1
|
The Potential of Cell Sheet Technology for Beta Cell Replacement Therapy. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose of Review
Here, we review the use of cell sheet technology using different cell types and its potential for restoring the extracellular matrix microenvironment, perfusion, and immunomodulatory action on islets and beta cells.
Recent Findings
Cell sheets can be produced with different fabrication techniques ranging from the widely used temperature responsive system to the magnetic system. A variety of cells have been used to produce cell sheets including skin fibroblasts, smooth muscle cells, human umbilical vein endothelial cells, and mesenchymal stem cells.
Summary
CST would allow to recreate the ECM of islets which would provide cues to support islet survival and improvement of islet function. Depending on the used cell type, different additional supporting properties like immunoprotection or cues for better revascularization could be provided. Furthermore, CST offers the possibility to use other implantation sites than inside the liver. Further research should focus on cell sheet thickness and size to generate a potential translational therapy.
Collapse
|
2
|
Zhang X, Liu Y, Clark KL, Padget AM, Alexander PG, Dai J, Zhu W, Lin H. Mesenchymal stem cell-derived extracellular matrix (mECM): a bioactive and versatile scaffold for musculoskeletal tissue engineering. ACTA ACUST UNITED AC 2020; 16:012002. [PMID: 32906098 DOI: 10.1088/1748-605x/abb6b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell-derived extracellular matrix (mECM) has received increased attention in the fields of tissue engineering and scaffold-assisted regeneration. mECM exhibits many unique characteristics, such as robust bioactivity, biocompatibility, ease of use, and the potential for autologous tissue engineering. As the use of mECM has increased in musculoskeletal tissue engineering, it should be noted that mECM generated from current methods has inherited insufficiencies, such as low mechanical properties and lack of internal architecture. In this review, we first summarize the development and use of mECM as a scaffold for musculoskeletal tissue regeneration and highlight our current progress on moving this technology toward clinical application. Then we review recent methods to improve the properties of mECM that will overcome current weaknesses. Lastly, we propose future studies that will pave the road for mECM application in regenerating tissues in humans.
Collapse
Affiliation(s)
- Xiurui Zhang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America. Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhuang Z, John JV, Liao H, Luo J, Rubery P, Mesfin A, Boda SK, Xie J, Zhang X. Periosteum Mimetic Coating on Structural Bone Allografts via Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomater Sci Eng 2020; 6:6241-6252. [PMID: 33449646 DOI: 10.1021/acsbiomaterials.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural bone allograft transplantation remains one of the common strategies for repair and reconstruction of large bone defects. Due to the loss of periosteum that covers the outer surface of the cortical bone, the healing and incorporation of allografts is extremely slow and limited. To enhance the biological performance of allografts, herein, we report a novel and simple approach for engineering a periosteum mimetic coating on the surface of structural bone allografts via polymer-mediated electrospray deposition. This approach enables the coating on allografts with precisely controlled composition and thickness. In addition, the periosteum mimetic coating can be tailored to achieve desired drug release profiles by making use of an appropriate biodegradable polymer or polymer blend. The efficacy study in a murine segmental femoral bone defect model demonstrates that the allograft coating composed of poly(lactic-co-glycolic acid) and bone morphogenetic protein-2 mimicking peptide significantly improves allograft healing as evidenced by decreased fibrotic tissue formation, increased periosteal bone formation, and enhanced osseointegration. Taken together, this study provides a platform technology for engineering a periosteum mimetic coating which can greatly promote bone allograft healing. This technology could eventually result in an off-the-shelf and multifunctional structural bone allograft for highly effective repair and reconstruction of large segmental bone defects. The technology can also be used to ameliorate the performance of other medical implants by modifying their surfaces.
Collapse
Affiliation(s)
- Zhou Zhuang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14621, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Haofu Liao
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Paul Rubery
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Addisu Mesfin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
4
|
Paudel S, Lee WH, Lee M, Zahoor T, Mitchell R, Yang SY, Zhao H, Schon L, Zhang Z. Intravenous administration of multipotent stromal cells and bone allograft modification to enhance allograft healing. Regen Med 2019; 14:199-211. [PMID: 30761943 DOI: 10.2217/rme-2018-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated a coordinated strategy of revitalizing bone allograft with circulating multipotent stromal cells (MSCs). Materials & methods: After chemotactic and releasing assessments, stromal cell-derived factor 1 and platelet-derived growth factor BB in copolymers were coated on the bone allograft (AlloS-P). Allograft coated with copolymers alone (Allo), as controls, or AlloS-P was implanted into the femur of athymic mice, which received intravenous injections of human MSCs or saline at weeks 1, 2 and 3. Results: At week 8, the total callus volume (both cartilaginous and bony callus) around the allograft was the largest in the AlloS-P + MSC group (p < 0.05). Conclusion: Coating bone allograft with stromal cell-derived factor 1 and platelet-derived growth factor BB and intravenous injections of MSCs improved allograft incorporation.
Collapse
Affiliation(s)
- Sharada Paudel
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Wen-Han Lee
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Moses Lee
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
| |
Collapse
|
5
|
Mesenchymal stem cell sheets: a new cell-based strategy for bone repair and regeneration. Biotechnol Lett 2019; 41:305-318. [PMID: 30680496 DOI: 10.1007/s10529-019-02649-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/12/2019] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs), a class of adult stem cells, are considered a promising source for bone regeneration. Although combining MSCs with biomaterial scaffolds offers an interesting clinical strategy for bone tissue engineering, the presence of the scaffolds could induce an undesirable effect on cell-cell interactions. Moreover, before the application of scaffold materials in bone tissue reconstruction, cells must be manipulated with proteolytic enzymes, such as trypsin or dispase that degrade extracellular matrix (ECM) molecules and cell surface proteins, which can result in the cell damage and loss of cellular activity. Therefore, the development of alternative strategies for bone regeneration is required to solve these problems. Recently, a novel tissue engineering technology named 'cell sheet' has been efficaciously utilized in the regeneration of bone, corneal, cardiac, tracheal and periodontal ligament-like tissues. The cell sheet is a layer of cells, which contains intact ECM and cell surface proteins such as growth factor receptors, ion channels and cell-to-cell junction proteins. MSC sheets can be easily fabricated by layering the recovered cell sheets without any scaffolds or complicated manipulation. This review summarizes the current state of the literature regarding the use of MSCs to produce cell sheets and assesses their applicability in bone tissue regeneration and repair.
Collapse
|
6
|
Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y, Zhang X. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 2018; 182:279-288. [PMID: 30142527 DOI: 10.1016/j.biomaterials.2018.08.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
Periosteum plays an indispensable role in bone repair and reconstruction. To recapitulate the remarkable regenerative capacity of periosteum, a biomimetic tissue-engineered periosteum (TEP) was constructed via layer-by-layer bottom-up strategy utilizing polycaprolactone (PCL), collagen, and nano-hydroxyapatite composite nanofiber sheets seeded with bone marrow stromal cells (BMSCs). When combined with a structural bone allograft to repair a 4 mm segmental bone defect created in the mouse femur, TEP restored donor-site periosteal bone formation, reversing the poor biomechanics of bone allograft healing at 6 weeks post-implantation. Further histologic analyses showed that TEP recapitulated the entire periosteal bone repair process, as evidenced by donor-dependent formation of bone and cartilage, induction of distinct CD31high type H endothelium, reconstitution of bone marrow and remodeling of bone allografts. Compared to nanofiber sheets without BMSC seeding, TEP eliminated the fibrotic tissue capsule elicited by nanofiber sheets, leading to a marked improvement of osseointegration at the compromised periosteal site. Taken together, our study demonstrated a novel layer-by-layer engineering platform for construction of a versatile biomimetic periosteum, enabling further assembly of a multi-component and multifunctional periosteum replacement for bone defect repair and reconstruction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Marc Nuzzo
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Xiaochuan Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Yunpeng Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Chen G, Fang T, Qi Y, Yin X, Di T, Feng G, Lei Z, Zhang Y, Huang Z. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model. Cell Transplant 2018; 25:1801-1817. [PMID: 26883892 DOI: 10.3727/096368916x690980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical School of Fudan University, Shanghai, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaofan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhong Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yuxiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhongming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Department of Orthopaedic Surgery, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, P.R. China.,Department of Orthopaedic Surgery, Xiaoshan Chinese Medical Hospital, Hangzhou, P.R. China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
8
|
Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A Concise Review on the Use of Mesenchymal Stem Cells in Cell Sheet-Based Tissue Engineering with Special Emphasis on Bone Tissue Regeneration. Stem Cells Int 2017; 2017:2374161. [PMID: 29230248 PMCID: PMC5694585 DOI: 10.1155/2017/2374161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
The integration of stem cell technology and cell sheet engineering improved the potential use of cell sheet products in regenerative medicine. This review will discuss the use of mesenchymal stem cells (MSCs) in cell sheet-based tissue engineering. Besides their adhesiveness to plastic surfaces and their extensive differentiation potential in vitro, MSCs are easily accessible, expandable in vitro with acceptable genomic stability, and few ethical issues. With all these advantages, they are extremely well suited for cell sheet-based tissue engineering. This review will focus on the use of MSC sheets in osteogenic tissue engineering. Potential application techniques with or without scaffolds and/or grafts will be discussed. Finally, the importance of osteogenic induction of these MSC sheets in orthopaedic applications will be demonstrated.
