1
|
Teratani T, Kasahara N, Fujimoto Y, Sakuma Y, Miki A, Goto M, Sata N, Kitayama J. Mesenchymal Stem Cells Secretions Enhanced ATP Generation on Isolated Islets during Transplantation. Islets 2022; 14:69-81. [PMID: 35034568 PMCID: PMC8765074 DOI: 10.1080/19382014.2021.2022423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The success of islet transplantation in both basic research and clinical settings has proven that cell therapy has the potential to cure diabetes. Islets intended for transplantation are inevitably subjected to damage from a number of sources, including ischemic injury during removal and delivery of the donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation in the recipient. Here, we found that protein factors secreted by porcine adipose-tissue mesenchymal stem cells (AT-MSCs) were capable of activating preserved porcine islets. A conditioned medium was prepared from the supernatant obtained by culturing porcine AT-MSCs for 2 days in serum-free medium. Islets were preserved at 4°C in University of Wisconsin solution during transportation and then incubated at 37°C in RPMI-1620 medium with fractions of various molecular weights prepared from the conditioned medium. After treatment with certain fractions of the AT-MSC secretions, the intracellular ATP levels of the activated islets had increased to over 160% of their initial values after 4 days of incubation. Our novel system may be able to restore the condition of isolated islets after transportation or preservation and may help to improve the long-term outcome of islet transplantation.Abbreviations: AT-MSC, adipose-tissue mesenchymal stem cell; Cas-3, caspase-3; DAPI, 4,6-diamidino-2-phenylindole; DTZ, dithizone; ES cell, embryonic stem cell; FITC, fluorescein isothiocyanate; IEQ, islet equivalent; INS, insulin; iPS cell, induced pluripotent stem cell; Luc-Tg rat, luciferase-transgenic rat; PCNA, proliferating cell nuclear antigen; PDX1, pancreatic and duodenal homeobox protein-1; UW, University of Wisconsin; ZO1, zona occludens 1.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
- CONTACT Takumi Teratani Division of Clinical Investigation, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi329-0498, Japan
| | - Naoya Kasahara
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masafumi Goto
- New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Dafoe TJ, Dos Santos T, Spigelman AF, Lyon J, Smith N, Bautista A, MacDonald PE, Manning Fox JE. Impacts of the COVID-19 pandemic on a human research islet program. Islets 2022; 14:101-113. [PMID: 35285768 PMCID: PMC8928860 DOI: 10.1080/19382014.2022.2047571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Designated a pandemic in March 2020, the spread of severe acute respiratory syndrome virus 2 (SARS-CoV2), the virus responsible for coronavirus disease 2019 (COVID-19), led to new guidelines and restrictions being implemented for individuals, businesses, and societies in efforts to limit the impacts of COVID-19 on personal health and healthcare systems. Here we report the impacts of the COVID-19 pandemic on pancreas processing and islet isolation/distribution outcomes at the Alberta Diabetes Institute IsletCore, a facility specializing in the processing and distribution of human pancreatic islets for research. While the number of organs processed was significantly reduced, organ quality and the function of cellular outputs were minimally impacted during the pandemic when compared to an equivalent period immediately prior. Despite the maintained quality of isolated islets, feedback from recipient groups was more negative. Our findings suggest this is likely due to disrupted distribution which led to increased transit times to recipient labs, particularly those overseas. Thus, to improve overall outcomes in a climate of limited research islet supply, prioritization of tissue recipients based on likely tissue transit times may be needed.
Collapse
Affiliation(s)
- Tina J. Dafoe
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Theodore Dos Santos
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - James Lyon
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy Smith
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute IsletCore and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Olack BJ, Alexander M, Swanson CJ, Kilburn J, Corrales N, Flores A, Heng J, Arulmoli J, Omori K, Chlebeck PJ, Zitur L, Salgado M, Lakey JRT, Niland JC. Optimal Time to Ship Human Islets Post Tissue Culture to Maximize Islet. Cell Transplant 2021; 29:963689720974582. [PMID: 33231091 PMCID: PMC7885128 DOI: 10.1177/0963689720974582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.
