1
|
Fan HC, Chang YM, Lee JY, Wang DS, Chen CM, Hu SW, Chiang KL, Kuo FC. The Prevalence and Risk Analysis of Cerebral Palsy and Other Neuro-Psychological Comorbidities in Children with Low Birth Weight in Taiwan: A Nationwide Population-Based Cohort Study. J Clin Med 2024; 13:3480. [PMID: 38930008 PMCID: PMC11204667 DOI: 10.3390/jcm13123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: This study evaluated early childhood comorbidities of cerebral palsy (CP) in low birth weight (LBW) children and assessed the impact of maternal bio-psychosocial factors on CP risk in preterm infants of varying birth weights (BWs). Methods: Data from 15,181 preterm infants (2009-2013) and 151,810 controls were analyzed using Taiwan's National Health Insurance Research Database. CP prevalence and LBW-associated comorbidities were examined, and odds ratios (ORs) were calculated. Results: This study confirmed increasing prematurity and LBW rates in Taiwan, with LBW infants showing higher CP prevalence. Significant maternal risk factors included age extremes (<20 and >40 years). LBW infants exhibited higher risks for respiratory, circulatory, nervous system, and psycho-developmental comorbidities compared with controls, with the lowest BW having even higher ORs. Maternal factors such as family income, the number of hospital admissions, and length of hospital stay were remarkably correlated with BW and subsequent complications. Each additional gestational week crucially reduced the risk of complications in premature infants. Conclusions: LBW infants are at a higher risk for CP and various comorbidities, with maternal bio-psychosocial factors playing a critical role. Addressing these factors in prenatal care and interventions is essential to improve outcomes for premature infants.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (S.-W.H.)
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Pediatrics, School of Medicine, National Defense Medical Center, Taipei 100, Taiwan;
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Yu-Mei Chang
- Department of Statistics, Tunghai University, Taichung 407, Taiwan;
| | - Jen-Yu Lee
- Department of Statistics, Feng Chia University, Taichung 407, Taiwan;
| | - Der-Shiun Wang
- Department of Pediatrics, School of Medicine, National Defense Medical Center, Taipei 100, Taiwan;
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan;
- The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Wei Hu
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (S.-W.H.)
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Fang-Chuan Kuo
- Department of Physical Therapy, Hungkuang University, Taichung 433, Taiwan
| |
Collapse
|
2
|
Chen B, Wang L, Xie D, Wang Y. Bioinformatics-based discovery of biomarkers and immunoinflammatory targets in children with cerebral palsy: An observational study. Medicine (Baltimore) 2024; 103:e37828. [PMID: 38640267 PMCID: PMC11029991 DOI: 10.1097/md.0000000000037828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Cerebral palsy (CP) is the most common disabling disease in children, and motor dysfunction is the core symptom of CP. Although relevant risk factors have been found to be closely associated with CP: congenital malformations, multiple gestation, prematurity, intrauterine inflammation and infection, birth asphyxia, thrombophilia, and perinatal stroke. Its important pathophysiological mechanism is amniotic fluid infection and intraamniotic inflammation leading to fetal developing brain damage, which may last for many years. However, the molecular mechanism of CP is still not well explained. This study aimed to use bioinformatics to identify key biomarker-related signaling pathways in CP. The expression profile of children with CP was selected from the Gene Expression Comprehensive Database, and the CP disease gene data set was obtained from GeneCards. A protein-protein interaction network was established and functional enrichment analysis was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. A total of 144 differential key intersection genes and 10 hub genes were identified through molecular biology. Gene Ontology functional enrichment analysis results show that differentially expressed genes are mainly concentrated in biological processes, such as immune response and neurogenesis. The cellular components involved mainly include axons, postsynaptic membranes, etc, and their molecular functions mainly involve proteoglycan binding, collagen binding, etc. Kyoto Encyclopedia of Genes and Genomes analysis shows that the intersection genes are mainly in signaling pathways related to the immune system, inflammatory response, and nervous system, such as Th17 cell differentiation, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, NF-κB signaling pathway, axon guidance, PI3K-Akt signaling pathway, HIF-1 signaling pathway, gap junction, etc. Jak-STAT signaling pathway, mTOR signaling pathway, and related hub genes regulate immune cells and inflammatory factors and play an important role in the development and progression of CP.