Collapse
Affiliation(s)
- A. Cagdas Yorukoglu
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - A. Esat Kiter
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Semih Akkaya
- Department of Orthopaedics and Traumatology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - N. Lale Satiroglu-Tufan
- Department of Forensic Medicine, Forensic Genetics Laboratory, and Department of Pediatric Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - A. Cevik Tufan
- Department of Histology and Embryology, School of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
9
|
Delivery of epidermal growth factor receptor inhibitor via a customized collagen scaffold promotes meniscal defect regeneration in a rabbit model. Acta Biomater 2017; 62:210-221. [PMID: 28757192 DOI: 10.1016/j.actbio.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Meniscal injury is one of the most common knee joint injuries, which remains an intractable challenge in clinical practice to date. Aberrant epidermal growth factor receptor (EGFR) activation levels in both human and mice menisci following injury, prompted us to investigate the functional role of EGFR by utilizing an inducible cartilage-specific EGFR-deficient mouse model. We demonstrated that conditional EGFR deletion in mice resulted in increased partial meniscectomy-induced ECM production within the meniscus, which is comparable to utilization of the small molecule EGFR inhibitor, gefitinib, to block EGFR activity. Here, we combined intra-articular delivery of gefitinib with an implanted customized collagen scaffold to substitute for lost meniscal tissue, as well as to promote meniscal regeneration and prevent osteoarthritis (OA) progression in a rabbit meniscectomy model. STATEMENT OF SIGNIFICANCE The main novelty of this study is the finding of a new application for small molecule EGFR inhibitor in meniscal injury therapy. This study also highlights the importance of using a customized collagen scaffold to provide robust mechanical strength and effectively promote meniscus regeneration. In summary, our study finds that intra-articular delivery of gefitinib together with implantation of a customized, multi-layer collagen scaffold not only enhanced meniscal regeneration, but also protected articular cartilage from degeneration in rabbit model. These results provide valuable insight for meniscal tissue engineering studies and clinical practice.
Collapse
|
10
|
Jiayao Z, Guanshan Z, Jinchi Z, Yuyin C, Yongqiang Z. Antheraea pernyisilk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation. Microsc Res Tech 2016; 80:305-311. [DOI: 10.1002/jemt.22793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Zhuang Jiayao
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; Nanjing 210039 People's Republic of China
| | - Zhou Guanshan
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University; Hangzhou 310058 People's Republic of China
| | - Zhang Jinchi
- Co-Innovation Center for Sustainable Forestry in Southern China; Nanjing Forestry University; Nanjing 210039 People's Republic of China
| | - Chen Yuyin
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University; Hangzhou 310058 People's Republic of China
| | - Zhu Yongqiang
- Zhejiang Academy of Traditional Chinese Medicine; Hangzhou 310007 People's Republic of China
| |
Collapse
|
11
|
Raposio E, Bonomini S, Calderazzi F. Isolation of autologous adipose tissue-derived mesenchymal stem cells for bone repair. Orthop Traumatol Surg Res 2016; 102:909-912. [PMID: 27638160 DOI: 10.1016/j.otsr.2016.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Adipose tissue represents an abundant and accessible source of adult stem cells that can differentiate into cells and tissues of mesodermal origin, including osteogenic cells. METHODS This paper describes the procedure to obtain a 5-cm3 saline sample, containing the adipose-derived stem cells (ASCs) pellet, starting from lipoaspirate obtained from a conventional abdominal liposuction. RESULTS A mean of 2.5×106 cells is isolated for each procedure; 35% (875000) of these are CD34+/CD45- cells, which express a subset of both positive (CD10, CD13, CD44, CD59, CD73, CD90, HLAABC) and negative (CD33, CD39, CD102, CD106, CD146, HLADR) cell-associated surface antigens, characterizing them as ASCs. CONCLUSIONS This procedure is easy, effective, economic and safe. It allows the harvesting of a significant number of ASCs that are ready for one-step bony regenerative surgical procedures.
Collapse
Affiliation(s)
- E Raposio
- Department of surgical sciences, plastic surgery section, university of Parma, via Gramsci 14, 43100 Parma, Italy.
| | - S Bonomini
- Department of clinical and experimental medicine, division of hematology, Parma university hospital, via Gramsci 14, 43100 Parma, Italy.
| | - F Calderazzi
- Department of surgical sciences, orthopedic clinic, Parma university hospital, via Gramsci 14, 43100 Parma, Italy.
| |
Collapse
|
12
|
Abstract
OBJECTIVES Long bone fractures that fail to heal or show a delay in healing can lead to increased morbidity. Bone marrow aspirate concentrate (BMAC) containing bone mesenchymal stem cells (BMSCs) has been suggested as an autologous biologic adjunct to aid long bone healing. The purpose of this study was to systematically review the basic science in vivo evidence for the use of BMAC with BMSCs in the treatment of segmental defects in animal long bones. DATA SOURCES The PubMed/MEDLINE and EMBASE databases were screened in July 14-25, 2014. STUDY SELECTION The following search criteria were used: [("bmac" OR "bone marrow aspirate concentrate" OR "bmc" OR "bone marrow concentrate" OR "mesenchymal stem cells") AND ("bone" OR "osteogenesis" OR "fracture healing" OR "nonunion" OR "delayed union")]. DATA EXTRACTION Three authors extracted data and analyzed for trends. Quality of evidence score was given to each study. DATA SYNTHESIS Results are presented as Hedge G standardized effect sizes with 95% confidence intervals. RESULTS The search yielded 35 articles for inclusion. Of studies reporting statistics, 100% showed significant increase in bone formation in the BMAC group on radiograph. Ninety percent reported significant improvement in earlier bone healing on histologic/histomorphometric assessment. Eighty-one percent reported a significant increase in bone area on micro-computed tomography. Seventy-eight percent showed a higher torsional stiffness for the BMAC-treated defects. CONCLUSION In the in vivo studies evaluated, BMAC confer beneficial effects on the healing of segmental defects in animal long bone models when compared with a control. Proof-of-concept has been established for BMAC in the treatment of animal segmental bone defects.
