Science; University of Tokyo; Tokyo, Japan
- Correspondence to: Teru Okitsu,
| | - Liu Xibao
- Department of Endocrinology; the First Hospital of Hebei Medical University; ShiJiaZhuang, China
| | - Hiroki Teramae
- Faculty of Teacher Education; Shumei University ; Yachiyo, Chiba, Japan
| | | | - Kentaro Toyoda
- Department of Diabetes and Clinical Nutrition; Graduate School of Medicine; Kyoto University; Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery; Division of Hepato-Pancreato-Biliary Surgery and Transplantation; Kyoto University Hospital; Kyoto, Japan
| | - Masanori Fukushima
- Translational Research Informatics Center; Foundation for Biomedical Research and Innovation; Kobe, Japan
| |
Collapse
|
6
|
Schneider S, Klein HH. Preserved insulin secretion capacity and graft function of cryostored encapsulated rat islets. ACTA ACUST UNITED AC 2011; 166:135-8. [DOI: 10.1016/j.regpep.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/07/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
|
7
|
Ståhle MU, Brandhorst D, Korsgren O, Knutson F. Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation. Cell Transplant 2010; 20:775-81. [PMID: 21054939 DOI: 10.3727/096368910x539056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.
Collapse
Affiliation(s)
- Magnus U Ståhle
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
8
|
Successful clinical islet isolation using a GMP-manufactured collagenase and neutral protease. Transplantation 2009; 88:753-6. [PMID: 19920770 DOI: 10.1097/tp.0b013e3181b443ae] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In 2007, the islet community was notified that the collagenase product most commonly used for human islet isolations contained bovine neural tissue contaminants. To minimize this potential hazard, we adapted our human islet processing procedure to use a GMP-manufactured, bovine neural tissue-free collagenase blend. Here, we describe the factors that we consider most important for achieving reproducible and clinically useable islet isolations using this product.
Collapse
|
9
|
Brandhorst H, Theisinger B, Yamaya H, Henriksnäs J, Carlsson PO, Korsgren O, Brandhorst D. Perfluorohexyloctane improves long-term storage of rat pancreata for subsequent islet isolation. Transpl Int 2009; 22:1017-22. [DOI: 10.1111/j.1432-2277.2009.00905.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Iken M, Brandhorst H, Korsgren O, Brandhorst D. Pig pancreas oxygenation at 20 degrees C increases islet ATP generation but deteriorates islet function. Cell Transplant 2009; 18:745-51. [PMID: 19520045 DOI: 10.3727/096368909x470838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Successful pancreas preservation during storage in oxygenated perfluorodecalin (PFD) is mainly related to oxidative ATP generation during storage. Increasing the storage temperature would accelerate this process essential for resuscitation of ischemically damaged pancreatic tissue. The present study aimed at comparing islet isolation outcome from adult pig pancreata preserved in oxygenated PFD by means of a one-layer method during storage on ice or at 20 degrees C. Resected pancreata were intraductally flushed with cold UW solution and promptly processed (n = 6) or stored for 3 h in continuously oxygenated PFD at 4 degrees C (n = 5) or 20 degrees C (n = 7). Prior to digestion-filtration pancreata were intraductally injected with UW supplemented with Serva collagenase NB8 and neutral protease. Islet quality assessment determined viability, glucose stimulation index, mitochondrial activity, intracellular ATP content, and transplant function in diabetic nude mice. Pancreata oxygenated for 3 h at 20 degrees C yielded islet numbers similar to organs oxygenated at 4 degrees C. Compared to a storage temperature of 20 degrees C, preservation at 4 degrees C reduced islet ATP content (p < 0.05) as well as islet viability (p < 0.05). Nevertheless, PFD storage at 20 degrees C decreased insulin response to glucose compared to unstored pancreata (p < 0.05). In contrast to unstored pancreata or cold-stored organs, transplantation of islets isolated after oxygenation at 20 degrees C was characterized by an early loss of transplant function in 50% of recipients (p < 0.05). The present study demonstrates that PFD storage at 20 degrees C enhances islet ATP synthesis within a short period of oxygenation but deteriorates islet function. We conclude that the present data reflect an equilibration between reduced depression of metabolic activity resulting in damage of islets and temperature-stimulated acceleration of ATP synthesis. Future studies are required to adjust the optimum storage temperature for pancreas oxygenation in different species.
Collapse
Affiliation(s)
- M Iken
- Department of Gastroenterology, Hepatology & Endocrinology, Medical School, Hanover, Germany
| | | | | | | |
Collapse
|
11
|
The importance of tryptic-like activity in purified enzyme blends for efficient islet isolation. Transplantation 2009; 87:370-5. [PMID: 19202441 DOI: 10.1097/tp.0b013e31819499f0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The isolation of islets from the human pancreas critically depends on an efficient enzyme blend. Previous studies have solely focused on the presence of collagenase and neutral protease/thermolysin. Despite improved characterization of these components, the lot-related variability in efficacy still persists suggesting that additional so far disregarded enzymes are required for efficient islet cleavage. METHODS Varying activities of a tryptic-like enzyme were identified within collagenase NB1 lots, which were selected according to a matched ratio between tryptic-like and collagenase activity (TLA-ratio). Rat and human pancreata were processed with current standard procedures. RESULTS Increasing the TLA-ratio from 1.3% to 10% reduced pancreas dissociation time in rats by 50% without affecting islet yield, viability, or posttransplant function in diabetic nude mice. Enhancing the TLA-ratio from 1.3% to 12.6% for human pancreas processing resulted in a significant reduction of recirculation time and increased incrementally human islet yield without affecting purity, in vitro function or recovery after culture. Optimized pancreas digestion correlated with a higher percentage of islet preparations fulfilling quality criteria for clinical transplantation. CONCLUSIONS We conclude that TLA is an effective component that should be included in moderate amounts in enzyme blends for human islet isolation to optimize the efficiency and minimize the lot-related variability.
