1
|
Ben Itzhak N, Stijnen L, Kostkova K, Laenen A, Jansen B, Ortibus E. The effectiveness of an individualised and adaptive game-based rehabilitation, iVision, on visual perception in cerebral visual impairment: A triple-blind randomised controlled trial. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 156:104899. [PMID: 39719804 DOI: 10.1016/j.ridd.2024.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Cerebral visual impairment (CVI) can negatively affect a child's functioning, emphasising the need for interventions to improve visual perception (VP), potentially translating into improved health-related quality of life (HRQOL). AIMS Assessing the effectiveness of an adaptive individualised game-based rehabilitation, iVision, on VP, visual function, functional vision, and HRQOL. METHODS AND PROCEDURES Seventy-three children with CVI (3-12 performance age) were randomised into the adaptive individualised or the non-adaptive non-individualised group (3 sessions/week; 12 weeks). Primary outcome was change score (post-intervention - pre-intervention) of the lowest VP dimension. Key secondary outcomes included change score (post-intervention - pre-intervention) of visual function (reaction time to fixation in a preferential looking eye-tracking paradigm), functional vision (success rate in the adapted virtual toy box paradigm; total Flemish CVI questionnaire score), HRQOL (total scale score of the paediatric quality of life inventory 4.0 child self-report), and the lowest VP dimension change score (short-term follow-up - pre-intervention). OUTCOMES AND RESULTS Both groups significantly improved on the primary outcome, maintaining at short-term. Between-group differences were not significant. No significant effect was found for other key secondary outcomes. Exploratory analyses revealed VP dimension improvements and clinically meaningful HRQOL improvements. CONCLUSIONS AND IMPLICATIONS Although children with CVI improved their VP and to some extent HRQOL, no differences were found between the groups.
Collapse
Affiliation(s)
- N Ben Itzhak
- Department of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium; KU Leuven Child and Youth Institute (L-C&Y), Leuven, Belgium
| | - L Stijnen
- Department of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium
| | - K Kostkova
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium; imec, Leuven, Belgium
| | - A Laenen
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), University of Leuven (KU Leuven), Leuven, Belgium
| | - B Jansen
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium; imec, Leuven, Belgium
| | - E Ortibus
- Department of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium; KU Leuven Child and Youth Institute (L-C&Y), Leuven, Belgium.
| |
Collapse
|
2
|
Yan A, Torpey A, Morrisroe E, Andraous W, Costa A, Bergese S. Clinical Management in Traumatic Brain Injury. Biomedicines 2024; 12:781. [PMID: 38672137 PMCID: PMC11048642 DOI: 10.3390/biomedicines12040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury is one of the leading causes of morbidity and mortality worldwide and is one of the major public healthcare burdens in the US, with millions of patients suffering from the traumatic brain injury itself (approximately 1.6 million/year) or its repercussions (2-6 million patients with disabilities). The severity of traumatic brain injury can range from mild transient neurological dysfunction or impairment to severe profound disability that leaves patients completely non-functional. Indications for treatment differ based on the injury's severity, but one of the goals of early treatment is to prevent secondary brain injury. Hemodynamic stability, monitoring and treatment of intracranial pressure, maintenance of cerebral perfusion pressure, support of adequate oxygenation and ventilation, administration of hyperosmolar agents and/or sedatives, nutritional support, and seizure prophylaxis are the mainstays of medical treatment for severe traumatic brain injury. Surgical management options include decompressive craniectomy or cerebrospinal fluid drainage via the insertion of an external ventricular drain. Several emerging treatment modalities are being investigated, such as anti-excitotoxic agents, anti-ischemic and cerebral dysregulation agents, S100B protein, erythropoietin, endogenous neuroprotectors, anti-inflammatory agents, and stem cell and neuronal restoration agents, among others.