Collapse
Affiliation(s)
- Barbara J Olack
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Carol J Swanson
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Julie Kilburn
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Antonio Flores
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Peter J Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Zitur
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joyce C Niland
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| |
Collapse
|
4
|
Powell-Palm MJ, Zhang Y, Aruda J, Rubinsky B. Isochoric conditions enable high subfreezing temperature pancreatic islet preservation without osmotic cryoprotective agents. Cryobiology 2019; 86:130-133. [DOI: 10.1016/j.cryobiol.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
|
5
|
Ikemoto T, Feng R, Shimada M, Saito Y, Iwahashi S, Morine Y, Imura S. A New 2-Step Acceleration Protocol Using a Histone Deacetylase Inhibitor to Generate Insulin-Producing Cells From Adipose-Derived Mesenchymal Stem Cells. Pancreas 2018; 47. [PMID: 29517636 PMCID: PMC5865483 DOI: 10.1097/mpa.0000000000001017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES We aimed to develop a simple protocol for deriving insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ADSCs). We established a 2-step creation method and an acceleration strategy with a histone deacetylase inhibitor that promoted a pro-endocrine pancreatic lineage. METHODS We seeded ADSCs in 96-well dishes and cultured in Dulbecco's modified Eagle's medium/F12 medium containing 1% fetal bovine serum, 1% B27 supplement, 1% N2 supplement, 50-ng/mL human activin A, and 10-nM exendin-4 for step 1 of differentiation (7 days). Then 10-mM nicotinamide and 50-ng/mL human hepatocyte growth factor, with or without 1 mM histone deacetylase inhibitor, were added for step 2 of differentiation (14 days). After the 2-step differentiation was complete, cell morphology, immunohistochemistry, messenger RNA expression, and function were investigated. RESULTS Our new differentiation protocol with the histone deacetylase inhibitor significantly accelerated IPC differentiation compared with the conventional protocol without the histone deacetylase inhibitor (median, 21.6 vs 38.8 days; P < 0.05). It also improved the islet morphology score (P < 0.05) and the glucose stimulation index (3.1). CONCLUSIONS By applying our new and easy 2-step protocol using a histone deacetylase inhibitor, ADSCs may be an effective cell source for differentiation of IPCs.
Collapse
|
6
|
Islet Cell Yield Following Remote Total Pancreatectomy With Islet Autotransplant is Independent of Cold Ischemia Time. Pancreas 2017; 46:380-384. [PMID: 28129232 PMCID: PMC5308539 DOI: 10.1097/mpa.0000000000000792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Total pancreatectomy with islet autotransplantation is increasingly being performed remotely, that is, removing the pancreas in 1 location, isolating the islet cells in another location, then returning the islets to the original location for reimplantation into the patient. We determined the influence of extended cold ischemia time on key clinical outcomes in remote islet autotransplantation. METHODS We evaluated patients who underwent remote islet autotransplantation at 2 centers from 2011 to 2014. Patients were divided into 2 groups: those with and those without a decrease in C-peptide greater than 50% from baseline. The primary clinical outcome was the quantity of isolated islet equivalents per kilogram body weight (IEQs/kg). RESULTS Twenty-five patients met inclusion criteria; 15 had a decrease in C-peptide greater than 50% from baseline and had lower corresponding IEQs/kg compared with those without a decrease greater than 50% (4045 vs 6654 IEQs/kg, P = 0.01). There was no difference in cold ischemia time between the 2 groups (664 vs 600 minutes, P = 0.25). Daily insulin use at 1 year nearly met statistical significance (25.3 vs 8 U, P = 0.06), as did glycated hemoglobin (8.07 vs 6.69 mmol/L, P = 0.06). CONCLUSIONS Cold ischemia time does not influence islet yield in patients undergoing pancreatectomy with remote isolation.