Collapse
|
13
|
Chen G, Qi Y, Niu L, DI T, Zhong J, Fang T, Yan W. Application of the cell sheet technique in tissue engineering. Biomed Rep 2015; 3:749-757. [PMID: 26623011 DOI: 10.3892/br.2015.522] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lie Niu
- Department of Orthopedic Surgery, Dongping County People's Hospital, Taian, Shandong 271500, P.R. China
| | - Tuoyu DI
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Tingting Fang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Xuhui, Shanghai 200032, P.R. China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
14
|
Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, Ii M, Akimaru H, Kuroda T, Horii M, Yokoyama A, Alev C, Kuroda R, Kurosaka M, Asahara T. Superior Potential of CD34-Positive Cells Compared to Total Mononuclear Cells for Healing of Nonunion following Bone Fracture. Cell Transplant 2015; 24:1379-93. [DOI: 10.3727/096368914x681586] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We recently demonstrated that the local transplantation of human peripheral blood (PB) CD34+ cells, an endothelial/hematopoietic progenitor cell-rich population, contributes to fracture repair via vasculogenesis/angiogenesis and osteogenesis. Human PB mononuclear cells (MNCs) are also considered a potential cell fraction for neovascularization. We have previously shown the feasibility of human PB MNCs to enhance fracture healing. However, there is no report directly comparing the efficacy for fracture repair between CD34+ cells and MNCs. In addition, an unhealing fracture model, which does not accurately resemble a clinical setting, was used in our previous studies. To overcome these issues, we compared the capacity of human granulocyte colony-stimulating factor-mobilized PB (GM-PB) CD34+ cells and human GM-PB MNCs in a nonunion model, which more closely resembles a clinical setting. First, the effect of local transplantation of 1 × 105 GM-PB CD34+ cells (CD34+ group), 1 × 107 GM-PB MNCs (containing approximately 1 × 105 GM-PB CD34+ cells) (MNC group), and phosphate-buffered saline (PBS) (PBS group) on nonunion healing was compared. Similar augmentation of blood flow recovery at perinonunion sites was observed in the CD34+ and MNC groups. Meanwhile, a superior effect on nonunion repair was revealed by radiological, histological, and functional assessment in the CD34+ group compared with the other groups. Moreover, through in vivo and in vitro experiments, excessive inflammation induced by GM-PB MNCs was confirmed and believed to be one of the mechanisms underlying this potency difference. These results strongly suggest that local transplantation of GM-PB CD34+ cells is a practical and effective strategy for treatment of nonunion after fracture.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Taro Shoji
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Kawakami
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masaaki Ii
- Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroshi Akimaru
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Tomoya Kuroda
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miki Horii
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ayumi Yokoyama
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
15
|
Ruiz-Ibán MA, Gonzalez-Lizán F, Diaz-Heredia J, Elías-Martin ME, Correa Gorospe C. Effect of VEGF-A165 addition on the integration of a cortical allograft in a tibial segmental defect in rabbits. Knee Surg Sports Traumatol Arthrosc 2015; 23:1393-1400. [PMID: 24296989 DOI: 10.1007/s00167-013-2785-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 11/17/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE Long-bone segmental defects caused by infection, fracture, or tumour are a challenge for orthopaedic surgeons. Structural allografts are sometimes used in their treatment but their poor biological characteristics are a liability. The objective of this study was to determine whether the addition of recombinant vascular endothelial growth factor-A (VEGF) to a structural allograft improved its integration into a rabbit tibial segmental defect in a non-union model. METHODS Tibial segmental defects were filled with heat sterilized allogenic tubular tibiae sections and then stabilized with a screw plate. In the VEGF treatment group (n = 6 tibiae), 2 μg of VEGF added to a 50 μl matrigel solution was inserted into the allograft cavity. In the control group (n = 6 tibiae), only matrigel was added. After 12 weeks, macroscopic and microscopic analysis, radiographs, and computerized micro-tomography (micro-CT) were performed. If allograft consolidation was present, a torsional resistance analysis was performed. RESULTS Addition of VEGF to the allograft decreased the rate of osteosynthesis failure compared with the control group (1/6 vs. 5/6, p = 0.08), increased trabecular continuity evaluated by micro-CT in the bone-allograft interphases (8/12 vs. 2/12, p = 0.036) and histological trabecular continuity (7/12 vs. 0/12, p = 0.0046). Full consolidation was observed in three tibiae of the VEGF group and one in the control group (differences not significant); however, torsional resistance showed no significant differences (n.s.). CONCLUSION Addition of VEGF to a structural allograph inserted into a rabbit tibial segmental defect increased allograft integration rate. Further research in this direction might help clinicians in dealing with large bone defects.
Collapse
Affiliation(s)
- Miguel Angel Ruiz-Ibán
- Department of Orthopaedic Surgery and Trauma, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain.
| | - Fausto Gonzalez-Lizán
- Department of Orthopaedic Surgery and Trauma, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| | - Jorge Diaz-Heredia
- Department of Orthopaedic Surgery and Trauma, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| | - Maria Elena Elías-Martin
- Department of Anesthesiology and Reanimation, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| | - Carlos Correa Gorospe
- Experimental Surgery Unit, Hospital Universitario Ramón y Cajal, Cta Colmenar Km 9.100, 28034, Madrid, Spain
| |
Collapse
|
16
|
El Backly RM, Chiapale D, Muraglia A, Tromba G, Ottonello C, Santolini F, Cancedda R, Mastrogiacomo M. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study. Front Bioeng Biotechnol 2015; 2:80. [PMID: 25610828 PMCID: PMC4285175 DOI: 10.3389/fbioe.2014.00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX®) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX®) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.
Collapse
Affiliation(s)
- Rania M El Backly
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy ; Faculty of Dentistry, Alexandria University , Alexandria , Egypt
| | - Danilo Chiapale
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | | | | | | | - Federico Santolini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Ranieri Cancedda
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Maddalena Mastrogiacomo
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| |
Collapse
|
17
|
Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 2015; 70:73-86. [PMID: 25029375 DOI: 10.1016/j.bone.2014.07.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Mihaela Peric
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia.
| | - Ivo Dumic-Cule
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Danka Grcevic
- University of Zagreb School of Medicine, Department of Physiology and Immunology, Salata 3, Zagreb, Croatia
| | - Mario Matijasic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Donatella Verbanac
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Ruth Paul
- Paul Regulatory Services Ltd, Fisher Hill Way, Cardiff CF15 8DR, UK
| | - Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Vladimir Trkulja
- University of Zagreb School of Medicine, Department of Pharmacology, Salata 11, Zagreb, Croatia
| | - Cedo M Bagi
- Pfizer Inc., Global Research and Development, Global Science and Technology, 100 Eastern Point Road, Groton, CT 06340, USA
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia.
| |
Collapse
|
18
|
Gothard D, Greenhough J, Ralph E, Oreffo RO. Prospective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations. J Tissue Eng 2014; 5:2041731414551763. [PMID: 25383172 PMCID: PMC4221949 DOI: 10.1177/2041731414551763] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022] Open
Abstract
Stro-1 has proved an efficacious marker for enrichment of skeletal stem and progenitor cells although isolated populations remain heterogeneous, exhibiting variable colony-forming efficiency and osteogenic differentiation potential. The emerging findings that skeletal stem cells originate from adventitial reticular cells have brought two further markers to the fore including CD146 and CD105 (both primarily endothelial and perivascular). This study has compared CD146-, CD105- and Stro-1 (individual and in combination)-enriched human bone marrow stromal cell subsets and assessed whether these endothelial/perivascular markers offer further selection over conventional Stro-1. Fluorescent cell sorting quantification showed that CD146 and CD105 both targeted smaller (2.22% ± 0.59% and 6.94% ± 1.34%, respectively) and potentially different human bone marrow stromal cell fractions compared to Stro-1 (16.29% ± 0.78%). CD146+, but not CD105+, cells exhibited similar alkaline phosphatase-positive colony-forming efficiency in vitro and collagen/proteoglycan deposition in vivo to Stro-1+ cells. Molecular analysis of a number of select osteogenic and potential osteo-predictive genes including ALP, CADM1, CLEC3B, DCN, LOXL4, OPN, POSTN and SATB2 showed Stro-1+ and CD146+ populations possessed similar expression profiles. A discrete human bone marrow stromal cell fraction (2.04% ± 0.41%) exhibited positive immuno-labelling for both Stro-1 and CD146. The data presented here show that CD146+ populations are comparable but not superior to Stro-1+ populations. However, this study demonstrates the critical need for new candidate markers with which to isolate homogeneous skeletal stem cell populations or skeletal stem cell populations which exhibit homogeneous in vitro/in vivo characteristics, for implementation within tissue engineering and regenerative medicine strategies.
Collapse
Affiliation(s)
- David Gothard
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| | - Joanna Greenhough
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| | - Esther Ralph
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| | - Richard Oc Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Hong MH, Kim YH, Ganbat D, Kim DG, Bae CS, Oh DS. Capillary action: enrichment of retention and habitation of cells via micro-channeled scaffolds for massive bone defect regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1991-2001. [PMID: 24796626 DOI: 10.1007/s10856-014-5225-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The development of a biomaterial substitute that can promote bone regeneration in massive defects has remained as a significant clinical challenge even using bone marrow cells or growth factors. Without an active, thriving cell population present throughout and stable anchored to the construct, exceptional bone regeneration does not occur. An engineered micro-channel structures scaffold within each trabecular has been designed to overcome some current limitations involving the cultivation and habitation of cells in large, volumetric scaffolds to repair massive skeletal defect. We created a scaffold with a superior fluid retention capacity that also may absorb bone marrow cells and provide growth factor-containing body fluids such as blood clots and/or serum under physiological conditions. The scaffold is composed of 3 basic structures (1) porous trabecular network (300-400 μm) similar to that of human trabecular bones, (2) micro-size channels (25-70 μm) within each trabecular septum which mimic intra-osseous channels such as Haversian canals and Volkmann's canals with body fluid access, diffusion, nutritional supply and gas exchange, and (3) nano-size pores (100-400 nm) on the surface of each septum that allow immobilized cells to anchor. Combinatorial effects of these internal structures result in a host-adapting construct that enhances cell retention and habitation throughout the 3 cm-height and 4 cm-length bridge-shaped scaffold.