Collapse
Affiliation(s)
- Bo Chen
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- Department of Rehabilitation Science, Hong Kong Polytechnic University, Hong Kong, China
| | - Ling Wang
- Department of Operating Room, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yuanhui Wang
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Boyalı O, Kabatas S, Civelek E, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy. World J Clin Cases 2024; 12:1585-1596. [PMID: 38576742 PMCID: PMC10989435 DOI: 10.12998/wjcc.v12.i9.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) describes a group of disorders affecting movement, balance, and posture. Disturbances in motor functions constitute the main body of CP symptoms. These symptoms surface in early childhood and patients are affected for the rest of their lives. Currently, treatment involves various pharmacotherapies for different types of CP, including antiepileptics for epilepsy and Botox A for focal spasticity. However, none of these methods can provide full symptom relief. This has prompted researchers to look for new treatment modalities, one of which is mesenchymal stem cell therapy (MSCT). Despite being a promising tool and offering a wide array of possibilities, mesenchymal stem cells (MSCs) still need to be investigated for their efficacy and safety. AIM To analyze the efficacy and safety of MSCT in CP patients. METHODS Our sample consists of four CP patients who cannot stand or walk without external support. All of these cases received allogeneic MSCT six times as 1 × 106/kg intrathecally, intravenously, and intramuscularly using umbilical cord-derived MSCs (UC-MSC). We monitored and assessed the patients pre- and post-treatment using the Wee Functional Independence Measure (WeeFIM), Gross Motor Function Classification System (GMFCS), and Manual Ability Classification Scale (MACS) instruments. We utilized the Modified Ashworth Scale (MAS) to measure spasticity. RESULTS We found significant improvements in MAS scores after the intervention on both sides. Two months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; four months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; 12 months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046. However, there was no significant difference in motor functions based on WeeFIM results (P > 0.05). GMFCS and MACS scores differed significantly at 12 months after the intervention (P = 0.046, P = 0.046). Finally, there was no significant change in cognitive functions (P > 0.05). CONCLUSION In light of our findings, we believe that UC-MSC therapy has a positive effect on spasticity, and it partially improves motor functions.
Collapse
Affiliation(s)
- Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34360, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
4
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
5
|
Paprocka J, Kaminiów K, Kozak S, Sztuba K, Emich-Widera E. Stem Cell Therapies for Cerebral Palsy and Autism Spectrum Disorder-A Systematic Review. Brain Sci 2021; 11:1606. [PMID: 34942908 PMCID: PMC8699362 DOI: 10.3390/brainsci11121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Autism spectrum disorder (ASD) and cerebral palsy (CP) are some of the most common neurodevelopmental diseases. They have multifactorial origin, which means that each case may manifest differently from the others. In patients with ASD, symptoms associated with deficits in social communication and characteristic, repetitive types of behaviors or interests are predominant, while in patients with CP, motor disability is diagnosed with accompanying cognitive impairment of various degrees. In order to minimize their adverse effects, it is necessary to promptly diagnose and incorporate appropriate management, which can significantly improve patient quality of life. One of the therapeutic possibilities is stem cell therapy, already known from other branches of medicine, with high hopes for safe and effective treatment of these diseases. Undoubtedly, in the future we will have to face the challenges that will arise due to the still existing gaps in knowledge and the heterogeneity of this group of patients. The purpose of this systematic review is to summarize briefly the latest achievements and advances in stem cell therapy for ASD and CP.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Karolina Sztuba
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
6
|
Abstract
Cerebral palsy is the most common disease in children associated with lifelong disability in many countries. Clinical research has demonstrated that traditional physiotherapy and rehabilitation therapies cannot alone cure cerebral palsy. Stem cell transplantation is an emerging therapy that has been applied in clinical trials for a variety of neurological diseases because of the regenerative and unlimited proliferative capacity of stem cells. In this review, we summarize the design schemes and results of these clinical trials. Our findings reveal great differences in population characteristics, stem cell types and doses, administration methods, and evaluation methods among the included clinical trials. Furthermore, we also assess the safety and efficacy of these clinical trials. We anticipate that our findings will advance the rational development of clinical trials of stem cell therapy for cerebral palsy and contribute to the clinical application of stem cells.
Collapse
Affiliation(s)
- Zhong-Yue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Gu J, Huang L, Zhang C, Wang Y, Zhang R, Tu Z, Wang H, Zhou X, Xiao Z, Liu Z, Hu X, Ke Z, Wang D, Liu L. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther 2020; 11:43. [PMID: 32014055 PMCID: PMC6998370 DOI: 10.1186/s13287-019-1545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cerebral palsy (CP) is a syndrome of childhood movement and posture disorders. Clinical evidence is still limited and sometimes inconclusive about the benefits of human umbilical cord mesenchymal stem cells (hUC-MSCs) for CP. We conducted a randomized trial to evaluate the safety and efficacy of hUC-MSC transplantation concomitant with rehabilitation in patients with CP. METHODS Eligible patients were allocated into the hUC-MSC group and control group. In addition to rehabilitation, the patients in the hUC-MSC group received four transfusions of hUC-MSCs intravenously, while the control group received a placebo. Adverse events (AEs) were collected for safety evaluation in the 12-month follow-up phase. Primary endpoints were assessed as activities of daily living (ADL), comprehensive function assessment (CFA), and gross motor function measure (GMFM) scales. In addition, cerebral metabolic activity was detected by 18F-FDG-PET/CT to explore the possible mechanism of the therapeutic effects. Primary endpoint data were analyzed by ANOVA using SPSS version 20.0. RESULTS Forty patients were enrolled, and 1 patient withdrew informed consent. Therefore, 39 patients received treatments and completed the scheduled assessments. No significant difference was shown between the 2 groups in AE incidence. Additionally, significant improvements in ADL, CFA, and GMFM were observed in the hUC-MSC group compared with the control group. In addition, the standard uptake value of 18F-FDG was markedly increased in 3 out of 5 patients from the hUC-MSC group at 12 months after transplantation. CONCLUSIONS Our clinical data showed that hUC-MSC transplantation was safe and effective at improving the gross motor and comprehensive function of children with CP when combined with rehabilitation. Recovery of cerebral metabolic activity might play an essential role in the improvements in brain function in patients with CP. The therapeutic window, transfusion route, and dosage in our study were considerable for reference in clinical application. TRIAL REGISTRATION Chictr.org.cn, ChiCTR1800016554. Registered 08 June 2018-retrospectively registered. The public title was "Randomized trial of umbilical cord-derived mesenchymal stem cells for cerebral palsy."
