1
|
Cao Y, Shi R, Yang H, Zhang J, Ge L, Gao R, Fan Z. Epiregulin promotes osteogenic differentiation and inhibits neurogenic trans-differentiation of adipose-derived mesenchymal stem cells via MAPKs pathway. Cell Biol Int 2020; 44:1046-1058. [PMID: 31930610 DOI: 10.1002/cbin.11305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) exists low efficiency to trans-differentiate into other germinal layer cell types. One key issue is to discover the effect of important factor on MSCs differentiation abiltiy. In this study, we investigated the role and mechanism of epiregulin (EREG) on the osteogenic differentiation and neurogenic trans-differentiation in adipose-derived stem cells (ADSCs). We discovered that the depletion of EREG inhibited the osteogenic differentiation in vitro. And 25 ng/mL recombinant human epiregulin protein (rhEREG) effectively improved the osteogenic differentiation of EREG-depleted-ADSCs. Depletion of EREG promoted the formation of neural spheres, and increased the expressions of nestin, βIII-tubulin, NeuroD, NCAM, TH, and NEF in ADSCs. Then, 25 ng/mL rhEREG significantly inhibited these neurogenic differentiation indicators. Inhibition of p38 MAPK, JNK, or Erk1/2 signaling pathway separately, blocked the rhEREG-enhanced osteogenic differentiation ability and the rhEREG-inhibited neurogenic trans-differentiation ability of ADSCs. In conclusions, EREG promoted the osteogenic differentiation and inhibited the neurogenic trans-differentiation potentials of ADSCs via MAPK signaling pathways.
Collapse
Affiliation(s)
- Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Jianpeng Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Runtao Gao
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China
| |
Collapse
|
2
|
Sanberg PR, Greene-Zavertnik C, Davis CD. Article Commentary: Cell Transplantation: The Regenerative Medicine Journal. A Biennial Analysis of Publications. Cell Transplant 2017; 12:815-825. [DOI: 10.3727/000000003771000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cathryn Greene-Zavertnik
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| | - Cyndy D. Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612
| |
Collapse
|
3
|
Unstimulated diagnostic marrow tap – a minimally invasive and reliable source for mesenchymal stem cells. Cell Biol Int 2010; 34:275-81. [DOI: 10.1042/cbi20090142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2005; 24:1054-64. [PMID: 16322639 DOI: 10.1634/stemcells.2005-0370] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reports of neural transdifferentiation of mesenchymal stem cells (MSCs) suggest the possibility that these cells may serve as a source for stem cell-based regenerative medicine to treat neurological disorders. However, some recent studies controvert previous reports of MSC neurogenecity. In the current study, we evaluate the neural differentiation potential of mouse bone marrow-derived MSCs. Surprisingly, we found that MSCs spontaneously express certain neuronal phenotype markers in culture, in the absence of specialized induction reagents. A previously published neural induction protocol that elevates cytoplasmic cyclic AMP does not upregulate neuron-specific protein expression significantly in MSCs but does significantly increase expression of the astrocyte-specific glial fibrillary acidic protein. Finally, when grafted into the lateral ventricles of neonatal mouse brain, MSCs migrate extensively and differentiate into olfactory bulb granule cells and periventricular astrocytes, without evidence of cell fusion. These results indicate that MSCs may be "primed" toward a neural fate by the constitutive expression of neuronal antigens and that they seem to respond with an appropriate neural pattern of differentiation when exposed to the environment of the developing brain.
Collapse
Affiliation(s)
- Jie Deng
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
5
|
Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM, Liu B, Han ZB, Han ZC. Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 2005; 14:311-21. [PMID: 16052912 DOI: 10.3727/000000005783983070] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been successfully isolated from a broad range of adult, fetal, and other nonembryonic tissues. Fetal lung has been identified as a rich source of MSCs. However, the biological characteristics and differentiation potential of fetal lung MSCs remain to be explored. In this study, we established a series of methods for isolation and expansion of fetal lung MSCs. These MSCs could withstand more than 40 passages without obvious decline in proliferation ability, significant changes in morphology, and expression of cell markers. Flow cytometric analysis showed that fetal lung MSCs expressed CD13, CD29, CD44, CD90, CD105, CD166, and HLA-ABC, but not CD14, CD31, CD34, CD38, CD41a, CD42b, CD45, CD49d, CD61, CD106, CD133, and HLA-DR. Cell cycle analysis revealed that when the MSCs reached their log phase of growth, more than 90% of the cells were in G0/G1 phase while the proportion of cells in S phase and G2/M phase were about 5.56% and 2.08% cells, respectively. These MSCs could differentiate into neural cells in addition to their mesenchymal differentiation potential. Our data suggest that the fetal lung MSC population is an alternative source of stem cells for cell-based therapy of neurological defects or mesenchymal-originating diseases.
Collapse
Affiliation(s)
- Cun Gang Fan
- National Research Center for Stem Cell Engineering & Technology, State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Massengale M, Wagers AJ, Vogel H, Weissman IL. Hematopoietic cells maintain hematopoietic fates upon entering the brain. ACTA ACUST UNITED AC 2005; 201:1579-89. [PMID: 15897275 PMCID: PMC2212913 DOI: 10.1084/jem.20050030] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have reported that bone marrow (BM) cells may give rise to neurons and astrocytes in vitro and in vivo. To further test this hypothesis, we analyzed for incorporation of neural cell types expressing donor markers in normal or injured brains of irradiated mice reconstituted with whole BM or single, purified c-kit+Thy1.1loLin−Sca-1+ (KTLS) hematopoietic stem cells (HSCs), and of unirradiated parabionts with surgically anastomosed vasculature. Each model showed low-level parenchymal engraftment of donor-marker+ cells with 96–100% immunoreactivity for panhematopoietic (CD45) or microglial (Iba1 or Mac1) lineage markers in all cases studied. Other than one arborizing structure in the olfactory bulb of one BM-transplanted animal, possibly representing a neuronal or glial cell process, we found no donor-marker–expressing astrocytes or non-Purkinje neurons among >10,000 donor-marker+ cells from 21 animals. These data strongly suggest that HSCs and their progeny maintain lineage fidelity in the brain and do not adopt neural cell fates with any measurable frequency.