Collapse
|
12
|
Lund T, Korsgren O, Aursnes IA, Scholz H, Foss A. Sustained reversal of diabetes following islet transplantation to striated musculature in the rat. J Surg Res 2008; 160:145-54. [PMID: 19394966 DOI: 10.1016/j.jss.2008.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/17/2008] [Accepted: 11/05/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is an increasing emphasis in the islet transplant community on the development of alternative sites for islet implantation. Striated musculature constitutes a potential alternative, which has been successfully employed in autotransplantation of parathyroid glands for decades. In the present study, a technique for intramuscular islet transplantation was developed and compared with intraportal islet transplantation in a syngeneic rat model. MATERIALS AND METHODS Lewis rats were used. Pancreata were digested using Liberase. Islets were either transplanted into m. biceps femoris in a pearls-on-a-string fashion or intraportally, and the ability to reverse diabetes was compared. Eight weeks after transplantation an IVGTT was performed. Real-time quantitative RT-PCR was employed on muscle biopsies to investigate mRNA levels of cytokines in response to the transplant procedure. Explanted livers, muscles, and pancreata were harvested at the end of the experiment for histopathological analyses. RESULTS 2000 IEQ repeatedly cured diabetic rats at the intraportal site, while 4000 IEQ was required at the intramuscular site. Time to reversal of diabetes, post-transplant weight development, and IVGTT curves did not differ between the groups. Normoglycemia was sustainable to the end of the study (>100 days) for all animals. The transplant procedure upregulated pro-inflammatory cytokines (IL-6 and IL-8) in striated muscle, and peri-islet fibrosis was observed in intramuscular grafts. CONCLUSIONS Islet transplantation into striated musculature is feasible; however, in its present form the intramuscular site is less efficient compared with the liver in rats. The intramuscular site allows manipulation of the graft and implantation site prior to transplantation and may therefore have implications for islet transplantation in humans.
Collapse
Affiliation(s)
- Tormod Lund
- Surgical Clinic, Section for Transplantation, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
13
|
Ihm SH, Matsumoto I, Zhang HJ, Ansite JD, Hering BJ. Effect of short-term culture on functional and stress-related parameters in isolated human islets. Transpl Int 2008; 22:207-16. [DOI: 10.1111/j.1432-2277.2008.00769.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Brandhorst H, Raemsch-Guenther N, Raemsch C, Friedrich O, Kurfuerst M, Korsgren O, Brandhorst D. Degraded collagenase deteriorates islet viability. Transplant Proc 2008; 40:370-1. [PMID: 18374071 DOI: 10.1016/j.transproceed.2008.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The utilization of purified enzyme blends consisting of collagenase class I (CI) and II (CII) and neutral protease is an essential step for clinical islet isolation. Previous studies suggested that the use of enzyme lots containing degraded CI reduced islet release from human pancreata. The present study sought to assess the effect of degraded collagenase on islet function in vitro and posttransplantation. MATERIALS AND METHODS Crude collagenase was chromatographically separated into CI, CII, and a mixture of degraded CI and CII isomers. Subsequently, classes were recombined to obtain a CII/CI ratio of 0.5. Rat islets were isolated utilizing neutral protease and 20 units of recombined collagenase containing either intact (Ci) or degraded isomers (Cd). RESULTS Digestion time was reduced utilizing Cd (P < .001). The highest islet yield and lowest islet fragmentation were obtained with Ci (P < .01). Utilization of Cd corresponded to a reduction in viability and in vitro function (NS). Islet transplantation reversed hyperglycemia in diabetic nude mice, but revealed an absence of weight gain in recipients receiving islets isolated using Cd (P < .01). CONCLUSION This study suggested that islet function posttransplantation is affected by degraded collagenase isomers. This finding has to be considered for the purification process of collagenase.
Collapse
Affiliation(s)
- H Brandhorst
- Department of Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Lund T, Fosby B, Korsgren O, Scholz H, Foss A. Glucocorticoids reduce pro-inflammatory cytokines and tissue factor in vitro and improve function of transplanted human islets in vivo. Transpl Int 2008; 21:669-78. [PMID: 18346012 DOI: 10.1111/j.1432-2277.2008.00664.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Factors that upregulate the inflammatory status of islets probably contribute to detrimental processes leading to islet loss and impaired post-transplant function. Glucocorticoids have the potential to counteract inflammation and thus improve islet quality and function. However, glucocorticoids have diabetogenic properties and are known to hamper islet function in vivo. We examined the effect of glucocorticoids on human islets in vitro and in vivo after 48 h of exposure to different concentrations of methylprednisolone. Protein and/or mRNA levels of insulin, interleukin (IL)-8, macrophage chemoattractant protein (MCP)-1, tissue factor (TF), and IL-10 were assessed by enzyme immunosorbent assay and real time quantitative reverse transcription-polymerase chain reaction. Viability was assessed with fluorescein diacetate-propidium iodide staining, adenosine triphosphate (ATP) content and caspase activity. Six-hundred islet equivalents (IEQ) were transplanted to severe combined immunodeficiency disease mice and graft function assessed by glucose measurements and intraperitoneal glucose tolerance tests. Glucocorticoids reduce mRNA and protein levels of TF, MCP-1 and IL-8, and enhance ATP content. Insulin secretion was initially inhibited; however, after 7 days in culture, it was superior to controls. Islets exposed to methylprednisolone cured diabetic mice more effectively than control islets. In conclusion, glucocorticoids have potent anti-inflammatory properties on human islets without permanent effects on insulin metabolism. Brief glucocorticoid exposure improves function of transplanted human islets in vivo.
