1
|
Doppenberg JB, Engelse MA, de Koning EJP. PRISM: A Novel Human Islet Isolation Technique. Transplantation 2022; 106:1271-1278. [PMID: 34342959 DOI: 10.1097/tp.0000000000003897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Successful pancreatic islet isolations are a key requirement for islet transplantation in selected patients with type 1 diabetes. However, islet isolation is a technically complex, time-consuming, and manual process. Optimization and simplification of the islet isolation procedure could increase islet yield and quality, require fewer operators, and thus reduce cost. METHODS We developed a new, closed system of tissue collection, washing, buffer change, and islet purification termed PancReatic Islet Separation Method (PRISM). In the developmental phase, pump and centrifuge speed was tested using microspheres with a similar size, shape, and density as digested pancreatic tissue. After optimization, PRISM was used to isolate islets from 10 human pancreases. RESULTS Islet equivalents viability (fluorescein diacetate/propidium iodide), morphology, and dynamic glucose-stimulated insulin secretion were evaluated. PRISM could be performed by 1 operator in 1 flow cabinet. A similar islet yield was obtained using PRISM compared to the traditional islet isolation method (431 234 ± 292 833 versus 285 276 ± 197 392 islet equivalents, P = 0.105). PRISM islets had similar morphology and functionality. CONCLUSIONS PRISM is a novel islet isolation technique that can significantly improve islet isolation efficiency using fewer operators.
Collapse
Affiliation(s)
- Jason B Doppenberg
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Transplantation Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Chung KM, Singh J, Lawres L, Dorans KJ, Garcia C, Burkhardt DB, Robbins R, Bhutkar A, Cardone R, Zhao X, Babic A, Vayrynen SA, Dias Costa A, Nowak JA, Chang DT, Dunne RF, Hezel AF, Koong AC, Wilhelm JJ, Bellin MD, Nylander V, Gloyn AL, McCarthy MI, Kibbey RG, Krishnaswamy S, Wolpin BM, Jacks T, Fuchs CS, Muzumdar MD. Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell 2020; 181:832-847.e18. [PMID: 32304665 PMCID: PMC7266008 DOI: 10.1016/j.cell.2020.03.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Molecular analyses of human and murine samples define microenvironmental consequences of obesity that foster tumorigenesis rather than new driver gene mutations, including significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant beta cell expression of the peptide hormone cholecystokinin (Cck) in response to obesity and show that islet Cck promotes oncogenic Kras-driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment and implicate endocrine-exocrine signaling beyond insulin in PDAC development.
Collapse
Affiliation(s)
| | - Jaffarguriqbal Singh
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lauren Lawres
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | | | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daniel B Burkhardt
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rebecca Robbins
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Rebecca Cardone
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaojian Zhao
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Sara A Vayrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Richard F Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Aram F Hezel
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Melena D Bellin
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN 55454, USA; Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Vibe Nylander
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anna L Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7LE, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7LE, UK
| | - Richard G Kibbey
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles S Fuchs
- Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT 06511, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Thomsen SK, Raimondo A, Hastoy B, Sengupta S, Dai XQ, Bautista A, Censin J, Payne AJ, Umapathysivam MM, Spigelman AF, Barrett A, Groves CJ, Beer NL, Manning Fox JE, McCarthy MI, Clark A, Mahajan A, Rorsman P, MacDonald PE, Gloyn AL. Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 2018; 50:1122-1131. [PMID: 30054598 PMCID: PMC6237273 DOI: 10.1038/s41588-018-0173-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human β-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in β-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.
Collapse
Affiliation(s)
- Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Vertex Pharmaceuticals Europe Ltd, Milton Park, Abingdon, UK
| | - Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- National Health and Medical Research Council, Canberra, Australia
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Shahana Sengupta
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mahesh M Umapathysivam
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
4
|
Brandhorst D, Parnaud G, Friberg A, Lavallard V, Demuylder-Mischler S, Hughes S, Saphörster J, Kurfürst M, Korsgren O, Berney T, Johnson PRV. Multicenter Assessment of Animal-free Collagenase AF-1 for Human Islet Isolation. Cell Transplant 2018; 26:1688-1693. [PMID: 29251107 PMCID: PMC5753983 DOI: 10.1177/0963689717731574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal-free (AF) SERVA Collagenase AF-1 and Neutral Protease (NP) AF GMP Grade have recently become available for human islet isolation. This report describes the initial experiences of 3 different islet transplant centers. Thirty-four human pancreases were digested using 1 vial of the 6 different lots of Collagenase AF-1 (2,000–2,583 PZ-U/vial) supplemented with 4 different lots of NP AF in a range of 50 to 160 DMC-U per pancreas. Isolation, culture, and quality assessment were performed using standard techniques as previously described. All data are presented as mean ± standard error of the mean (SEM). Variability of pancreas weight was associated with a wide range of collagenase and NP activities, ranging from 12.7 to 46.6 PZ-U/g (26.0 ± 1.5 PZ-U/g) and 0.4 to 3.0 DMC-U/g (1.5 ± 0.1 DMC-U/g), respectively. Postpurification islet yield was 296,494 ± 33,620 islet equivalents (IEQ) equivalent to 3,274 ± 450 IEQ/g with a purity of 55.9% ± 3.2%. Quality assessment performed after 2 to 4 d of culture demonstrated a viability of 88.1% ± 1.5% and a stimulation index of 3.7 ± 0.7. Eighteen of the 34 preparations were transplanted into type 1 diabetic patients equivalent to a transplantation rate of 52.9%. Six preparations, which were infused into patients as first transplant, could be analyzed and increased the fasting C-peptide level from 0.11 ± 0.08 pretransplant to 1.23 ± 0.24 and 2.27 ± 0.31 ng/mL 3 and 6 mo posttransplant (P < 0.05), respectively. Insulin requirements were simultaneously reduced at the same time from 39.2 ± 3.8 IU/d before transplantation to 10.8 ± 4.1 and 4.0 ± 2.3 IU/d, after 3 and 6 mo posttransplant (P < 0.05), respectively. This study demonstrates the efficiency of AF SERVA Collagenase AF-1 and NP AF for clinical islet isolation and transplantation. The new plant-based production process makes these products a safe new option for the islet field.