Collapse
Affiliation(s)
- Min-Ho Hong
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
20
|
Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J, Chen J, Zheng Z, Zhang W, Ran J, Heng BC, Ji J, Chen W, Ouyang HW. Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 2014; 35:8154-63. [PMID: 24974007 DOI: 10.1016/j.biomaterials.2014.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Anterior cruciate ligament (ACL) is difficult to heal after injury due to the dynamic fluid environment of joint. Previously, we have achieved satisfactory regeneration of subcutaneous tendon/ligament with knitted silk-collagen sponge scaffold due to its specific "internal-space-preservation" property. This study aims to investigate the long-term effects of knitted silk-collagen sponge scaffold on ACL regeneration and osteoarthritis prevention. The knitted silk-collagen sponge scaffold was fabricated and implanted into a rabbit ACL injury model. The knitted silk-collagen sponge scaffold was found to enhance migration and adhesion of spindle-shaped cells into the scaffold at 2 months post-surgery. After 6 months, ACL treated with the knitted silk-collagen sponge scaffold exhibited increased expression of ligament genes and better microstructural morphology. After 18 months, the knitted silk-collagen sponge scaffold-treated group had more mature ligament structure and direct ligament-to-bone healing. Implanted knitted silk-collagen sponge scaffolds degraded much more slowly compared to subcutaneous implantation. Furthermore, the knitted silk-collagen sponge scaffold effectively protected joint surface cartilage and preserved joint space for up to 18 months post-surgery. These findings thus demonstrated that the knitted silk-collagen sponge scaffold can regenerate functional ACL and prevent osteoarthritis in the long-term, suggesting its clinical use as a functional bioscaffold for ACL reconstruction.
Collapse
Affiliation(s)
- Weiliang Shen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Xiao Chen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Yejun Hu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Zi Yin
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Ting Zhu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Jiajie Hu
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jialin Chen
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Wei Zhang
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China
| | - Boon Chin Heng
- Department of Biosystems Science & Engineering (D-BSSE), ETH-Zurich, Switzerland
| | - Junfeng Ji
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China.
| | - Hong-Wei Ouyang
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; Zhejiang Key Laboratory for Tissue Engineering and Repair Technology, School of Medicine, Zhejiang University, Zhejiang 310009, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Zhejiang 310000, China.
| |
Collapse
|
21
|
Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc 2014; 22:1424-33. [PMID: 23108680 DOI: 10.1007/s00167-012-2256-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE The integration of regenerated cartilage with surrounding native cartilage is a major challenge for the success of cartilage tissue-engineering strategies. The purpose of this study is to investigate whether incorporation of the power of mesenchymal stem cell (MSC) sheet to MSCs-loaded bilayer poly-(lactic-co-glycolic acid) (PLGA) scaffolds can improve the integration and repair of cartilage defects in a rabbit model. METHODS Rabbit bone marrow-derived MSCs were cultured and formed cell sheet. Full-thickness cylindrical osteochondral defects (4 mm in diameter, 3 mm in depth) were created in the patellar groove of 18 New Zealand white rabbits and the osteochondral defects were treated with PLGA scaffold (n = 6), PLGA/MSCs (n = 6) or MSC sheet-encapsulated PLGA/MSCs (n = 6). After 6 and 12 weeks, the integration and tissue response were evaluated histologically. RESULTS The MSC sheet-encapsulated PLGA/MCSs group showed significantly more amounts of hyaline cartilage and higher histological scores than PLGA/MSCs group and PLGA group (P < 0.05). In addition, the MSC sheet-encapsulated PLGA/MCSs group showed the best integration between the repaired cartilage and surrounding normal cartilage and subchondral bone compared to other two groups. CONCLUSIONS The novel method of incorporation of MSC sheet to PLGA/MCSs could enhance the ability of cartilage regeneration and integration between repair cartilage and the surrounding cartilage. Transplantation of autologous MSC sheet combined with traditional strategies or cartilage debris might provide therapeutic opportunities for improving cartilage regeneration and integration in humans.
Collapse
|
22
|
Yang M, Shuai Y, Zhang C, Chen Y, Zhu L, Mao C, OuYang H. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells. Biomacromolecules 2014; 15:1185-93. [PMID: 24666022 PMCID: PMC3993896 DOI: 10.1021/bm401740x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Biomacromolecules have been used
as templates to grow hydroxyapatite
crystals (HAps) by biomineralization to fabricate mineralized materials
for potential application in bone tissue engineering. Silk sericin
is a protein with features desirable as a biomaterial, such as increased
hydrophilicity and biodegradation. Mineralization of the silk sericin
from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here,
for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method
and consequently the cell viability and osteogenic differentiation
of BMSCs on mineralized AS were investigated. It was found that AS
mediated the nucleation of HAps in the form of nanoneedles while self-assembling
into β-sheet conformation, leading to the formation of a biomineralized
protein based biomaterial. The cell viability assay of BMSCs showed
that the mineralization of AS stimulated cell adhesion and proliferation,
showing that the resultant AS biomaterial is biocompatible. The differentiation
assay confirmed that the mineralized AS significantly promoted the
osteogenic differentiation of BMSCs when compared to nonmineralized
AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial
has potential in promoting bone formation. This result represented
the first work proving the osteogenic differentiation of BMSCs directed
by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs
on the resultant mineralized biomaterials is a useful strategy to
develop the potential application of this unexplored silk sericin
in the field of bone tissue engineering. This study lays the foundation
for the use of A. pernyi silk sericin
as a potential scaffold for tissue engineering.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University , Yuhangtang Road 866, Hangzhou, 310058, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Shen W, Chen J, Zhu T, Chen L, Zhang W, Fang Z, Heng BC, Yin Z, Chen X, Ji J, Chen W, Ouyang HW. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing. Stem Cells Transl Med 2014; 3:387-94. [PMID: 24448516 DOI: 10.5966/sctm.2012-0170] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Benzylamines
- Cartilage, Articular/injuries
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Chemokine CXCL12/genetics
- Chemokine CXCL12/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Collagen Type X/genetics
- Collagen Type X/metabolism
- Cyclams
- Gene Expression
- Heterocyclic Compounds/pharmacology
- Humans
- Injections, Intra-Articular
- Male
- Menisci, Tibial/metabolism
- Menisci, Tibial/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/pathology
- Osteoarthritis/therapy
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Regeneration/physiology
- Signal Transduction
- Tibial Meniscus Injuries
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Weiliang Shen
- Center for Stem Cell and Tissue Engineering, Department of Orthopedic Surgery, Second Affiliated Hospital, and Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yin Z, Chen X, Zhu T, Hu JJ, Song HX, Shen WL, Jiang LY, Heng BC, Ji JF, Ouyang HW. The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater 2013; 9:9317-29. [PMID: 23896565 DOI: 10.1016/j.actbio.2013.07.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 02/01/2023]
Abstract
It is reported that decellularized collagen matrices derived from dermal skin and bone have been clinically used for tendon repair. However, the varying biological and physical properties of matrices originating from different tissues may influence the differentiation of tendon stem cells, which has not been systematically evaluated. In this study, the effects of collagenous matrices derived from different tissues (tendon, bone and dermis) on the cell differentiation of human tendon stem/progenitor cells (hTSPCs) were investigated, in the context of tendon repair. It was found that all three matrices supported the adhesion and proliferation of hTSPCs despite differences in topography. Interestingly, tendon-derived decellularized matrix promoted the tendinous phenotype in hTSPCs and inhibited their osteogenesis, even under osteogenic induction conditions, through modulation of the teno- and osteolineage-specific transcription factors Scleraxis and Runx2. Bone-derived decellularized matrix robustly induced osteogenic differentiation of hTSPCs, whereas dermal skin-derived collagen matrix had no apparent effect on hTSPC differentiation. Based on the specific biological function of the tendon-derived decellularized matrix, a tissue-engineered tendon comprising TSPCs and tendon-derived matrix was successfully fabricated for Achilles tendon reconstruction. Implantation of this cell-scaffold construct led to a more mature structure (histology score: 4.08 ± 0.61 vs. 8.51 ± 1.66), larger collagen fibrils (52.2 ± 1.6 nm vs. 47.5 ± 2.8 nm) and stronger mechanical properties (stiffness: 21.68 ± 7.1 Nm m(-1) vs.13.2 ± 5.9 Nm m(-1)) of repaired tendons compared to the control group. The results suggest that stem cells promote the rate of repair of Achilles tendon in the presence of a tendinous matrix. This study thus highlights the potential of decellularized matrix for future tissue engineering applications, as well as developing a practical strategy for functional tendon regeneration by utilizing TSPCs combined with tendon-derived decellularized matrix.