Collapse
|
7
|
Lee S, Takahashi Y, Lee K, Mizuno M, Nemeno J, Takebe T, Lee J. Viability and Functional Assessment of Murine Pancreatic Islets After Transportation Between Korea and Japan. Transplant Proc 2015; 47:738-41. [DOI: 10.1016/j.transproceed.2014.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022]
|
8
|
Kitzmann JP, Pepper AR, Lopez BG, Pawlick R, Kin T, O’Gorman D, Mueller KR, Gruessner AC, Avgoustiniatos ES, Karatzas T, Szot GL, Posselt AM, Stock PG, Wilson JR, Shapiro AM, Papas KK. Human islet viability and function is maintained during high-density shipment in silicone rubber membrane vessels. Transplant Proc 2014; 46:1989-91. [PMID: 25131090 PMCID: PMC4169700 DOI: 10.1016/j.transproceed.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). METHOD IE were isolated from two manufacturing centers and shipped in 10-cm(2) surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm(2)), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1-3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag(+/-) mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function.
Collapse
Affiliation(s)
| | - Andrew R Pepper
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Boris G Lopez
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Rena Pawlick
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Doug O’Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Kathryn R Mueller
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | | | | | - Theodore Karatzas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Second Department of Propedeutic Surgery University of Athens, School of Medicine, Athens, Greece
| | - Greg L Szot
- Diabetes Center, University of California, San Francisco, California, United States
| | - Andrew M Posselt
- Diabetes Center, University of California, San Francisco, California, United States
| | - Peter G Stock
- Diabetes Center, University of California, San Francisco, California, United States
| | - John R Wilson
- Wilson Wolf Manufacturing Corporation, New Brighton, Minnesota, United States
| | - AM Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Yamashita S, Ohashi K, Utoh R, Kin T, Shapiro AMJ, Yamamoto M, Gotoh M, Okano T. Quality of Air-Transported Human Islets for Single Islet Cell Preparations. CELL MEDICINE 2013; 6:33-8. [PMID: 26858878 DOI: 10.3727/215517913x674243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In new generation medical therapies for type 1 diabetes mellitus (DM), cell-based approaches using pancreatic islets have attracted significant attention worldwide. In particular, dispersed islet cells obtained from isolated pancreatic islets have been a valuable source in the cell biology and tissue engineering fields. Our experimental approach to the development of new islet-based DM therapies consisted of creating a monolithic islet cell sheet format using dispersed islet cells. In this experiment, we explored the potential of internationally transporting human islets from Alberta, Canada to Tokyo, Japan and obtaining viable dispersed islet cells. A total of 34 batches of isolated and purified human islets were transported using a commercial air courier service. Prior to shipping, the human islets had been in culture for 0-108 h at the University of Alberta. The transportation period from Alberta to Tokyo was 2-5 days. The transported human islet cells were enzymatically dispersed as single cells in Tokyo. The number of single islet cells decreased as the number of transportation days increased. In contrast, cell viability was maintained regardless of the number of transportation days. The preshipment culture time had no effect on the number or viability of single cells dispersed in Tokyo. When dispersed single islet cells were plated on laminin-5-coated temperature-responsive polymer-grafted culture dishes, the cells showed favorable attachment followed by extension as a monolithic format. The present study demonstrated that long-distance transported human islets are a viable cell source for experiments utilizing dispersed human islet cells.
Collapse
Affiliation(s)
- Shingo Yamashita
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo , Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan; †Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo , Japan
| | - Tatsuya Kin
- ‡ Clinical Islet Transplant Program, University of Alberta , Edmonton, Alberta , Canada
| | - A M James Shapiro
- ‡ Clinical Islet Transplant Program, University of Alberta , Edmonton, Alberta , Canada
| | - Masakazu Yamamoto
- † Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University , Tokyo , Japan
| | - Mitsukazu Gotoh
- § Department of Regenerative Surgery, Fukushima Medical University , Fukushima , Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo , Japan
| |
Collapse
|
10
|
Kasahara N, Teratani T, Doi J, Iijima Y, Maeda M, Uemoto S, Fujimoto Y, Sata N, Yasuda Y, Kobayashi E. Use of Mesenchymal Stem Cell-Conditioned Medium to Activate Islets in Preservation Solution. CELL MEDICINE 2013; 5:75-81. [PMID: 26858869 DOI: 10.3727/215517913x666477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pancreatic islet transplantation has received widespread attention as a promising treatment for type 1 diabetes. However, islets for transplantation are subject to damage from a number of sources, including ischemic injury during removal and delivery of the donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation in the recipient. Here we found that protein fractions secreted by mesenchymal stem cells (MSCs) were capable of activating preserved islets. A conditioned medium from the supernatant obtained by culturing adipose tissue MSCs (derived from wild-type Lewis rats) was prepared for 2 days in serum-free medium. Luc-Tg rat islets to which an organ preservation solution was added were then incubated at 4°C with fractions of various molecular weights prepared from the conditioned medium. Under the treatment with some of the fractions, by 4 days the relative luminescence intensities (representative of the ATP levels of the cold-preserved islets) had increased to over 150% of their initial values. Our novel system may be able to restore isolated islets to the condition they were in before transport, culture, and transplantation.