Collapse
Affiliation(s)
- Daniel Brandhorst
- 1 Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,2 Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, United Kingdom
| | - Géraldine Parnaud
- 3 Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Andrew Friberg
- 4 Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | - Vanessa Lavallard
- 3 Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Sandrine Demuylder-Mischler
- 3 Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Stephen Hughes
- 1 Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,2 Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, United Kingdom
| | | | | | - Olle Korsgren
- 4 Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | - Thierry Berney
- 3 Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Paul R V Johnson
- 1 Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,2 Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
5
|
Hawthorne WJ, Williams L, Chew YV. Clinical Islet Isolation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:89-122. [PMID: 27586424 DOI: 10.1007/978-3-319-39824-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness.
Collapse
Affiliation(s)
- Wayne J Hawthorne
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia. .,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, NSW, 2145, Australia.
| | - Lindy Williams
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| | - Yi Vee Chew
- National Pancreas and Islet Transplant Laboratories, The Westmead Institute for Medical Research, Westmead, NSW, 2145, Australia
| |
Collapse
|
6
|
Comparison of Neutral Proteases and Collagenase Class I as Essential Enzymes for Human Islet Isolation. Transplant Direct 2015; 2:e47. [PMID: 27500241 PMCID: PMC4946504 DOI: 10.1097/txd.0000000000000552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Efficient islet isolation requires synergistic interaction between collagenase class I (CI) and class II (CII). The CI degradation alters the ratio between CI and CII and is responsible for batch-to-batch variations. This study compares the role of neutral protease (NP) plus clostripain (CP) with CI as essential enzymes for human islet isolation. METHODS Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment. RESULTS Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 ± 631 vs 3087 ± 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 ± 580 to 1312 ± 244 islet equivalent/g (P < 0.01), doubled the amount of undigested tissue from 11.8 ± 1.6 to 24.4 ± 1.2% (P < 0.01) and triplicated the percentage of trapped islets from 7.7 ± 2.8 to 22.5 ± 3.6% (P < 0.05). Islet yield did not vary between supplemented CI-115 and CI-100, but was increased using CI-115 when NP/CP was omitted (P < 0.05). A trend toward higher viability and increased secretory insulin response was noted in both CI-100 and CI-115 when NP/CP was not added. CONCLUSIONS This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.
Collapse
|
7
|
Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genet 2015; 11:e1005694. [PMID: 26624892 PMCID: PMC4666611 DOI: 10.1371/journal.pgen.1005694] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.
Collapse
|
8
|
Brandhorst D, Brandhorst H, Mullooly N, Acreman S, Johnson PRV. High Seeding Density Induces Local Hypoxia and Triggers a Proinflammatory Response in Isolated Human Islets. Cell Transplant 2015; 25:1539-46. [PMID: 26628048 DOI: 10.3727/096368915x689929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is the main threat to morphological and functional integrity of isolated pancreatic islets. Lack of oxygen seems to be of particular importance for functionality of encapsulated islets. The present study was initiated as an experimental model for the environment experienced by human islets in a confined space present during culture, shipment, and in an implanted macrodevice. Quadruplicate aliquots of isolated human islets (n = 12) were cultured for 24 h at 37°C under normoxic conditions using 24-well plates equipped with 8-µm pore size filter inserts and filled with islet aliquots adjusted to obtain a seeding density of 75, 150, 300, or 600 IEQ/cm(2). After culture viability, glucose-stimulated insulin release, DNA content as well as Bax and Bcl-2 gene expression were measured. Culture supernatants were collected to determine production of VEGF and MCP-1. Viability correlated inversely with IEQ seeding density (r = -0.71, p < 0.001), while the correlation of VEGF and MCP-1 secretion with seeding density was positive (r = 0.78, p < 0.001; r = 0.54, p < 0.001). Decreased viability corresponded with a significant increase in the Bax/Bcl-2 mRNA ratio at 300 and 600 IEQ/cm(2) and with a sigificantly reduced glucose-stimulated insulin secretion and insulin content compared to 75 or 150 IEQ/cm(2) (p < 0.01). The present study demonstrates that the seeding density is inversely correlated with islet viability and in vitro function. This is associated with a significant increase in VEGF and MCP-1 release suggesting a hypoxic and proinflammatory islet microenvironment.
Collapse
Affiliation(s)
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | | | | | | |
Collapse
|