Collapse
Affiliation(s)
- Zi Yin
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model. Mol Ther 2013; 22:430-439. [PMID: 24089140 PMCID: PMC3916037 DOI: 10.1038/mt.2013.222] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/20/2013] [Indexed: 12/18/2022] Open
Abstract
Although activation of hedgehog (Hh) signaling has been shown to induce osteogenic differentiation in vitro and bone formation in vivo, the underlying mechanisms and the potential use of Hh-activated mesenchymal progenitors in bone defect repair remain elusive. In this study, we demonstrated that implantation of periosteal-derived mesenchymal progenitor cells (PDMPCs) that overexpressed an N-terminal sonic hedgehog peptide (ShhN) via an adenoviral vector (Ad-ShhN) restored periosteal bone collar formation in a 4-mm segmental bone allograft model in immunodeficient mice. Ad-ShhN enhanced donor cell survival and microvessel formation in collagen scaffold at 2 weeks after surgery and induced donor cell-dependent bone formation at 6 weeks after surgery. Fluorescence-activated cell sorting analysis further showed that Ad-ShhN-PDMPC-seeded scaffold contained a twofold more CD45(-)Sca-1(+)CD34(+)VEGFR2(+) endothelial progenitors than Ad-LacZ-PDMPC-seeded scaffold at day 7 after surgery. Ad-ShhN-transduced PDMPCs induced a 1.8-fold more CD31(+) microvessel formation than Ad-LacZ-transduced PDMPCs in a coculture of endothelial progenitors and PDMPCs. Taken together, our data show that overexpression of ShhN in mesenchymal progenitors improves bone defect reconstruction by enhancing donor progenitor cell survival, differentiation, and scaffold revascularization at the site of compromised periosteum. Hh agonist-based therapy, therefore, merits further investigation in tissue engineering-based applications aimed at enhancing bone defect repair and reconstruction.
Collapse
|
26
|
Kuo YC, Li YSJ, Zhou J, Shih YRV, Miller M, Broide D, Lee OKS, Chien S. Human mesenchymal stem cells suppress the stretch-induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS One 2013; 8:e71342. [PMID: 23967196 PMCID: PMC3742760 DOI: 10.1371/journal.pone.0071342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/30/2013] [Indexed: 12/31/2022] Open
Abstract
Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yi-Shuan Julie Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jing Zhou
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yu-Ru Vernon Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Broide
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (OK-SL); (SC)
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (OK-SL); (SC)
| |
Collapse
|
27
|
Hung PS, Kuo YC, Chen HG, Chiang HHK, Lee OKS. Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy. PLoS One 2013; 8:e65438. [PMID: 23734254 PMCID: PMC3667172 DOI: 10.1371/journal.pone.0065438] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications.
Collapse
Affiliation(s)
- Pei-San Hung
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - He-Guei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Shen W, Chen J, Zhu T, Yin Z, Chen X, Chen L, Fang Z, Heng BC, Ji J, Chen W, Ouyang HW. Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells. Stem Cells Dev 2013; 22:2071-82. [PMID: 23461527 DOI: 10.1089/scd.2012.0563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. Here, this study aimed to identify and characterize a novel population of meniscus-derived stem cells (MeSCs) and develop a new strategy of articular cartilage protection by intra-articular injection of these cells. The "stemness" and immune properties of MeSCs were investigated in vitro, while the efficacy of intra-articular injection of MeSCs for meniscus regeneration and OA prevention were investigated in vivo at 4, 8, and 12 weeks postsurgery. MeSCs displayed typical stem cell characteristics such as low immunogenicity and even possessed immunosuppressive function. In a rabbit meniscus injury model, transplantation of allogenous MeSCs did not elicit immunological rejection, but promoted neo-tissue formation with better-defined shape and more matured extracellular matrix. In a rabbit experimental OA model, transplantation of MeSCs further protected joint surface cartilage and maintained joint space at 12 weeks postsurgery, whereas extensive joint surface irregularities and joint space stenosis were observed in the control group. This study thus evoked a new strategy for articular cartilage protection and meniscus regeneration by intra-articular injection of MeSCs for patients undergoing meniscectomy.
Collapse
Affiliation(s)
- Weiliang Shen
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Proksch S, Steinberg T, Schulz S, Sauerbier S, Hellwig E, Tomakidi P. Environmental Biomechanics Substantiated by Defined Pillar Micropatterns Govern Behavior of Human Mesenchymal Stem Cells. Cell Transplant 2012; 21:2455-69. [DOI: 10.3727/096368912x637037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While evidence on the impact of the biomechanical environment elasticity on human mesenchymal stem cell (hMSC) behavior is growing, the aspect of micropatterning is still poorly understood. Thus, the present study aimed at investigating the influence of defined environmental micropatterning on hMSC behavior. Following characterization, hMSCs were grown on defined pillar micropatterns of 5, 7, 9, and 11 μm. With respect to cell behavior, primary hMSC adhesion was detected by indirect immunofluorescence (iIF) for paxillin, vinculin, integrin αV, and actin, while proliferation was visualized by histone H3. Morphogenesis was monitored by scanning electron microscopy and the expression of stem cell-specific biomarkers by real-time PCR. Favoritism of primary adhesion of hMSCs on pillar tops occurred at smaller pillar micropatterns, concomitant with cell flattening. While vinculin, integrin αV, and paxillin appeared initially more cytoplasmic, high pillar micropatterns favored a progressive redistribution with polarization to cell tension sites and at cell borders. Accomplishment of morphogenesis at day 3 revealed establishment of fully rotund cell somata at 5 μm, while hMSCs appeared progressively elongated at rising micropatterns. The hMSC proliferation capacity was influenced by pillar micropatterns and gene expression analysis of stem cell- and differentiation-associated biomarkers disclosed clear modulation by distinct pillar micropatterns. In response to environmental biomechanics, our results show that hMSC behavior is governed by pillar micropatterning. In turn, these findings may form the basis to prospectively direct lineage specificity of hMSCs in a customized fashion.
Collapse
Affiliation(s)
- S. Proksch
- Department of Operative Dentistry and Periodontology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - T. Steinberg
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - S. Schulz
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - S. Sauerbier
- Department of Oral and Maxillofacial Surgery, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - E. Hellwig
- Department of Operative Dentistry and Periodontology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| | - P. Tomakidi
- Department of Oral Biotechnology, Dental School and Hospital, University Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
30
|
Seo KW, Roh KH, Bhandari DR, Park SB, Lee SK, Kang KS. ZNF281 knockdown induced osteogenic differentiation of human multipotent stem cells in vivo and in vitro. Cell Transplant 2012; 22:29-40. [PMID: 22963690 DOI: 10.3727/096368912x654948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ZNF281 is one of the core transcription factors in embryonic stem cells (ESCs) and has activation and repression roles in the transcription of ESC genes. A known target molecule of Zfp281 (the mouse homologue of ZNF281) is Nanog. However, NANOG is not expressed in most human multipotent stem cells (hMSCs). Here, we investigated the roles of ZNF281 with a gain- and loss-of-function study. The knockdown of ZNF281 in vivo and in vitro resulted in spontaneous osteochondrogenic differentiation and reduced the proliferation of hMSCs, as determined by cell morphology and molecular markers. When ZNF281-knockdown hMSCs were subcutaneously implanted into mice along with β-tricalcium phosphate (β-TCP), many cells were converted into osteoblasts within 4 weeks. In contrast, the overexpression of ZNF281 in hMSCs resulted in accelerated proliferation. The expression pattern of ZNF281 correlated well with the expression of β-CATENIN during differentiation and in the gain/loss-of-function study in hMSCs. The binding of ZNF281 to the promoter region of β-CATENIN was observed using a chromatin immunoprecipitation (ChIP) assay. In conclusion, we propose that ZNF281 plays an important role in the maintenance and osteogenic differentiation of stem cells via the transcriptional regulation of genes including β-CATENIN.