Collapse
Affiliation(s)
- Amy Yan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Andrew Torpey
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Erin Morrisroe
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Wesam Andraous
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.Y.); (A.T.); (W.A.); (A.C.)
| | - Sergio Bergese
- Department of Anesthesiology and Neurological Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Deng T, Ding R, Wang Y, Chen Y, Sun H, Zheng M. Mapping knowledge of the stem cell in traumatic brain injury: a bibliometric and visualized analysis. Front Neurol 2024; 15:1301277. [PMID: 38523616 PMCID: PMC10957745 DOI: 10.3389/fneur.2024.1301277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a brain function injury caused by external mechanical injury. Primary and secondary injuries cause neurological deficits that mature brain tissue cannot repair itself. Stem cells can self-renewal and differentiate, the research of stem cells in the pathogenesis and treatment of TBI has made significant progress in recent years. However, numerous articles must be summarized to analyze hot spots and predict trends. This study aims to provide a panorama of knowledge and research hotspots through bibliometrics. Method We searched in the Web of Science Core Collection (WoSCC) database to identify articles pertaining to TBI and stem cells published between 2000 and 2022. Visualization knowledge maps, including co-authorship, co-citation, and co-occurrence analysis were generated by VOSviewer, CiteSpace, and the R package "bibliometrix." Results We retrieved a total of 459 articles from 45 countries. The United States and China contributed the majority of publications. The number of publications related to TBI and stem cells is increasing yearly. Tianjin Medical University was the most prolific institution, and Professor Charles S. Cox, Jr. from the University of Texas Health Science Center at Houston was the most influential author. The Journal of Neurotrauma has published the most research articles on TBI and stem cells. Based on the burst references, "immunomodulation," "TBI," and "cellular therapy" have been regarded as research hotspots in the field. The keywords co-occurrence analysis revealed that "exosomes," "neuroinflammation," and "microglia" were essential research directions in the future. Conclusion Research on TBI and stem cells has shown a rapid growth trend in recent years. Existing studies mainly focus on the activation mechanism of endogenous neural stem cells and how to make exogenous stem cell therapy more effective. The combination with bioengineering technology is the trend in this field. Topics related to exosomes and immune regulation may be the future focus of TBI and stem cell research.
Collapse
Affiliation(s)
- Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yueyang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hongtao Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Weden K, DeCarlo DK, Barstow E. A Scoping Review of Intervention for Pediatric Cerebral Visual Impairment: Calling All Pediatric Occupational Therapists. Occup Ther Health Care 2023; 37:326-356. [PMID: 37139689 PMCID: PMC10950195 DOI: 10.1080/07380577.2023.2172761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/22/2023] [Indexed: 05/05/2023]
Abstract
Cerebral visual impairment is the leading cause of low vision in children, and functional gains can be achieved with intervention. To date there exists no evidence-based intervention protocol to guide rehabilitation therapists. This scoping review was conducted to synthesize the evidence currently available and explore current interventions in order to guide future research. This review identified five types of interventions for cerebral visual impairment; habilitation, visual stimulation, video game, color tent, and medical and also evidenced the need for standardized, objective measures of function for this population.