Collapse
Affiliation(s)
- Naoya Kasahara
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsukeshi, Tochigi, Japan; †Department of Surgery, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Takumi Teratani
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| | - Junshi Doi
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| | - Yuki Iijima
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| | - Masashi Maeda
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| | - Shinji Uemoto
- ‡ Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine , Syougoin, Sakyoku, Kyotoshi, Kyoto , Japan
| | - Yasuhiro Fujimoto
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsukeshi, Tochigi, Japan; ‡Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Syougoin, Sakyoku, Kyotoshi, Kyoto, Japan
| | - Naohiro Sata
- † Department of Surgery, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| | - Yoshikazu Yasuda
- † Department of Surgery, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| | - Eiji Kobayashi
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University , Shimotsukeshi, Tochigi , Japan
| |
Collapse
|
11
|
Qi Z, Yamamoto C, Imori N, Kinukawa A, Yang KC, Yanai G, Ikenoue E, Shen Y, Shirouzu Y, Hiura A, Inoue K, Sumi S. Immunoisolation effect of polyvinyl alcohol (PVA) macroencapsulated islets in type 1 diabetes therapy. Cell Transplant 2012; 21:525-34. [PMID: 22793061 DOI: 10.3727/096368911x605448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Islet transplantation has shown great success in the treatment of type 1 diabetes since the Edmonton protocol was established. However, it still has two major problems to overcome: the lack of organ donors and the side effects of immunosuppression. Encapsulated islets have emerged as a potential option for islet transplantation because it can, at least partly, overcome these two problems. Wistar rat islets suspended in 3% polyvinyl alcohol (PVA) hydrogel were frozen-thawed to make macroencapsulated islets (MEIs). The recovery rate, insulin content, and morphological change in culture medium with/without fresh human plasma (FHP) were measured in MEIs and free islets in vitro. In vivo, MEIs of either Wistar or Lewis rats were transplanted into the peritoneal cavity of streptozotocin (STZ)-induced diabetic Lewis rats and nonfasting blood glucose (NFBG), body weight, and histological evaluations were processed. FHP destroyed rat free islets but did not affect the islet morphology, islet recovery rate, or insulin content of rat MEIs. The transplantation of MEIs decreased the NFBG level and prevented body weight loss without a significant difference between the donor strains. Insulin-positive islets were observed in PVA MEIs 24 weeks after allotransplantation. These results suggest that PVA MEIs may be used as a cure for type 1 diabetes.