Collapse
Affiliation(s)
- Kwang-Won Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Gruber HE, Riley FE, Hoelscher GL, Bayoumi EM, Ingram JA, Ramp WK, Bosse MJ, Kellam JF. Osteogenic and chondrogenic potential of biomembrane cells from the PMMA-segmental defect rat model. J Orthop Res 2012; 30:1198-212. [PMID: 22246998 DOI: 10.1002/jor.22047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/05/2011] [Indexed: 02/04/2023]
Abstract
A layer of cells (the "biomembrane") has been identified in large segmental defects between bone and surgically placed methacrylate spacers or antibiotic-impregnated cement beads. We hypothesize that this contains a pluripotent stem cell population with potential valuable applications in orthopedic tissue engineering. Objectives using biomembranes harvested from rat segmental defects were to: (1) Culture biomembrane cells in specialized media to direct progenitor cells along bone or cartilage cell differentiation lineages; (2) evaluate harvested biomembranes for mesenchymal stem cell markers, and (3) define relevant gene expression patterns in harvested biomembranes using microarray analysis. Culture in osteogenic media produced mineralized nodules; culture in chondrogenic media produced masses containing chondroitin sulfate/sulfated proteoglycans. Molecular analysis of biomembrane cells versus control periosteum showed significant upregulation of key genes functioning in mesenchymal stem cell differentiation, development, maintenance, and proliferation. Results identified significant upregulation of WNT receptor signaling pathway genes and significant upregulation of BMP signaling pathway genes. Findings confirm that the biomembrane has a pluripotent stem cell population. The ability to heal large bone defects is clinically challenging, and novel tissue engineering uses of the biomembrane hold great promise in treating non-unions, open fractures with large bone loss and/or infections, and defects associated with tumor resection.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant 2012; 21:1667-77. [PMID: 22507568 DOI: 10.3727/096368912x638937] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early vascularization of a composite in a critical bone defect is a prerequisite for ingrowth of osteogenic reparative cells to regenerate bone, since lack of vessels does not ensure a sufficient nutritional support of the bone graft. The innovation of this study was to investigate the direct and indirect effects of endothelial progenitor cells (EPCs) and cotransplanted mesenchymal stem cells (MSCs) on the in vivo neovascularization activity in a critical size defect at the early phase of endochondral ossification. Cultivated human EPCs and MSCs were loaded onto β-TCP in vitro. A critical-sized bone defect (5 mm) was created surgically in the femoral diaphysis of adult athymic rat and stabilized with an external fixateur. The bone defects were filled with β-TCP, MSCs seeded on β-TCP, EPCs seeded on β-TCP, and coculture of MSCs and EPCs seeded on β-TCP or autologous bone of rat. After 1 week, the rats were sacrificed. Using quantitative CD34 immunohistochemistry as well as qualitative analysis of vascularization (staining of MHC and VEGF) in decalcified serial sections were performed by means of an image analysis system. Fluorescence microscopy analyzed the direct effects and indirect effects of human implanted EPCs for vessel formation at bone regeneration site. Formation of a primitive vascular plexus was also detectable in the β-TCP, MSC, or autologous bone group, but on a significantly higher level if EPCs alone or combined with MSCs were transplanted. Moreover, highest amount of vascularization were detected when EPCs and MSCs together were implanted. Early vascularization is improved by transplanted EPCs, which formed new vessels directly. Indeed the indirect effect of EPCs to vascularization is much higher. Transplanted EPC release chemotactic factors (VEGF) to recruit EPCs of the host and stimulate vascularization in the bone defect. Transplantation of human EPCs displays a promising approach to improve early vascularization of a scaffold in a critical bone defect. Moreover, coculture of EPCs and MSCs demonstrate also a synergistic effect on new vessel formation and seems to be a potential osteogenic construct for in vivo application.
Collapse
Affiliation(s)
- C Seebach
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
33
|
Qi Y, Wang Y, Yan W, Li H, Shi Z, Pan Z. Combined Mesenchymal Stem Cell Sheets and rhBMP-2-Releasing Calcium Sulfate–rhBMP-2 Scaffolds for Segmental Bone Tissue Engineering. Cell Transplant 2012; 21:693-705. [PMID: 22236577 DOI: 10.3727/096368911x623844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repair of segmental bone defects remains a major challenge for orthopedic surgeons. This study aimed to investigate whether recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded calcium sulfate (CS) combined with mesenchymal stem cell (MSC) sheets could accelerate bone regeneration in ulnar segmental defects of rabbits. In vitro, the osteogenic differentiation of MSCs cultured on rhBMP-2-loaded CS was investigated. Forty complete 1.2-cm bone defects were treated with CS (group A), rhBMP-2-loaded CS (group B), MSC sheet-wrapped CS (group C), and MSC sheet-wrapped rhBMP-2-loaded CS (group D). At 4 and 8 weeks after implantation, the samples were treated by X-ray, microcomputed tomography, and histological observation. The rhBMP-2 could be released from the rhBMP-2-loaded CS scaffolds and maintain its bioactivity. The alkaline phosphatase (ALP) of MSCs cultured on rhBMP-2-loaded CS was significantly higher than that of CS at both 7 and 14 days ( p < 0.05). The defects treated with MSC sheet-wrapped rhBMP-2-loaded CS showed significantly higher scores by X-ray analysis and more bone formation determined by both histology and microcomputed tomography than the other three groups at both 4 and 8 weeks after implantation ( p < 0.05). No significant difference in X-ray score and bone formation was found between groups B and C, both significantly higher than group A ( p < 0.05). The results suggested that MSC sheet-wrapped rhBMP-2-loaded CS may be an effective approach to promote the repair of segmental bone defects and has great potential for repairing large segmental bone defects in clinic.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulu Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Baotou Medical School, Baotou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Fukui T, Matsumoto T, Mifune Y, Shoji T, Kuroda T, Kawakami Y, Kawamoto A, Ii M, Kawamata S, Kurosaka M, Asahara T, Kuroda R. Local Transplantation of Granulocyte Colony-Stimulating Factor-Mobilized Human Peripheral Blood Mononuclear Cells for Unhealing Bone Fractures. Cell Transplant 2012. [DOI: 10.3727/096368911x582769a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously reported the therapeutic potential of human peripheral blood (hPB) CD34+ cells for bone fracture healing via vasculogenesis/angiogenesis and osteogenesis. Transplantation of not only hPB CD34+ cells but also hPB total mononuclear cells (MNCs) has shown their therapeutic efficiency for enhancing ischemic neovascularization. Compared with transplantation of purified hPB CD34+ cells, transplantation of hPB MNCs is more attractive due to its simple method of cell isolation and inexpensive cost performance in the clinical setting. Thus, in this report, we attempted to test a hypothesis that granulocyte colony-stimulating factor-mobilized (GM) hPB MNC transplantation could also contribute to fracture healing via vasculogenesis/angiogenesis and osteogenesis. Nude rats with unhealing fractures received local administration of the following materials with atelocollagen: 1 × 107 GM hPB MNCs (Hi group), 1 × 106 GM hPB MNCs (Lo group), or PBS (PBS group). Immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated human cell-derived vasculogenesis and osteogenesis in the Hi and Lo groups, but not in the PBS group at week 1. Intrinsic angiogenesis and osteogenesis assessed by rat capillary, osteoblast density, and real-time RT-PCR analysis was significantly enhanced in the Hi group compared to the other groups. Blood flow assessment by laser doppler perfusion imaging showed a significantly higher blood flow ratio at week 1 in the Hi group compared with the other groups. Morphological fracture healing was radiographically and histologically confirmed in about 30% of animals in the Hi group at week 8, whereas all animals in the other groups resulted in nonunion. Local transplantation of GM hPB MNCs contributes to fracture healing via vasculogenesis/angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Taro Shoji
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoya Kuroda
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masaaki Ii
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Shin Kawamata
- Stem Cell Bank Research Group, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
35
|
Yao JF, Shen JZ, Li DK, Lin DS, Li L, Li Q, Qi P, Lian KJ, Ding ZQ. Rap system of stress stimulation can promote bone union after lower tibial bone fracture: a clinical research. Int J Med Sci 2012; 9:462-6. [PMID: 22859907 PMCID: PMC3410366 DOI: 10.7150/ijms.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/16/2012] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Lower tibial bone fracture may easily cause bone delayed union or nonunion because of lacking of dynamic mechanical load. OBJECTIVE Research Group would design a new instrument as Rap System of Stress Stimulation (RSSS) to provide dynamic mechanical load which would promote lower tibial bone union postoperatively. METHODS This clinical research was conducted from January 2008 to December 2010, 92 patients(male 61/female 31, age 16-70 years, mean 36.3 years) who suffered lower tibial bone closed fracture were given intramedullary nail fixation and randomly averagely separated into experimental group and control group(according to the successively order when patients went for the admission procedure). Then researchers analysed the clinical healing time, full weight bearing time, VAS (Visual Analogue Scales) score and callus growth score of Lane-Sandhu in 3,6,12 months postoperatively. The delayed union and nonunion rates were compared at 6 and 12 months separately. RESULTS All the 92 patients had been followed up (mean 14 months). Clinical bone healing time in experimental group was 88.78±8.80 days but control group was 107.91±9.03 days. Full weight bearing time in experimental group was 94.07±9.81 days but control group was 113.24±13.37 days respectively (P<0.05). The delayed union rate in 6 months was 4.3% in experimental group but 10.9% in control group(P<0.05). The nonunion rate in 12 months was 6.5% in experimental group but 19.6% in control group(P<0.05). In 3, 6, 12 months postoperatively, VAS score and Lane-Sandhu score in experimental group had more significantly difference than them in control group. CONCLUSIONS RSSS can intermittently provide dynamic mechanical load and stimulate callus formation, promote lower tibial bone union, reduce bone delayed union or nonunion rate. It is an adjuvant therapy for promoting bone union after lower tibial bone fracture.