Collapse
Affiliation(s)
- Kathleen Weden
- Department of Occupational Therapy, University of Alabama at Birmingham, Birmingham, USA
| | - Dawn K. DeCarlo
- Department of Ophthalmology & Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Elizabeth Barstow
- Department of Occupational Therapy, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
5
|
Delay A, Rice M, Bush E, Harpster K. Interventions for children with cerebral visual impairment: A scoping review. Dev Med Child Neurol 2023; 65:469-478. [PMID: 36217216 DOI: 10.1111/dmcn.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
AIM To examine the nature and scope of the literature on interventions implemented for children with cerebral visual impairment (CVI). METHOD Using a scoping review methodology, a systematic search of the literature was conducted using four databases including PubMed, Web of Science, Scopus, and Embase. Titles and abstracts were screened and data were extracted and synthesized from full-text, eligible studies. Twenty-three articles were identified and evaluated using quality criteria. RESULTS Twenty-three of the 895 studies were included with children aged between 1 month and 17 years 6 months. Interventions were grouped into six categories including visual stimulation, task/environmental adaptations, vision training, acupuncture, stem cell transplantation, and transcranial electric stimulation. Outcome measures examined changes in visual function, functional vision, and visual processing. INTERPRETATION Intervention research for children with CVI is in its infancy. Interventions for children with CVI may be beneficial; however, comparing results is difficult due to inconsistency in outcome measures. Most of the intervention studies had lower-level evidence and included small sample sizes. High-quality studies with larger samples and comparison groups are needed to fully understand which evidence-based interventions are most effective for children with CVI. With the incidence of CVI increasing, further development and validation of intervention methods is imperative. WHAT THIS PAPER ADDS Intervention studies for children with cerebral visual impairment (CVI) are sparse. Most intervention studies for children with CVI have low-level evidence with low critical appraisal scores. High-quality, controlled intervention studies are needed to guide families and clinicians toward evidence-based practice.
Collapse
Affiliation(s)
- Ariana Delay
- Department of Occupational Therapy, Huntington University, Fort Wayne, IN, USA
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Melissa Rice
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elsie Bush
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karen Harpster
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Rehabilitation, Exercise, and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
6
|
Li X, Zhu Y, Wang Y, Xia X, Zheng JC. Neural stem/progenitor cell-derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm (Beijing) 2023; 4:e214. [PMID: 36776763 PMCID: PMC9905070 DOI: 10.1002/mco2.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.
Collapse
Affiliation(s)
- Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative TherapyYangzhi Rehabilitation Hospital, Tongji UniversityShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| |
Collapse
|
7
|
Guideline of clinical neurorestorative treatment for brain trauma (2022 China version). JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Pease A, Goodenough T, Borwick C, Watanabe R, Morris C, Williams C. Development of a core outcome set for evaluative research into paediatric cerebral visual impairment (CVI), in the UK and Eire. BMJ Open 2021; 11:e051014. [PMID: 34588256 PMCID: PMC8483040 DOI: 10.1136/bmjopen-2021-051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Cerebral visual impairment (CVI) comprises a heterogeneous group of brain-related vision problems. A core outcome set (COS) represents the most important condition-specific outcomes according to patients, carers, professionals and researchers. We aimed to produce a COS for studies evaluating interventions for children with CVI, to increase the relevance of research for families and professionals and thereby to improve outcomes for affected children. DESIGN We used methods recommended by the Core Outcome Measures in Effectiveness Trials Initiative. These included a proportionate literature review of outcomes used in previous studies; qualitative interviews with children and families; a two-round Delphi survey involving parents, children and professionals and a consensus meeting to ratify the most important outcomes. SETTING Telephone interviews and online Delphi surveys of participants who all lived in UK or Eire. PARTICIPANTS Eighteen parents and six young people were interviewed. Delphi participants (n=80 did both rounds) included professionals working with children who have CVI (teachers, orthoptists, ophthalmologists, optometrists, qualified teachers for visually impaired, family members (parents and siblings) and affected children. RESULTS The literature review included 13 studies yielding 37 outcomes. Qualitative interviews provided 22 outcomes. After combining and refining similar items, the first round contained 23 outcomes and the second 46. At the consensus meeting, 5 attendees recommended 27 outcomes for inclusion in the CVI COS, of which 15 were ratified as most important, including 4 related to vision; 1 to family well-being; 1 to adults around the child being informed about CVI and the rest to the child's abilities to engage with people and surroundings. CONCLUSIONS Good engagement from participants led to the development of a COS. Future research will be useful to identify the best ways to measure COS items and potentially to update this COS as more interventions for CVI are developed. TRIAL REGISTRATION NUMBER ISRCTN13762177.