Collapse
Affiliation(s)
- Zhi Qi
- Department of Histology and Embryology, Nankai University School of Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaddis JS, Hanson MS, Cravens J, Qian D, Olack B, Antler M, Papas KK, Iglesias I, Barbaro B, Fernandez L, Powers AC, Niland JC. Standardized transportation of human islets: an islet cell resource center study of more than 2,000 shipments. Cell Transplant 2012; 22:1101-11. [PMID: 22889479 DOI: 10.3727/096368912x653219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Preservation of cell quality during shipment of human pancreatic islets for use in laboratory research is a crucial, but neglected, topic. Mammalian cells, including islets, have been shown to be adversely affected by temperature changes in vitro and in vivo, yet protocols that control for thermal fluctuations during cell transport are lacking. To evaluate an optimal method of shipping human islets, an initial assessment of transportation conditions was conducted using standardized materials and operating procedures in 48 shipments sent to a central location by eight pancreas-processing laboratories using a single commercial airline transporter. Optimization of preliminary conditions was conducted, and human islet quality was then evaluated in 2,338 shipments pre- and postimplementation of a finalized transportation container and standard operating procedures. The initial assessment revealed that the outside temperature ranged from a mean of -4.6 ± 10.3°C to 20.9 ± 4.8°C. Within-container temperature drops to or below 15°C occurred in 16 shipments (36%), while the temperature was found to be stabilized between 15°C and 29°C in 29 shipments (64%). Implementation of an optimized transportation container and operating procedure reduced the number of within-container temperature drops (≤ 15°C) to 13% (n = 37 of 289 winter shipments), improved the number desirably maintained between 15°C and 29°C to 86% (n = 250), but also increased the number reaching or exceeding 29°C to 1% (n = 2; overall p < 0.0001). Additionally, postreceipt quality ratings of excellent to good improved pre- versus postimplantation of the standardized protocol, adjusting for preshipment purity/viability levels (p < 0.0001). Our results show that extreme temperature fluctuations during transport of human islets, occurring when using a commercial airline transporter for long distance shipping, can be controlled using standardized containers, materials, and operating procedures. This cost-effective and pragmatic standardized protocol for the transportation of human islets can potentially be adapted for use with other mammalian cell systems and is available online at http://iidp.coh.org/sops.aspx.
Collapse
Affiliation(s)
- John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hermann M, Wurm M, Lubei V, Pirkebner D, Draxl A, Margreiter R, Hengster P. Keep on rolling: optimizing human islet transport conditions using a perfused rotary system. Islets 2012; 4:152-7. [PMID: 22627172 DOI: 10.4161/isl.19753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The setup of an islet isolation facility designed along the rules of good manufacturing practice (GMP) is a technically challenging, cost and time intensive process. ( 1) Consequently, several institutions have decided to perform transplantation of islets isolated at another center with an already standing expertise. Such a solution includes the necessity to transport the isolated islets from the isolation to the transplantation facility. In spite of its importance, an ideal solution for the transport of the isolated human islets has still not been established. Here, we present an islet transport device suited to transport human islet cells under reproducible conditions and minimized cell stress. The transport simulation of the human islets was performed in a transfused "rotary transport system for islets" termed "ROTi." Besides measuring standard metabolic (LDH, lactate, glucose) and physical parameters (pH, dissolved oxygen and temperature), we used five different live stains in combination with real time live confocal microscopy to document islet quality parameters. As live stains we added tetramethylrhodamine methyl ester, cell permeant acetoxymethylester, propidium iodide, annexin-fitc and fluorescent wheat germ agglutinin, and assessed mitochondrial membrane potentials, calcium levels, cell death, apoptosis or cell morphology, respectively. We compared the viability of human islets after 24 h incubation in the ROTi device to an incubation simulating "standard" shipment of islets in 50 ml tubes. All cell viability parameters studied (mitochondrial membrane potentials, calcium content, apoptosis, cell death as well as cell morphology) documented a significantly better cell viability in the ROTi fraction compared with the simulated "standard" shipment fraction. Besides maintaining islet cell viability, the ROTi bears the advantage of a better reproducibility of islet transport conditions.
Collapse
Affiliation(s)
- Martin Hermann
- KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Innsbruck Medical University, Innsbruck, Tyrol, Austria.