Collapse
Affiliation(s)
- Tormod Lund
- Surgical Clinic, Section for Transplantation, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
16
|
The Ratio Between Collagenase Class I and Class II Influences the Efficient Islet Release From the Rat Pancreas. Transplantation 2008; 85:456-61. [DOI: 10.1097/tp.0b013e31816050c8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Ponte GM, Baidal DA, Romanelli P, Faradji RN, Poggioli R, Cure P, Froud T, Selvaggi G, Pileggi A, Ricordi C, Alejandro R. Resolution of severe atopic dermatitis after tacrolimus withdrawal. Cell Transplant 2007; 16:23-30. [PMID: 17436852 DOI: 10.3727/000000007783464524] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tacrolimus is an immunosuppressive agent used in solid organ and islet transplantation. Its topical form has shown benefit in the treatment of inflammatory skin conditions. Although tacrolimus has a wide spectrum of side effects, dermatological complications related to systemic tacrolimus therapy are limited in the literature. Atopic dermatitis (AD) is a chronic pruritic cutaneous condition that usually begins in infancy and is characterized by an increased Th2 response. We report the case of a patient with type 1 diabetes mellitus (T1DM) and history of AD latent for 10 years who developed severe dermatitis and alopecia 5 months after undergoing allogeneic islet transplantation and initiating a steroid-free immunosuppressive regimen with sirolimus and tacrolimus maintenance. After exclusion of other possible causes for the progression and exacerbation of the clinical presentation of AD, discontinuation of tacrolimus and introduction of mycophenolate mofetil resulted in full remission of the symptoms. The beneficial effects of tacrolimus withdrawal suggest a cause-effect relationship between this adverse event and the utilization of the drug. Islet graft function remained stable after modification of the therapeutic regimen (stable glycemic control and unchanged C-peptide).
Collapse
Affiliation(s)
- Gaston M Ponte
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brandhorst D, Iken M, Bretzel RG, Brandhorst H. Pancreas storage in oxygenated perfluorodecalin does not restore post-transplant function of isolated pig islets pre-damaged by warm ischemia. Xenotransplantation 2007; 13:465-70. [PMID: 16925671 DOI: 10.1111/j.1399-3089.2006.00340.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cold storage in oxygenated perfluorodecalin (PFD) restores transplant function of ischemically damaged dog pancreata and reduces the impact of cold ischemia on recovery of isolated human islets. Whether PFD storage can improve islet isolation from pancreata exposed to significant warm ischemia (WI) is unclear yet. The present study aimed to clarify this question in adult pigs. METHODS After exsanguination, the intestine was removed immediately or left in the cavity for 30 min of WI. Resected pancreata were intraductally flushed with cold University of Wisconsin solution. Subsequently, pancreata were processed immediately by digestion-filtration (group I: 0 min WI, n=6; II: 30 min WI, n=6) or first stored for 3 h in oxygenated PFD (III: 0 min WI+PFD, n=5; IV: 30 min WI+PFD, n=6). RESULTS Pancreata subjected to 30 min of WI yielded significantly less islets compared with the corresponding non-ischemic organs (I vs. II, P<0.01; III vs. IV, P<0.05). Oxygenation did not ameliorate the loss in islet yield (II vs. IV, NS). Ischemic islets were characterized by depleted ATP stores (388+/-73 (I) vs. 133+/-22 ng/1000 IEQ (II), P<0.01) and diminished insulin response to glucose calculated as stimulation index (SI; 2.47+/-0.36 (I) vs. 0.25+/-0.17 (II), P<0.05). PFD storage of ischemic organs partially restored ATP content (217+/-23 ng/1000 IEQ, II vs. IV, P<0.05) and glucose SI (1.60+/-0.09, II vs. IV, P<0.05) to a significant extent that reached the level of corresponding PFD-stored, non-ischemic pancreata (III vs. IV, NS). Sustained normoglycemia was exclusively observed in diabetic nude mice transplanted with islets isolated from non-ischemic organs. The significantly reduced graft function of ischemic islets (I vs. II, III vs. IV, P<0.001) was not increased by pancreatic oxygenation (II vs. IV, NS). CONCLUSIONS The present study suggests that pancreas short-term storage in oxygenated PFD improves in vitro but not the in vivo function of ischemically damaged pig islets.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Department of Oncology, Radiology & Clinical Immunology, University Hospital, Uppsala, Sweden.