Collapse
Affiliation(s)
- Anna Pease
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Cath Borwick
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Rose Watanabe
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Cathy Williams
- Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Fernandez-Muñoz B, Garcia-Delgado AB, Arribas-Arribas B, Sanchez-Pernaute R. Human Neural Stem Cells for Cell-Based Medicinal Products. Cells 2021; 10:2377. [PMID: 34572024 PMCID: PMC8469920 DOI: 10.3390/cells10092377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.
Collapse
Affiliation(s)
- Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Ana Belen Garcia-Delgado
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Blanca Arribas-Arribas
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| |
Collapse
|
10
|
Zhou H, Lu S, Li K, Yang Y, Hu C, Wang Z, Wang Q, He Y, Wang X, Ye D, Guan Q, Zang J, Liu C, Qu S, Luan Z. Study on the Safety of Human Oligodendrocyte Precursor Cell Transplantation in Young Animals and Its Efficacy on Myelination. Stem Cells Dev 2021; 30:587-600. [PMID: 33823616 PMCID: PMC8165470 DOI: 10.1089/scd.2021.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) can differentiate into myelinating oligodendrocytes during embryonic development, thereby representing an important potential source for myelin repair or regeneration. To the best of our knowledge, there are very few OPCs from human sources (human-derived OPCs [hOPCs]). In this study, we aimed to evaluate the safety and remyelination capacity of hOPCs developed in our laboratory, transplanted into the lateral ventricles of young animals. Several acute and chronic toxicity experiments were conducted in which different doses of hOPCs were transplanted into the lateral ventricles of Sprague–Dawley rats of different ages. The toxicity, biodistribution, and tumor formation ability of the injected hOPCs were examined by evaluating the rats' vital signs, developmental indicators, neural reflexes, as well as by hematology, immunology, and pathology. In addition, the hOPCs were transplanted into the corpus callosum of the shiverer mouse to verify cell myelination efficacy. Overall, our results show that transplanted hOPCs into young mice are nontoxic to their organ function or immune system. The transplanted cells engrafted in the brain and did not appear in other organs, nor did they cause tissue proliferation or tumor formation. In terms of efficacy, the transplanted hOPCs were able to form myelin in the corpus callosum, alleviate the trembling phenotype of shiverer mice, and promote normal development. The transplantation of hOPCs is safe; they can effectively form myelin in the brain, thereby providing a theoretical basis for the future clinical transplantation of hOPCs.
Collapse
Affiliation(s)
- Haipeng Zhou
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Siliang Lu
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ke Li
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Caiyan Hu
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ying He
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohua Wang
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dou Ye
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Guan
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jing Zang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Chang Liu
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Suqing Qu
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zuo Luan
- The Second Clinical College, Southern Medical University, Guangzhou, China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Advances in the evaluation and management of cortical/cerebral visual impairment in children. Surv Ophthalmol 2020; 65:708-724. [DOI: 10.1016/j.survophthal.2020.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
|
12
|
Human Neural Stem Cells with GDNF Site-Specific Integration at AAVS1 by Using AAV Vectors Retained Their Stemness. Neurochem Res 2018; 43:930-937. [PMID: 29435804 DOI: 10.1007/s11064-018-2498-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
Abstract
The neural stem cells (NSCs) have the ability to self-renew, and to migrate to pathologically altered regions of the central nervous system. Glial cell derived neurotrophic factor (GDNF) could protect dopamine neurons and rescue motor neurons in vivo, which has been proposed as a promising candidate for the treatments of degenerative neurological diseases. In order to combine the advantages of neurotrophic factors and stem cells in clinical therapy, we established the modified hNSCs that has site-specific integration of GDNF gene by using recombinant adeno-associated virus (rAAV) vectors. The hNSCs were co-infected by rAAV2-EGFP-GDNF and rAAV2-SVAV2 which provide integrase to specifically integrate GDNF gene into AAVS1 site. The GDNF-hNSCs maintained their original stem cell characteristics and the ability to differentiate into neurons in vitro. In the animal model, the GDNF-hNSCs were specifically transplanted into CA1 area of hippocampi and could migrate to the dentate gyrus region and differentiate into neuronal cells while maintaining GDNF expression. hNSCs with GDNF gene site-specific integration at AAVS1 by using AAV vectors retained their stemness and effectively expressed GDNF, which indicates the potential of employing transplanted hNPCs for treatment of brain injuries and degenerative neurological diseases.