| | | | | | | | | | | | | |
Collapse
|
14
|
Aldibbiat A, Huang GC, Zhao M, Holliman GN, Ferguson L, Hughes S, Brigham K, Wardle J, Williams R, Dickinson A, White SA, Johnson PRV, Manas D, Amiel SA, Shaw JAM. Validation of Islet Transport From a Geographically Distant Isolation Center Enabling Equitable Access and National Health Service Funding of a Clinical Islet Transplant Program for England. CELL MEDICINE 2011; 2:97-104. [PMID: 27004135 DOI: 10.3727/215517911x617905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Islet transplantation has become established as a successful treatment for type 1 diabetes complicated by recurrent severe hypoglycemia. In the UK access has been limited to a few centrally located units. Our goal was to validate a quality-assured system for safe/effective transport of human islets in the UK and to successfully undertake the first transplants with transported islets. Pancreases were retrieved from deceased donors in the north of England and transported to King's College London using two-layer method (TLM) or University of Wisconsin solution alone. Islets were isolated and transported back to Newcastle in standard blood transfusion or gas-permeable bags with detailed evaluation pre- and posttransport. In the preclinical phase, islets were isolated from 10 pancreases with mean yield of 258,000 islet equivalents. No significant differences were seen between TLM and University of Wisconsin solution organ preservation. A significant loss of integrity was demonstrated in islets shipped in gas-permeable bags, whereas sterility, number, purity, and viability were maintained in blood transfusion bags. Maintenance of secretory granules and glucose-stimulated insulin secretion was confirmed following transport. A Standard Operating Procedure enabling final pretransplant quality control from a simple side-arm sample was validated. Moreover, levels of insulin and cytokines in transport medium were low, enabling transplant without centrifugation/resuspension at the recipient site. Six clinical transplants of transported islets were undertaken in five recipients with 100% primary graft function and resolution of severe hypoglycemia. Safe and clinically effective islet transport has been established facilitating sustainable NHS funding of a clinical islet transplant program for the UK.
Collapse
Affiliation(s)
- Ali Aldibbiat
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Guo Cai Huang
- † Division of Diabetes and Nutritional Sciences, King's College London , London , UK
| | - Min Zhao
- † Division of Diabetes and Nutritional Sciences, King's College London , London , UK
| | - Graham N Holliman
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Linda Ferguson
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Stephen Hughes
- ‡ Nuffield Department of Surgical Sciences, University of Oxford , Oxford , UK
| | - Ken Brigham
- § Department of Haematology, Newcastle University , Newcastle upon Tyne , UK
| | - Julie Wardle
- ¶ Institute of Transplantation, Freeman Hospital , Newcastle upon Tyne , UK
| | - Rob Williams
- ¶ Institute of Transplantation, Freeman Hospital , Newcastle upon Tyne , UK
| | - Anne Dickinson
- § Department of Haematology, Newcastle University , Newcastle upon Tyne , UK
| | - Steven A White
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; ¶Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Paul R V Johnson
- ‡ Nuffield Department of Surgical Sciences, University of Oxford , Oxford , UK
| | - Derek Manas
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; ¶Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, UK
| | - Stephanie A Amiel
- † Division of Diabetes and Nutritional Sciences, King's College London , London , UK
| | - James A M Shaw
- Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
15
|
Abstract
Autologous islet transplantation (AIT) is performed to prevent surgical diabetes after total or semi-total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain. In addition, AIT is used in cases of benign pancreatic tumors and pancreatic trauma. It has been shown that AIT results in better outcomes in terms of glycemic control compared with allogeneic islet transplantation. The reasons for the favorable outcomes of AIT are thought to be: (i) patients have no autoimmune diseases; (ii) the transplanted islets do not suffer allogeneic rejection; (iii) diabetogenic antirejection drugs are not required; (iv) pancreata do not undergo a cytokine storm as a result of periods of brain death; (v) the period of cold preservation of retrieved pancreata is short; (vi) the isolated islets are immediately transplanted without culture; and (vii) pancreata with pancreatitis may contain more progenitor cells. Further research into AIT would help improve the results of allogeneic islet transplantation. Conversely, the technical difficulties associated with islet isolation appear to be the largest hurdle for AIT; therefore, remote center islet isolation may prove to be key in the promotion of this treatment.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Baylor All Saints Islet Cell Laboratory, Baylor Research Institute Fort Worth Campus, Fort Worth, Texas 76104, USA.