| | | | | | | |
Collapse
|
19
|
Olsson R, Maxhuni A, Carlsson PO. Revascularization of Transplanted Pancreatic Islets Following Culture with Stimulators of Angiogenesis. Transplantation 2006; 82:340-7. [PMID: 16906031 DOI: 10.1097/01.tp.0000229418.60236.87] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Insufficient revascularization of transplanted islets may result in chronic hypoxia and loss of islet function. This study investigated whether simple culture of islets with angiogenic substances before transplantation could improve graft revascularization. METHODS Mouse islets were cultured with vascular endothelial growth factor (VEGF; 20 ng/ml), fibroblast growth factor 2 (FGF-2; 20 ng/ml) or matrix metalloproteinase 9 (MMP-9; 1 mug/ml). Thereafter, 250 islets were implanted beneath the renal capsule of syngeneic C57Bl/6 mice. One month posttransplantation, blood flow (laser-Doppler flowmetry), oxygen tension (Clark microelectrodes), and vascular density were measured and correlated to graft function. RESULTS Treatment of islets with VEGF during culture caused islet blood vessels to dilate, whereas FGF-2 treatment induced endothelial cell proliferation. However, the number of capillaries in both cases decreased during culture. When investigated one month posttransplantation, both VEGF and FGF-2 pretreated islets had similar or worse vascular engraftment when compared to transplanted control islets. MMP-9 pretreatment of islets increased vascular density, blood flow and oxygen tension within the grafts. Animals receiving MMP-9 pretreated islets returned, however, more slowly to normoglycemia than control animals, and performed worse than controls in a glucose tolerance test one month posttransplantation. CONCLUSIONS Treatment of islets during culture with VEGF or FGF-2 changed the islet vascular phenotype, but capillaries were still lost. Notably, the number of capillaries in the grafted islets one month posttransplantation was in all cases strikingly similar to that observed prior to transplantation. MMP-9 pretreatment of islets elicited an angiogenic response, which improved revascularization of the transplanted islets.
Collapse
Affiliation(s)
- Richard Olsson
- Department of Medical Cell Biology, Uppsala University, Sweden.
| | | | | |
Collapse
|
20
|
Linn T, Schmitz J, Hauck-Schmalenberger I, Lai Y, Bretzel RG, Brandhorst H, Brandhorst D. Ischaemia is linked to inflammation and induction of angiogenesis in pancreatic islets. Clin Exp Immunol 2006; 144:179-87. [PMID: 16634789 PMCID: PMC1809653 DOI: 10.1111/j.1365-2249.2006.03066.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Beta-cell replacement is the only way to restore euglycaemia in patients with type-1 diabetes. Pancreatic tissue, processed for subsequent clinical islet transplantation, is exposed to ischaemia causing injury and death in a large number of islets before and after transplantation. In this review we summarize what is known on the sources of environmental stress for pancreatic islets, such as insufficient oxygen supply during pancreas procurement and in culture prior to intraportal transplantation, nutritional and oxygen deprivation during the isolation process, and the consequences of hyperglycaemia. An increasingly recognized role in the modulation of beta-cell function and these environmental stress factors plays the vascular network of the pancreatic islets. Islet revascularization by angiogenesis is relevant for the survival of the graft subsequent to transplantation. Potential strategies offered by therapeutic induction of revascularization to ameliorate the detrimental impact of these factors on the quality of islet transplants are discussed.
Collapse
Affiliation(s)
- T Linn
- Medical Clinic and Policlinic 3, University Hospital Giessen and Marburg, Justus Liebig University, Rodthohl 6, 35385 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Shirouzu Y, Gu Y, Koga M, Sakurai T, Qi M, Hiura A, Sumi S, Inoue K. Cold preservation of islets in UW solution--with special reference to apoptosis. J Surg Res 2005; 133:167-75. [PMID: 16360174 DOI: 10.1016/j.jss.2005.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 09/26/2005] [Accepted: 10/04/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Apoptosis progresses in cultured islets. Little is known with regard to apoptosis under cold preservation. We examined viability and function of islets in University of Wisconsin (UW) solution. MATERIALS AND METHODS Isolated rat islets were cultured overnight (overnight group) and further treated with 7-day culture in RPMI 1640 medium at 37 degrees C (culture group) or 7-day preservation in UW solution at 4 degrees C (preservation group). They were evaluated by glucose-stimulated insulin secretion test. Apoptosis was examined by TdT-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Expression of caspase mRNA and the ratio of Bax to Bcl-2 were evaluated by reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS Islet recovery after 7 days was significantly lower in culture group than in preservation group (44.0 +/- 3.7% versus 75.0 +/- 4.9%, P < 0.05). The stimulation index in the culture group was significantly lower than in the overnight group (2.1 +/- 0.2 versus 4.1 +/- 0.4, P < 0.05). The apoptotic index in the culture group was significantly higher than both in the overnight group and in the preservation group (38.0 +/- 3.0% versus 10.8 +/- 2.0 and 27.0 +/- 4.0%, P < 0.05). Caspase 3, 8, and 9 mRNA in the culture group expressed more than in the other groups. Bax/Bcl-2 in the culture group was significantly lower than in the overnight group (3.2 +/- 0.66 versus 8.1 +/- 0.95, P < 0.05), suggesting that apoptosis had been already destined early after isolation. CONCLUSIONS The preservation group showed better recovery and function than the culture group. Apoptosis contributed to islet loss under culture and it was significantly suppressed under cold preservation.