Collapse
|
13
|
Song CG, Zhang YZ, Wu HN, Cao XL, Guo CJ, Li YQ, Zheng MH, Han H. Stem cells: a promising candidate to treat neurological disorders. Neural Regen Res 2018; 13:1294-1304. [PMID: 30028342 PMCID: PMC6065243 DOI: 10.4103/1673-5374.235085] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system. Therefore, based on the regenerative capacity of stem cells, transplantation therapies of various stem cells have been tested in basic research and preclinical trials, and some have shown great prospects. This manuscript overviews the cellular and molecular characteristics of embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal stem/progenitor cells, mesenchymal stem/stromal cells, and their derivatives in vivo and in vitro as sources for regenerative therapy. These cells have all been considered as candidates to treat several major neurological disorders and diseases, owing to their self-renewal capacity, multi-directional differentiation, neurotrophic properties, and immune modulation effects. We also review representative basic research and recent clinical trials using stem cells for neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and age-related macular degeneration, as well as traumatic brain injury and glioblastoma. In spite of a few unsuccessful cases, risks of tumorigenicity, and ethical concerns, most results of animal experiments and clinical trials demonstrate efficacious therapeutic effects of stem cells in the treatment of nervous system disease. In summary, these emerging findings in regenerative medicine are likely to contribute to breakthroughs in the treatment of neurological disorders. Thus, stem cells are a promising candidate for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi-Zhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hai-Ning Wu
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiu-Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chen-Jun Guo
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yong-Qiang Li
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Hua Han
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
14
|
Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant 2017; 26:1118-1130. [PMID: 28933211 PMCID: PMC5657730 DOI: 10.1177/0963689717714102] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) presents in various forms ranging from mild alterations of consciousness to an unrelenting comatose state and death. In the most severe form of TBI, the entirety of the brain is affected by a diffuse type of injury and swelling. Treatment modalities vary extensively based on the severity of the injury and range from daily cognitive therapy sessions to radical surgery such as bilateral decompressive craniectomies. Guidelines have been set forth regarding the optimal management of TBI, but they must be taken in context of the situation and cannot be used in every individual circumstance. In this review article, we have summarized the current status of treatment for TBI in both clinical practice and basic research. We have put forth a brief overview of the various subtypes of traumatic injuries, optimal medical management, and both the noninvasive and invasive monitoring modalities, in addition to the surgical interventions necessary in particular instances. We have overviewed the main achievements in searching for therapeutic strategies of TBI in basic science. We have also discussed the future direction for developing TBI treatment from an experimental perspective.
Collapse
Affiliation(s)
- Michael Galgano
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gentian Toshkezi
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| | - Thomas Russell
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence Chin
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| |
Collapse
|
15
|
Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Duckworth JL, Head BP. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics. Cell Mol Neurobiol 2017; 37:571-585. [PMID: 27383839 DOI: 10.1007/s10571-016-0400-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.
Collapse
Affiliation(s)
- Matthew L Pearn
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Ingrid R Niesman
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92037, USA
| | - Junji Egawa
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Atsushi Sawada
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92037, USA
| | - Sameer B Shah
- UCSD Departments of Orthopaedic Surgery and Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Josh L Duckworth
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brian P Head
- Department of Anesthesiology, Veterans Affairs San Diego Healthcare System, VA Medical Center 125, University of California, 3350 La Jolla Village Drive, San Diego, CA, 92161-5085, USA.