Collapse
Affiliation(s)
- Jian-fei Yao
- Department of Orthopaedic Surgery, Affiliated Dongnan Hospital of Xiamen University, Orthopaedic Trauma Center of the 175th Hospital of PLA, Zhangzhou, Fujian, 363000, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ectopic osteogenesis with immortalized human bone marrow stromal stem cells and heterologous bone. J Appl Biomed 2011. [DOI: 10.2478/v10136-009-0036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Smardencas A, Parkington HC. Seeding of endothelial cells on the luminal surface of a sheet model of cold-stored (at 4°C) sheep carotid arteries. Cell Transplant 2011; 21:285-97. [PMID: 21669048 DOI: 10.3727/096368911x580608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cold-stored arteries are biomaterials that potentially represent an abundant "off-the-shelf" source of vascular grafts for use in vascular surgery. One of the keys to reestablishing the antithrombogenic endothelial cell (EC) lining of cold-stored arterial grafts is to maximize the number of ECs that attach following seeding. In this study, the cold-stored sheep carotid artery is used as a substrate to determine the conditions that maximize EC adherence following seeding. The effect of serum concentration, duration of seeding incubation, seeding density, and period of cold storage on attachment of ECs following seeding of 4-week cold-stored sheep carotid arteries (n = 5 arteries), 8-week cold-stored sheep carotid arteries (n = 5 arteries), and 12-week cold-stored sheep carotid arteries (n = 5 arteries) was examined. Three experiments (serum concentration, time of incubation, and seeding density) were conducted to determine the conditions that maximized the number of cultured sheep carotid artery ECs that attached to cold-stored sheep carotid artery following seeding. A flat sheet model was used. Serum concentration (0%, 10%, 20%, and 30%) in the seeding suspension did not have a significant effect on overall EC adherence on 4-, 8-, and 12-week cold-stored arteries. Time of seeding incubation (30, 60, and 90 min) did not have a significant effect on overall EC adherence on 4-, 8-, and 12-week cold-stored arteries. Seeding density (500,000 cells/ml, 1,000,000 cells/ml, and 2,000,000 cells/ml) had a significant effect (p = 0.036) on overall EC adherence on 4-, 8-, and 12-week cold-stored arteries. The period of cold storage (4, 8, and 12 weeks) of the artery had a significant effect (p = 0.002, p < 0.0001, p < 0.0001 in serum, time, and seeding density experiments, respectively) on overall EC adherence following seeding. Pairwise comparisons of EC adherence revealed the following. In the serum experiment, EC adherence on 4-week cold-stored arteries was significantly greater than on 8-week cold-stored arteries (p = 0.003) and 12-week cold-stored arteries (p = 0.002). This effect was due largely to the significant difference between EC adherence on 4-week and 8-week cold-stored arteries (p = 0.0002) and between EC adherence on 4-week and 12-week cold-stored arteries (p = 0.0091) at 20% serum. In the time experiment, EC adherence on 4-week cold-stored arteries was significantly greater than on 12-week cold-stored arteries (p < 0.0001). In the seeding density experiment, EC adherence on 4-week cold-stored arteries was significantly greater than on 8-week cold-stored arteries (p < 0.0001) and 12-week cold-stored arteries (p < 0.0001). In the same experiment, EC adherence following seeding at a density of 1,000,000 cells/ml and 2,000,000 cells/ml was significantly greater (p = 0.03 and p = 0.02, respectively) than EC adherence following seeding at a density of 500,000 cells/ml. Thus, it was determined that 4-week cold-stored arteries were superior to 8- and 12-week cold-stored arteries in terms of the number of ECs that adhered. It was also determined that a seeding density of 1,000,000 or 2,000,000 cells/ml was superior to a seeding density of 500,000 cells/ml in terms of producing maximal EC attachment. The ideal conditions, from those examined, for maximizing EC attachment to cold-stored arteries were 4 weeks of cold storage, a serum concentration of 20%, a seeding density of 2,000,000 cells/ml, and a duration of incubation of 30-90 min.
Collapse
Affiliation(s)
- Arthur Smardencas
- Department of Forensic Medicine, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
38
|
Yang HS, Kim GH, La WG, Bhang SH, Lee TJ, Lee JH, Kim BS. Enhancement of human peripheral blood mononuclear cell transplantation-mediated bone formation. Cell Transplant 2011; 20:1445-52. [PMID: 21375802 DOI: 10.3727/096368910x557272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent studies have demonstrated the existence of osteoblast progenitor cells in circulating blood. Here we show that local delivery of bone morphogenetic protein-2 (BMP-2) to cell transplantation sites induces in situ osteogenic differentiation of transplanted human peripheral blood mononuclear cells (PBMNCs) and enhances in vivo bone formation mediated by PBMNC transplantation. Human PBMNCs were seeded on scaffolds with or without BMP-2 and implanted subcutaneously into athymic mice. Nonseeded scaffolds with BMP-2 were also implanted. Eight weeks later, radiographic and histological analyses showed that the PBMNC + BMP-2 group had undergone much more extensive bone formation than either the PBMNC group or BMP-2 group. Only the PBMNC + BMP-2 group expressed human Cbfa1, osteonectin, and osteocalcin, suggesting in situ osteogenic differentiation of and bone formation by transplanted human PBMNCs, while the other groups did not express these genes. This study provides a method to enhance human PBMNC transplantation-mediated bone formation.
Collapse
Affiliation(s)
- Hee Seok Yang
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Ma D, Yao H, Tian W, Chen F, Liu Y, Mao T, Ren L. Enhancing bone formation by transplantation of a scaffold-free tissue-engineered periosteum in a rabbit model. Clin Oral Implants Res 2011; 22:1193-1199. [PMID: 21303418 DOI: 10.1111/j.1600-0501.2010.02091.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The periosteum plays an important role in bone regeneration. However, the harvesting of autogenous periosteum is associated with disadvantages such as donor site morbidity and limited donor sources. This study uses an osteogenic predifferentiated cell sheet to fabricate a scaffold-free tissue-engineered periosteum (TEP). MATERIAL AND METHODS We generated an osteogenic predifferentiated cell sheet from rabbit bone marrow stromal cells (BMSCs) using a continuous culture system and harvested it using a scraping technique. Then, the in vitro characterization of the sheet was investigated using microscopy investigation, quantitative analysis of alkaline phosphatase (ALP) activity, and RT-PCR. Next, we demonstrated the in vivo osteogenic potential of the engineered sheet in ectopic sites together with a porous β-tricalcium phosphate ceramic. Finally, we evaluated its efficiency in treating delayed fracture healing after wrapping the cell sheet around the mandible in a rabbit model. RESULTS The engineered periosteum showed sporadic mineralized nodules, elevated ALP activity, and up-regulated gene expression of osteogenic markers. After implantation in the subcutaneous pockets of the donor rabbits, the in vivo bone-forming capability of the engineered periosteum was confirmed by histological examinations. Additionally, when wrapping the engineered periosteum around a mandibular fracture gap, we observed improved bone healing and reduced amounts of fibrous tissue at the fracture site. CONCLUSION The osteogenic predifferentiated BMSC sheet can act as a scaffold-free TEP to facilitate bone regeneration. Hence, our study provides a promising strategy for enhancing bone regeneration in clinical settings.