Collapse
Affiliation(s)
- Yasumasa Shirouzu
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sweet IR, Gilbert M, Jensen R, Sabek O, Fraga DW, Gaber AO, Reems J. Glucose stimulation of cytochrome C reduction and oxygen consumption as assessment of human islet quality. Transplantation 2005; 80:1003-11. [PMID: 16278578 DOI: 10.1097/01.tp.0000178381.35014.37] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND An in vitro method to assess human islets could prevent transplantation of nonviable islets and facilitate the optimization of islet preparation. We hypothesize that glucose-stimulated cytochrome c reduction and oxygen consumption by human islets can be used as predictors of transplant success. METHODS Isolated human islets were obtained from research-grade pancreata. Using a previously developed islet flow culture system, the response of cytochrome c reduction and oxygen consumption to glucose was compared to the ability of islets transplanted into nondiabetic NOD-SCID mice to secrete C-peptide in response to a glucose tolerance test conducted 7 days following transplant (n=10). RESULTS In vitro responses by human islets were qualitatively similar to those seen in rat islets: glucose increased both oxygen consumption and cytochrome c reduction. However, the responses were smaller in magnitude and quite variable. Scatter plots of C-peptide and quantiles for ln(C-peptide) indicated that 12 ng/ml could be used as threshold of transplant success with which to evaluate the diagnostic potential of cytochrome c and oxygen consumption. Data was analyzed by generating receiver operating curves and the area under the curve was 0.889 (95% CI: 0.645-1.000) and 0.738 (95% CI: 0.413-1.000) for cytochrome c reduction and oxygen consumption respectively (1 indicates absolute predictive capability and 0.5 indicates no predictive capability). CONCLUSIONS The detection of glucose-stimulated cytochrome c reduction and oxygen consumption may have utility as criteria for the assessment of human islet quality.
Collapse
Affiliation(s)
- Ian R Sweet
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Brandhorst D, Huettler S, Alt A, Raemsch-Guenther N, Kurfuerst M, Bretzel RG, Brandhorst H. Adjustment of the Ratio Between Collagenase Class II and I Improves Islet Isolation Outcome. Transplant Proc 2005; 37:3450-1. [PMID: 16298625 DOI: 10.1016/j.transproceed.2005.09.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Previous studies have clarified the distinct roles of collagenase class I (ccI) and class II (ccII) in enzymatic release of islets from pancreatic tissue. The present study sought to enhance the limited knowledge about the optimal ratio between collagenase classes. METHODS Rat islets were isolated utilizing 0.4 DMC-U of neutral protease and 20 PZ-U of fractionated NB-1 collagenase recombined to obtain a ccII/I ratio of 0.5, 1.0, and 1.5. Quality control included assessment of yield (islet equivalents), trypan-blue exclusion, insulin release during static glucose incubation, and transplant function in diabetic nude mice. Data are expressed as mean values +/- SEM. RESULTS Digestion time was only minimally influenced by different ccII/I ratios. The highest islet yield (P < .05) was obtained using a ccII/I ratio of 1.0. Purity and glucose stimulation index were only marginally affected by different ccII/I ratios. A significant loss of islet viability after 24-hour culture (P < .05) was observed only in islets isolated by means of a ccII/I ratio of 0.5 and 1.5 but not 1.0. Transplantation into diabetic nude mice revealed sustained islet graft function in all experimental groups. CONCLUSIONS The present study indicates that the ratio between ccII and ccI is of significant relevance for optimizing islet yield and viability.
Collapse
Affiliation(s)
- D Brandhorst
- Third Medical Department, University Hospital, Rodthohl 6, 35385 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Dilip S Nath
- Diabetes Institute for Immunology and Transplantation, University of Minnesota, Medical School, Mayo Mail Code 195, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
25
|
Murdoch TB, McGhee-Wilson D, Shapiro AMJ, Lakey JRT. Methods of human islet culture for transplantation. Cell Transplant 2005; 13:605-618. [PMID: 15648731 DOI: 10.3727/000000004783983602] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to maintain isolated human islet preparations in tissue culture has recently been adopted by most islet transplant centers, and improves the safety as well as the practicality of islet transplantation. Maintaining islet viability and recovery, however, remains challenging in a clinical setting, due to stringent conditions required for culture. Islet culture is further complicated by the fact that islets do not form a monolayer. This review aims to clarify media, supplementation, and conditions that have been shown to be relevant to human islets, as well as to offer avenues of future research. Factors examined that may influence islet survival include base medium, glucose concentration, vitamin, inorganic ion, lipid, hormone, growth factor, amino acid, and binding protein composition and concentration, as well as culture temperature and seeding density. In addition, this article reviews novel techniques, such as coculture and matrices, that have been employed in an attempt to improve islet survival and functional viability.
Collapse
Affiliation(s)
- T B Murdoch
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
26
|
Cui W, Barr G, Faucher KM, Sun XL, Safley SA, Weber CJ, Chaikof EL. A membrane-mimetic barrier for islet encapsulation. Transplant Proc 2005; 36:1206-8. [PMID: 15194418 DOI: 10.1016/j.transproceed.2004.04.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Enhanced control of both transport properties and surface physiochemical characteristics will be important steps in the development of an effective immunoisolation barrier critical to the success of pancreatic islet cell transplantation. We hypothesize that the cell membrane establishes an important paradigm for the design of a biomimetic immunoisolation barrier with improved performance characteristics because of its capacity to control interfacial mass transport, as well as its ability to act as a template for more complex structures with other immunoregulatory macromolecules. METHODS Islets were isolated from Wistar rats using collagenase digestion and a discontinuous Ficoll-Histopaque gradient and subsequently encapsulated in 2% alginate. After coating with a polyelectrolyte multilayer of polylysine and alginate, a polymeric membrane-mimetic coating was applied to the capsule surface. Individual islet viability was evaluated at each stage of the encapsulation procedure by use of a two-color live/dead cell assay. Preservation of islet function was determined by transplanting 1000 encapsulated islets into the peritoneal cavity of streptozotocin-induced diabetic nonobese diabetic NOD/Scid mice. RESULTS At the end of the coating procedure, the proportion of viable cells within each islet was >50% in 88% of encapsulated rat islets and >75% in over half of the encapsulated cohort. Nonfasting blood glucose levels normalized within 24 hours after transplantation (n = 8). Normoglycemia has been maintained in all mice with the longest time course being 73 days thus far. CONCLUSIONS We have demonstrated that microencapsulated islets coated with a membrane-mimetic thin film can be generated with high viability in vitro and persistent function in vivo.