- Department of Anesthesiology, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
16
|
Deramore Denver B, Froude E, Rosenbaum P, Wilkes-Gillan S, Imms C. Measurement of visual ability in children with cerebral palsy: a systematic review. Dev Med Child Neurol 2016; 58:1016-29. [PMID: 27098366 DOI: 10.1111/dmcn.13139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
AIM To identify and evaluate measures of visual ability used with children with cerebral palsy (CP). METHOD Eight databases were searched for measures of visual ability. Key selection criteria for measures were: use with children with CP; focus of visual ability measurement at the Activities and Participation domain of the International Classification of Functioning, Disability and Health (ICF). The Consensus-based Standards for the Selection of Measurement Instruments (COSMIN) Checklist was used to assess psychometric properties. RESULTS From 6763 papers retrieved, 25 were relevant and 19 measures of visual ability were identified. Only 10 measures were supported with evidence of validity or reliability. No discriminative measure analogous to existing CP functional classification systems was found. No outcome measure valid for evaluation of visual abilities of children with CP was found. INTERPRETATION Vision impairment is recognized as relevant to the functioning of children with CP; however, measurement of vision is most often focused at 'Body Function' levels, for example visual acuity. Measuring visual abilities in the Activities and Participation domain is important in considering how a child with CP functions in vision-related activities. The lack of psychometrically strong measures for visual ability is a gap in current clinical practices and research.
Collapse
Affiliation(s)
- Belinda Deramore Denver
- Faculty of Health Sciences, School of Allied Health, Australian Catholic University, Fitzroy, Vic., Australia.,Victorian Paediatric Rehabilitation Service, Monash Children's Hospital, Clayton, Vic., Australia
| | - Elspeth Froude
- Faculty of Health Sciences, School of Allied Health, Australian Catholic University, North Sydney, NSW, Australia
| | - Peter Rosenbaum
- Faculty of Health Sciences, School of Allied Health, Australian Catholic University, Fitzroy, Vic., Australia.,Department of Pediatrics and CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, ON, Canada
| | - Sarah Wilkes-Gillan
- Faculty of Health Sciences, School of Allied Health, Australian Catholic University, North Sydney, NSW, Australia
| | - Christine Imms
- Faculty of Health Sciences, School of Allied Health, Australian Catholic University, Fitzroy, Vic., Australia
| |
Collapse
|
17
|
Siddiqi F, Wolfe JH. Stem Cell Therapy for the Central Nervous System in Lysosomal Storage Diseases. Hum Gene Ther 2016; 27:749-757. [PMID: 27420186 DOI: 10.1089/hum.2016.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological diseases with genetic etiologies result in the loss or dysfunction of neural cells throughout the CNS. At present, few treatment options exist for the majority of neurogenetic diseases. Stem cell transplantation (SCT) into the CNS has the potential to be an effective treatment modality because progenitor cells may replace lost cells in the diseased brain, provide multiple trophic factors, or deliver missing proteins. This review focuses on the use of SCT in lysosomal storage diseases (LSDs), a large group of monogenic disorders with prominent CNS disease. In most patients the CNS disease results in intellectual disability that is refractory to current standard-of-care treatment. A large amount of preclinical work on brain-directed SCT has been performed in rodent LSD models. Cell types that have been used for direct delivery into the CNS include neural stem cells, embryonic and induced pluripotent stem cells, and mesenchymal stem cells. Hematopoietic stem cells have been an effective therapy for the CNS in a few LSDs and may be augmented by overexpression of the missing gene. Current barriers and potential strategies to improve SCT for translation into effective patient therapies are discussed.
Collapse
Affiliation(s)
- Faez Siddiqi
- 1 Research Institute of Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John H Wolfe
- 1 Research Institute of Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,2 Department of Pediatrics, Perelman School of Medicine and W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|