Collapse
Affiliation(s)
- Mei Massengale
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
7
|
Alessandri G, Pagano S, Bez A, Benetti A, Pozzi S, Iannolo G, Baronio M, Invernici G, Caruso A, Muneretto C, Bisleri G, Parati E. Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet 2004; 364:1872-83. [PMID: 15555667 DOI: 10.1016/s0140-6736(04)17443-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Skeletal-muscle-derived stem cells seem to be a distinct population of immature progenitors of satellite cells, but their functional properties remain unclear, especially in human adult tissue. We investigated their differentiation in samples of skeletal muscle obtained from adults undergoing cardiovascular surgery. METHODS Samples were obtained from the brachioradialis muscle of 12 patients in whom the radial artery was the conduit for myocardial revascularisation. The stem cells were isolated by a procedure similar to that used for rat gastrocnemius and cultured in medium optimised for growth of neural stem cells. Cytometry was used for phenotypic characterisation and immunocytochemistry and RT-PCR to assess differentiation. Immunohistochemistry was used to examine engraftment of skeletal-muscle-derived stem cells into injured rat spinal cord. FINDINGS The skeletal-muscle stem cells consisted of two distinct types: one with the typical spindle morphology of satellite cells, the other of rounded cells. Some cultures could be maintained for longer than 6 months. The cells were mainly positive for desmin and to a lesser extent CD105, vimentin, and AC133/CD133, but negative for FLK-1/KDR, CD34, CD31, CD45, von Willebrand factor, Ve-cadherins, and BCL2. After in-vitro differentiation, the cells were able to organise skeletal-muscle fibres and stained positively for striated-muscle actin, smooth-muscle actin, and desmin. Moreover, they differentiated into astrocytes and neurons, as confirmed by positive staining for characteristic proteins. INTERPRETATION Adult human skeletal muscle includes a population of progenitor stem cells that can generate cells of the same lineage and cells with neurogenic properties. Muscle may therefore be a tissue source for the isolation of pluripotent stem cells for development of cell-based therapies for human myogenic and neurogenic diseases.
Collapse
Affiliation(s)
- Giulio Alessandri
- Laboratory of Neurobiology and Neuroregenerative Therapies, Carlo Besta Neurological Institute, Via Celoria 11, 20131 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu M, Xiao Z, Shen L, Li L. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br J Haematol 2004; 124:666-75. [PMID: 14871255 DOI: 10.1111/j.1365-2141.2004.04826.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stem cell transplantation is a promising treatment for many conditions. Although stem cells can be isolated from many tissues, blood is the ideal source of these cells due to the ease of collection. Mesenchymal stem cells (MSCs) have been paid increased attention because of their powerful proliferation and pluripotent differentiating ability. But whether MSCs reside in blood (newborn umbilical cord blood and fetal or adult peripheral blood) is also debatable. The present study showed that MSC-like cells could be isolated and expanded from 16-26 weeks fetal blood but were not acquired efficiently from full-term infants' umbilical cord blood (UCB). Adherent cells separated from postnatal UCB were heterogeneous in cell morphology. Their proliferation capacity was limited and they were mainly CD45+, which indicated their haematopoietic derivation. On the contrary, MSC-like cells shared a similar phenotype to bone marrow MSCs. They were CD34- CD45- CD44+ CD71+ CD90+ CD105+. They could be induced to differentiate into osteogenic, adipogenic and neural lineage cells. Single cell clones also showed similar phenotype and differentiation ability. Our results suggest that early fetal blood is rich in MSCs but term UCB is not.
Collapse
Affiliation(s)
- Minjun Yu
- Stem Cell Research Centre, Peking University Health Science Centre, 38 Xue Yuan Road, Beijing 100-083, China
| | | | | | | |
Collapse
|
9
|
Silani V, Fogh I, Ratti A, Sassone J, Ciammola A, Cova L. Stem cells in the treatment of amyotrophic lateral sclerosis (ALS). AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY, RESEARCH GROUP ON MOTOR NEURON DISEASES 2002; 3:173-81. [PMID: 12710505 DOI: 10.1080/146608202760839001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Until fairly recently, interest in stem cells was restricted to neurobiology studies on the principles of embryonic development. This situation has changed rapidly in the last few years when neuronal stems and precursors were isolated in vitro, thus allowing expansion and controlled differentiation of selective populations of neuronal cells. This theoretically unlimited reserve would then supply specific cells for transplantation in diseases characterized by widespread degeneration of selective cell populations as motor neurons in Amyotrophic Lateral Sclerosis (ALS). The recent evidence of cell transdifferentiation has further amplified the potential therapeutic use of stem cells. Stem cell technology is at an early stage but the desperate need for a therapy in ALS patients may legitimize clinical trials in absence of conclusive scientific evidence. This paper discusses the premises for stem cell therapy in ALS.
Collapse
Affiliation(s)
- Vincenzo Silani
- Department of Neurology, Laboratory of Neuroscience, Dino Ferrari Center, University of Milan Medical School, IRCCS Istituto Auxologico Italiano, Via Spagnoletto 3, 1-20149 Milano, Italy.
| | | | | | | | | | | |
Collapse
|