Collapse
Affiliation(s)
- W Cui
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Animal models have been used extensively in diabetes research. Early studies used pancreatectomised dogs to confirm the central role of the pancreas in glucose homeostasis, culminating in the discovery and purification of insulin. Today, animal experimentation is contentious and subject to legal and ethical restrictions that vary throughout the world. Most experiments are carried out on rodents, although some studies are still performed on larger animals. Several toxins, including streptozotocin and alloxan, induce hyperglycaemia in rats and mice. Selective inbreeding has produced several strains of animal that are considered reasonable models of Type 1 diabetes, Type 2 diabetes and related phenotypes such as obesity and insulin resistance. Apart from their use in studying the pathogenesis of the disease and its complications, all new treatments for diabetes, including islet cell transplantation and preventative strategies, are initially investigated in animals. In recent years, molecular biological techniques have produced a large number of new animal models for the study of diabetes, including knock-in, generalized knock-out and tissue-specific knockout mice.
Collapse
Affiliation(s)
- D A Rees
- Department of Medicine, University of Wales College of Medicine, Cardiff, UK
| | | |
Collapse
|
28
|
Brandhorst D, Iken M, Brendel MD, Bretzel RG, Brandhorst H. Successful pancreas preservation by a perfluorocarbon-based one-layer method for subsequent pig islet isolation. Transplantation 2005; 79:433-7. [PMID: 15729169 DOI: 10.1097/01.tp.0000151765.96118.1b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The oxygenation of human pancreas by the two-layer method (TLM) during cold storage was recently established for clinical islet transplantation. Simplification of TLM would facilitate the application of perfluorocarbon (PFC) as a regularly used preservation solution for subsequent islet transplantation. The present study examined whether PFC can be used in a one-layer method (OLM) for long-term pancreas preservation before isolation of adult pig islets. METHODS Resected pancreases were intraductally flushed with cold University of Wisconsin solution and immediately processed (n=6) or subjected to 7-hour storage by OLM (n=8) or TLM (n=10). Subsequently, pancreases were intraductally distended with collagenase NB-8 supplemented with neutral protease. Isolation and purification were performed as previously described. RESULTS Compared with unstored pancreases (3,670+/-740 islet equivalents [IEQ]) purified islet yield in TLM-stored organs (2,080+/-290 IEQ, P<0.05) was significantly decreased in contrast with OLM-preserved pancreases (3,110+/-520 IEQ, NS). No differences were observed between groups regarding purity (>90%), trypan-blue exclusion (>95%), adenosine triphosphate content, and mitochondrial viability of islets. Stimulation index during static glucose incubation (20 vs. 2.8 mm) was decreased after storage by TLM (1.81+/-0.20, P<0.05) but not by OLM (2.27+/-0.57) if compared with unstored pancreases (2.47+/-0.36). However, transplantation into diabetic nude mice resulted in sustained normoglycemia of recipients of either group until nephrectomy of graft-bearing kidneys was performed. CONCLUSIONS This study demonstrates that PFC alone can be used in a one-layer procedure for successful pig-pancreas preservation. This simplification can facilitate the broad application of PFC as pancreas preservation solution without reducing its benefits demonstrated by TLM.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Third Medical Department, University Hospital, Rodthohl 6, 35385 Giessen, Germany.