Collapse
Affiliation(s)
- Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Hong Yao
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Wenyan Tian
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Fulin Chen
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Yanpu Liu
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Tianqiu Mao
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| | - Liling Ren
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu, ChinaDepartment of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Shaanxi, ChinaRege Lab of Tissue Engineering, Department of Bioscience, Faculty of Life Science, Northwest University, Shaanxi, ChinaDepartment of Orthodontics, School of Stomatology, Lanzhou University, Gansu, China
| |
Collapse
|
40
|
Kuroda R, Matsumoto T, Miwa M, Kawamoto A, Mifune Y, Fukui T, Kawakami Y, Niikura T, Lee SY, Oe K, Shoji T, Kuroda T, Horii M, Yokoyama A, Ono T, Koibuchi Y, Kawamata S, Fukushima M, Kurosaka M, Asahara T. Local transplantation of G-CSF-mobilized CD34(+) cells in a patient with tibial nonunion: a case report. Cell Transplant 2010; 20:1491-6. [PMID: 21176407 DOI: 10.3727/096368910x550189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although implantation of crude bone marrow cells has been applied in a small number of patients for fracture healing, transplantation of peripheral blood CD34(+) cells, the hematopoietic/endothelial progenitor cell-enriched population, in patients with fracture has never been reported. Here, we report the first case of tibial nonunion receiving autologous, granulocyte colony stimulating factor mobilized CD34(+) cells accompanied with autologous bone grafting. No serious adverse event occurred, and the novel therapy performed 9 months after the primary operation resulted in bone union 3 months later without any symptoms including pain and gait disturbance.
Collapse
Affiliation(s)
- Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fu RH, Wang YC, Liu SP, Huang CM, Kang YH, Tsai CH, Shyu WC, Lin SZ. Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant 2010; 20:37-47. [PMID: 21054953 DOI: 10.3727/096368910x532756] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stem cells are a natural choice for cellular therapy because of their potential to differentiate into a variety of lineages, their capacity for self-renewal in the repair of damaged organs and tissues in vivo, and their ability to generate tissue constructs in vitro. Determining how to efficiently drive stem cell differentiation to a lineage of choice is critical for the success of cellular therapeutics. Many factors are involved in this process, the extracellular microenvironment playing a significant role in controlling cellular behavior. In recent years, researchers have focused on identifying a variety of biomaterials to provide a microenvironment that is conducive to stem cell growth and differentiation and that ultimately mimics the in vivo situation. Appropriate biomaterials support the cellular attachment, proliferation, and lineage-specific differentiation of stem cells. Tissue engineering approaches have been used to incorporate growth factors and morphogenetic factors-factors known to induce lineage commitment of stem cells-into cultures with scaffolding materials, including synthetic and naturally derived biomaterials. This review focuses on various strategies that have been used in stem cell expansion and examines modifications of natural and synthetic materials, as well as various culture conditions, for the maintenance and lineage-specific differentiation of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eve DJ, Fillmore RW, Borlongan CV, Sanberg PR. Stem cell research in cell transplantation: sources, geopolitical influence, and transplantation. Cell Transplant 2010; 19:1493-509. [PMID: 21054954 DOI: 10.3727/096368910x540612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and enhanced understanding of many diseases are the likely results. However, the full potential of stem cell science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009, the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most commonly investigated types, which can generally be classified as adult-derived stem cells, although roughly half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a number of different species, including several autologous studies. A number of pharmaceutical grade stem cell products have also recently been tested and reported on. Stem cell research shows considerable promise for the treatment of a number of disorders, some of which have entered clinical trials; over the next few years it will be interesting to see how these treatments progress in the clinic.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
43
|
Lo T, Ho JH, Yang MH, Lee OK. Glucose reduction prevents replicative senescence and increases mitochondrial respiration in human mesenchymal stem cells. Cell Transplant 2010; 20:813-25. [PMID: 21054932 DOI: 10.3727/096368910x539100] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The unique self-renewal and multilineage differentiation potential of mesenchymal stem cells (MSCs) make them a promising candidate for cell therapy applications. However, during in vitro expansion of MSCs, replicative senescence may occur and will compromise the quality of the expanded cells. Because calorie restriction has been shown to effectively extend the life span of various organisms, the purpose of this study is to investigate the effect of glucose reduction on MSCs and the coordinated changes in energy utilization. It was found that the frequency of cycling cells was significantly increased, while senescence markers such as β-galactosidase activities and p16(INK4a) expression level were markedly reduced in MSCs under low-glucose culture condition. Quantitative real-time PCR analysis demonstrated the preserved trilineage differentiation potentials of MSCs after low-glucose treatment. Interestingly, the ability of osteogenic lineage commitment was improved, while the ability of adipogenic lineage commitment was delayed in MSCs after glucose reduction. In addition, we observed decreased lactate production, increased electron transport chain complexes expression, and increased oxygen consumption in MSCs after glucose reduction treatment. Increased antioxidant defensive responses were evidenced by increased antioxidant enzymes expression and decreased superoxide production after glucose reduction. Taken together, our findings suggest that MSCs utilize energy more efficiently under restricted glucose treatment and exhibit greater self-renewal and antisenescence abilities, while their differentiation potentials remain unaffected.
Collapse
Affiliation(s)
- Ting Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Nather A, David V, Teng JWH, Lee CW, Pereira BP. Effect of Autologous Mesenchymal Stem Cells on Biological Healing of Allografts in Critical-sized Tibial Defects Simulated in Adult Rabbits. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2010. [DOI: 10.47102/annals-acadmedsg.v39n8p599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: This study evaluated the effect of autologous bone marrow derived adult Mesenchymal Stem Cells (MSCs) on the biological healing of weight bearing diaphyseal bone allograft in the tibia of adult rabbits. Materials and Methods: Forty Adult New Zealand White Rabbits divided into 3 groups (Autograft, Allograft or Allograft impregnated with MSCs) with 12 rabbits in each group were used for the study. A 1.5 cm of cortical bone segment was excised from the rabbit’s right tibia. The segment was replaced by an Autograft, Allograft or Allograft loaded with MSCs, depending on which group the rabbit was assigned. Internal fixation was performed using a 9-hole Mini-compression Plate and Cerclage Wires. Rabbits were sacrificed at end of observation periods of 12, 16 and 24 weeks. Specimens procured were assessed clinically and radiologically and fixed in 10% buffered formalin. For each specimen, 5 μm undecalcified sections were cut and stained with Von Kossa and Toluidine Blue stains. Histomorphometery was then performed. Results: Our study showed that addition of autologous MSCs to diaphyseal allograft segments enhances and accelerates not just the union at host graft junctions and also the biological incorporation of the allograft segment as shown by Resorption Index, New-Bone Formation Index and Osteocyte Index. Conclusions: The addition of autologous MSCs to deep frozen cortical allograft segments improved the host – allograft union rate and biological incorporation of diaphyseal allografts as shown by resorption activity, new bone formation and
osteocyte cell counts.
Key words: Adult mesenchymal stem cells, Critical-sized tibial defect, Deep frozen allografts
Collapse
Affiliation(s)
- Aziz Nather
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Vikram David
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Janelle WH Teng
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Choon Wei Lee
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Barry P Pereira
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
45
|
Quintin A, Schizas C, Scaletta C, Jaccoud S, Applegate LA, Pioletti DP. Plasticity of fetal cartilaginous cells. Cell Transplant 2010; 19:1349-57. [PMID: 20447338 DOI: 10.3727/096368910x506854] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy.
Collapse
Affiliation(s)
- Aurelie Quintin
- Cellular Therapy Unit, Department of Musculoskeletal Medicine, University Hospital Center and University of Lausanne, CHUV-UNIL, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|