| |
Collapse
|
16
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
17
|
Khan A, Jindal RM, Shriver C, Guy SR, Vertrees AE, Wang X, Xu X, Szust J, Ricordi C. Remote processing of pancreas can restore normal glucose homeostasis in autologous islet transplantation after traumatic whipple pancreatectomy: technical considerations. Cell Transplant 2011; 21:1261-7. [PMID: 21944862 DOI: 10.3727/096368911x600984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An emergency autologous islet transplant after a traumatic Whipple operation and subsequent total pancreatectomy was performed for a 21-year-old patient who was wounded with multiple abdominal gunshot wounds. After Whipple pancreatectomy, the remnant pancreas (63.5 g), along with other damaged organs, was removed by the surgeons at Walter Reed Army Medical Center (WRAMC) and shipped to Diabetes Research Institute (DRI) for islet isolation. The pancreas was preserved in UW solution for 9.25 h prior to islet isolation. Upon arrival, the organ was visually inspected; the pancreatic head was missing, the rest of the pancreas was damaged and full of blood; the tail looked normal. A 16-gauge catheter was inserted into the main duct and directed towards tail of the pancreas after the dissection of main duct in the midbody of the pancreas. The pancreas was distended with collagenase solution (Roche MTF) through the catheter. During 10 min of intraductal delivery of enzyme, the gland was distended uniformly. No leakage of the solution was observed. The pancreas was transferred to a Ricordi chamber for automated mechanical and enzymatic digestion. Islets were purified using a COBE 2991 cell processor. Islet equivalents (IEQ; 221,250) of 40% purity and 90% viability were recovered during the isolation, which were shipped back to WRAMC and infused by intraportal injection into the patient. Immediate islet function was demonstrated by the rapid elevation of serum C peptide followed by insulin independence with near normal oral glucose tolerance test (OGTT) 1 and 2 months later. It is possible to restore near normal glucose tolerance with autologous islet transplantation after total pancreatectomy even with suboptimal number of islets while confirming that islets processed at a remote site are suitable for transplantation.
Collapse
Affiliation(s)
- Aisha Khan
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Establishing a cGMP pancreatic islet processing facility: the first experience in Iran. Cell Tissue Bank 2011; 13:569-75. [DOI: 10.1007/s10561-011-9273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 07/23/2011] [Indexed: 10/18/2022]
|
19
|
Quantification of the islet product: presentation of a standardized current good manufacturing practices compliant system with minimal variability. Transplantation 2011; 91:677-83. [PMID: 21248660 DOI: 10.1097/tp.0b013e31820ae48e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accurate islet quantification has proven difficult to standardize in a good manufacturing practices (GMP) approved manner. METHODS The influence of assessment variables from both manual and computer-assisted digital image analysis (DIA) methods were compared using calibrated, standardized microspheres or islets alone. Additionally, a mixture of microspheres and exocrine tissue was used to evaluate the variability of both the current, internationally recognized, manual method and a novel GMP-friendly purity- and volume-based method (PV) evaluated by DIA in a semiclosed, culture bag system. RESULTS Computer-assisted DIA recorded known microsphere size distribution and quantities accurately. By using DIA to evaluate islets, the interindividual manually evaluated percent coefficients of variation (CV%; n=14) were reduced by almost half for both islet equivalents (IEs; 31% vs. 17%, P=0.002) and purity (20% vs. 13%, P=0.033). The microsphere pool mixed with exocrine tissue did not differ from expected IE with either method. However, manual IE resulted in a total CV% of 44.3% and a range spanning 258 k IE, whereas PV resulted in CV% of 10.7% and range of 60 k IE. Purity CV% for each method were similar approximating 10.5% and differed from expected by +7% for the manual method and +3% for PV. CONCLUSION The variability of standard counting methods for islet samples and clinical quantities of microspheres mixed with exocrine tissue were reduced with DIA. They were reduced even further by use of a semiclosed bag system compared with standard manual counting, thereby facilitating the standardization of islet evaluation according to GMP standards.
Collapse
|
20
|
Kobayashi N, Amemiya H, Nagao T, Takahara S. Taking a lesson from the past in organ biology. Cell Transplant 2010; 19:645-7. [PMID: 20525432 DOI: 10.3727/096368910x508735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | |
Collapse
|