| | | | | | | | | |
Collapse
|
29
|
Brandhorst D, Iken M, Tanioka Y, Brendel MD, Bretzel RG, Brandhorst H. Influence of Collagenase Loading on Long-Term Preservation of Pig Pancreas by the Two-Layer Method for Subsequent Islet Isolation. Transplantation 2005; 79:38-43. [PMID: 15714167 DOI: 10.1097/01.tp.0000146550.55596.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The introduction of the two-layer method (TLM) for long-term human pancreas preservation revealed the enormous potential of TLM to improve graft function of isolated islets. It is still unclear whether pig islets can be successfully isolated from pancreases after prolonged cold ischemia. To clarify this question, pig pancreases were subjected to 7-hour preservation by University of Wisconsin solution (UWS) storage or TLM. Another aim was to verify whether TLM can be synergistically combined with intraductal collagenase injection before cold storage. METHODS After intraductal flush with UWS, organs were distended with 4.4 PZ-U/g of UWS-dissolved collagenase NB-8 and neutral protease adjusted to respectively 1.1, 0.2, 0.5, or 0.8 DMC-U/g for pancreases freshly procured (n=6) or distended with enzymes before (TLM preloaded, n=7) or after cold storage (UWS storage, n=4; TLM postloaded, n=10). RESULTS Purified islet yield decreased from 429,200+/-86,700 islet equivalents (IEQ) in unstored pancreases to respectively 37,670+/-19620, 210,400+/-22900 and 238,000+/-26600 IEQ in UWS-stored (P<0.01), TLM-preloaded, or postloaded organs (P<0.05). Purity (>90%), viability (>95%), and insulin content were not different between groups. Islets from UWS-stored pancreases fragmented extensively, preventing further assessment of in vivo function. Compared with other experimental groups, islets from TLM-preloaded organs were characterized by enhanced basal and stimulated insulin release. Sustained normoglycemia was observed in diabetic nude mice transplanted with islets from TLM-postloaded or unstored pancreases in contrast with transient function in TLM-preloaded islets. CONCLUSIONS This study demonstrates that significant amounts of intact pig islets can be isolated after prolonged pancreas preservation by TLM. Enzyme administration before TLM preservation decreases islet graft function.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Third Medical Department, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Brandhorst H, Alt A, Huettler S, Raemsch-Guenther N, Kurfuerst M, Bretzel RG, Brandhorst D. The ratio between class II and class I collagenase determines the amount of neutral protease activity required for efficient islet release from the rat pancreas. Transplant Proc 2005; 37:215-6. [PMID: 15808598 DOI: 10.1016/j.transproceed.2004.12.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Previous investigations clearly showed that the successful release of islets from the pancreas is mediated by both neutral protease (NP) and collagenase, consisting of subclasses I and II showing different capacities to cleave islets from the pancreas. Since no informations about the optimal ratio between class II and class I collagenase (II/I-ratio) are available yet, the present study sought to evaluate the efficient range for the II/I-ratio. METHODS Following intraductal pancreas collagenase distension, rat islets were isolated utilizing 20 PZ-U Serva collagenase NB 1 and 1.0 or 0.4 DMC-U NP. After purification we determined the islet yield (IEQ), viability (trypan-blue exclusion) and function in diabetic nude mice. RESULTS At 1.0 DMC-U NP, a II/I-ratio of 2.6, 1.5 or 0.7 yielded 2200 +/- 280, 2185 +/- 420, and 2205 +/-90 IEQ, respectively (ns). Viability varied between 70% and 80% (ns). Digestion time was significantly lowest (P < .05) using a II/I-ratio of 0.7. Utilization of 0.4 DMC-U NP resulted in a viability of >98% among all experimental groups (P < .001 vs 1.0 DMC-U). Islet yield decreased at a II/I-ratio of 2.6 (1520 +/- 120 IEQ, P < .05) and 1.5 (1780 +/- 130 IEQ, ns), but not at 0.7 (2310 +/- 160 IEQ, ns). Again, digestion time was lowest (P < .001) using a II/I- ratio of 0.7. Transplantation into diabetic nude mice demonstrated islet function in all experimental groups. CONCLUSIONS NP significantly affects islet viability. This study indicates that the minimal amount of NP required for efficient islet cleavage depends on the II/I-ratio.
Collapse
Affiliation(s)
- H Brandhorst
- Third Medical Department, University Hospital, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Brandhorst D, Olbrich M, Alt A, Bretzel RG, Brandhorst H. Timing of hyperthermic preconditioning affects islet resistance against inflammation. Transplant Proc 2005; 37:231-2. [PMID: 15808604 DOI: 10.1016/j.transproceed.2004.12.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heat exposure of isolated islets enhances resistance against inflammation but decreases islet graft function. In contrast, donor preconditioning by whole-body hyperthermia increases islet ischemic tolerance and improves viability of pancreatic isografts. This study aimed to compare yield, viability, and inflammatory resistance of rat islets subjected to heat shock prior to (pre-HS) or after isolation (post-HS). METHODS Islets were isolated as previously described. HS (42 degrees C/45 min) was induced 12 hours before islet isolation (pre-HS, n = 31) or in freshly isolated islets prior to 12 hours of recovery at 37 degrees C (post-HS, n = 12). Islets continuously incubated at 37 degrees C served as controls (n = 33). Proinflammatory treatment included incubation with 0.05 mmol/L H(2)O(2), 1.0 mmol/L DETA-NO or cytokines (interleukin-1beta + tumor necrosis factoralpha + interferongamma). RESULTS Purified islet yield was 1200 +/- 80 IEQ in unconditioned donors (n = 45) and 980 +/- 80 IEQ after pre-HS (ns). Islet viability was not affected by post-HS, but the glucose stimulation index (P < 0.001, P < 0.01) and formazan production (P < 0.05) were significantly lower compared to pre-HS or sham treatment. The expression of heat shock protein HSP70 in pre-HS islets was slightly higher compared to controls (ns) but lower compared to post-HS islets (P < 0.05), correlating with the resistance against H(2)O(2) and DETA-NO compared to post-HS islets (P < 0.05) or controls (ns). Cytokines did not affect mitochondrial formazan production. CONCLUSIONS The findings indicate that hyperthermic islet treatment is less harmful if performed in the native pancreatic environment. This beneficial effect is associated with a decreased HSP70 expression resulting in a reduced resistance against inflammatory mechanisms.
Collapse
Affiliation(s)
- D Brandhorst
- Third Medical Department, University Hospital, Giessen, Germany.
| | | | | | | | | |
Collapse
|
32
|
Hering BJ, Kandaswamy R, Harmon JV, Ansite JD, Clemmings SM, Sakai T, Paraskevas S, Eckman PM, Sageshima J, Nakano M, Sawada T, Matsumoto I, Zhang HJ, Sutherland DER, Bluestone JA. Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 antibody. Am J Transplant 2004; 4:390-401. [PMID: 14961992 DOI: 10.1046/j.1600-6143.2003.00351.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We sought to determine whether or not optimizing pancreas preservation, islet processing, and induction immunosuppression would facilitate sustained diabetes reversal after single-donor islet transplants. Islets were isolated from two-layer preserved pancreata, purified, cultured for 2 days; and transplanted into six C-peptide-negative, nonuremic, type 1 diabetic patients with hypoglycemia unawareness. Induction immunosuppression, which began 2 days pretransplant, included the Fc receptor nonbinding humanized anti-CD3 monoclonal antibody hOKT3gamma1 (Ala-Ala) and sirolimus. Immunosuppression was maintained with sirolimus and reduced-dose tacrolimus. Of our six recipients, four achieved and maintained insulin independence with normal HbA1c levels and freedom from hypoglycemia; one had partial islet graft function; and one lost islet graft function 2 weeks post-transplant. The four insulin-independent patients showed prolonged CD4+ T-cell lymphocytopenia; inverted CD4:CD8 ratios; and increases in the percentage of CD4+CD25+ T cells. These cells suppressed the in-vitro proliferative response to donor cells and, to a lesser extent, to third-party cells. Severe adverse events were limited to a transient rash in one recipient and to temporary neutropenia in three. Our preliminary results thus suggest that a combination of maximized viable islet yield, pretransplant islet culture, and preemptive immunosuppression can result in successful single-donor islet transplants.
Collapse
Affiliation(s)
- Bernhard J Hering
- Diabetes Institute for Immunology and Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sutherland DER, Gruessner A, Hering BJ. Beta-cell replacement therapy (pancreas and islet transplantation) for treatment of diabetes mellitus: an integrated approach. Endocrinol Metab Clin North Am 2004; 33:135-48, x. [PMID: 15053899 DOI: 10.1016/s0889-8529(03)00099-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- David E R Sutherland
- Department of Surgery, University of Minnesota, 420 Delaware Street SE, Box 280, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
34
|
Shapiro AMJ, Nanji SA, Lakey JRT. Clinical islet transplant: current and future directions towards tolerance. Immunol Rev 2003; 196:219-36. [PMID: 14617207 DOI: 10.1046/j.1600-065x.2003.00085.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ultimate goal of islet transplantation is to completely correct the diabetic state from an unlimited donor source, without the need for chronic immunosuppressive drug therapy. Although islet transplantation provides an opportunity to develop innovative strategies for tolerance in the clinic, both alloimmune and autoimmune barriers must be controlled, if stable graft function is to be maintained long-term. After islet extraction from the pancreas, the cellular graft may be stored in tissue culture or cryopreserved for banking, providing an opportunity not only to optimally condition the recipient but also to allow in vitro immunologic manipulation of the graft before transplantation, unlike solid organ grafts. As such, islets may be considered a "special case." Remarkable progress has occurred in the last three years, with dramatic improvements in outcomes after clinical islet transplantation. The introduction of a steroid-free, sirolimus-based, anti-rejection protocol and islets prepared from two (or rarely three) donors led to high rates of insulin independence. The "Edmonton Protocol" has been successfully replicated by other centers in an international multicenter trial. A number of key refinements in pancreas transportation, processing, purification on non-ficoll-based media, storage of islets in culture for two days and newer immunological conditioning and induction therapies have led to continued advancement through extensive collaboration between key centers. This review outlines the historical development of islet transplantation over the past 30 years, provides an update on current clinical outcomes, and summarizes a series of unique opportunities for development and early testing of tolerance protocols in patients.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, 200 College Plaza, 8215 112 Street, Edmonton, Alberta, Canada T6G 2C8.
| | | | | |
Collapse
|
35
|
Brandhorst H, Brandhorst D, Hesse F, Ambrosius D, Brendel M, Kawakami Y, Bretzel RG. Successful human islet isolation utilizing recombinant collagenase. Diabetes 2003; 52:1143-6. [PMID: 12716744 DOI: 10.2337/diabetes.52.5.1143] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The enzymatic dissociation of acinar tissue by collagenase is a substantial step in the isolation of pancreatic islets. Although essential collagenase components have been purified, the variability in the activity of different batches limits long-term reproducibility of isolation success. The utilization of purified recombinant proteases would solve this problem. In the present study, pancreases from multiorgan donors were dissociated by means of digestion-filtration using either Liberase HI (n = 51) or a recombinant collagenase blend (n = 25). No significant differences were found regarding islet yield before and after purification, the percent of exocrine-attached islets, and final purity. However, the ratio between islet equivalents and islet numbers indicated a lesser fragmentation in islets isolated with recombinant collagenase (P < 0.01). In contrast, viability was slightly higher in islets isolated with Liberase (92.3 +/- 0.8 vs. 85.6 +/- 2.9%; P < 0.05). Insulin release during static glucose incubation was not different between experimental groups. Islet transplantation into diabetic nude mice resulted in sustained normoglycemia in either group until the graft was removed. These results demonstrated that viable human islets can be isolated using recombinant collagenase. Final optimization of this enzyme blend would offer continuous reproducibility of isolation success.
Collapse
Affiliation(s)
- Heide Brandhorst
- Third Medical Department, Justus-Liebig-University of Giessen, Rodthohl 6, 35385 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|