Collapse
Affiliation(s)
- Jiaowei Gu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Li Huang
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Che Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Yong Wang
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Ruibo Zhang
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Ziliang Tu
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Hengdong Wang
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Xihui Zhou
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zegan Liu
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Xiang Hu
- Shenzhen Beike Biotechnology Co., Ltd, No. 18 Keyuan Road, Hi-Tech Industrial Park South Area, Shenzhen, 518057, People's Republic of China
| | - Zunchen Ke
- Shiyan City Disabled Persons' Federation, No. 12 Beijing Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Dabin Wang
- Affiliated Taihe Hospital of Hubei University of Medicine, No. 32 Southern Renmin Road, Shiyan, 422000, Hubei, People's Republic of China
| | - Li Liu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Chiang KL, Kuo FC, Cheng CY, Chang KP. Prevalence and demographic characteristics of comorbid epilepsy in children and adolescents with cerebral palsy: a nationwide population-based study. Childs Nerv Syst 2019; 35:149-156. [PMID: 30074083 DOI: 10.1007/s00381-018-3920-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The nationwide prevalence of cerebral palsy (CP) is unknown due to the lack of a population-based registration system for CP in Taiwan. This study was the largest nationwide, population-based, cross-sectional study to estimate the prevalence of CP, prevalence rates of comorbid epilepsy in patients with CP, and association with socioeconomic status (SES) in Taiwan. The crude prevalence rate and age- and gender-specific prevalence rates were estimated. METHODS A total of 8419 patients with CP were enrolled, and the estimated prevalence of CP was 1.76‰ in the pediatric population and 1.51‰ and 1.98‰ in girls and boys, respectively. The prevalence rate of epilepsy in patients with CP was 29.8%. RESULTS The result revealed a higher prevalence of CP and epileptic CP in members of families with lower insurance premiums than those with higher insurance premiums and those from East Taiwan compared with those from other areas of Taiwan. Moreover, a higher prevalence of CP is shown in rural area than urban area. DISCUSSION SES and geographic variables were significantly associated with the risk of epilepsy in children with CP. Patients with epileptic CP had a higher odds ratio of several neuropsychiatric diseases, including mental retardation, ophthalmologic problems, hearing impairment, and hydrocephalus.
Collapse
Affiliation(s)
- Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, No. 117, Shatian Road, Shalu District, Taichung, 433, Taiwan, Republic of China.,Program of Health Administration, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan.,Department of Nutrition, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung, 43302, Taiwan
| | - Fang-Chuan Kuo
- Department of Physical Therapy, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung, 43302, Taiwan
| | - Chen-Yang Cheng
- Program of Health Administration, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan. .,Department of Industrial Engineering and Management, National Taipei University of Technology, Section 3, Zhongxiao East Road, Taipei, 10608, Taiwan, Republic of China.
| | - Kai-Ping Chang
- Department of Pediatrics, Taipei Veterans General Hospital, No.201, Section 2, Shipai Rd., Beitou District, Taipei, 11217, Taiwan
| |
Collapse
|
9
|
Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, Rumajogee P, Chio J, Fehlings MG. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One 2018; 13:e0208105. [PMID: 30485360 PMCID: PMC6261629 DOI: 10.1371/journal.pone.0208105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs.
Collapse
Affiliation(s)
- Stephanie R. Beldick
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - James Hong
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Anisha Hundal
- Life Sciences Program, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mohammad-Masoud Zavvarian
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Jonathon Chio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Jiao Y, Li XY, Liu J. A New Approach to Cerebral Palsy Treatment: Discussion of the Effective Components of Umbilical Cord Blood and its Mechanisms of Action. Cell Transplant 2018; 28:497-509. [PMID: 30384766 PMCID: PMC7103597 DOI: 10.1177/0963689718809658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) includes a group of persistent non-progressive disorders
affecting movement, muscle tone, and/or posture. The total economic loss during
the life-span of an individual with CP places a heavy financial burden on such
patients and their families worldwide; however, a complete cure is still
lacking. Umbilical cord blood (UCB)-based interventions are emerging as a
scientifically plausible treatment and possible cure for CP. Stem cells have
been used in many experimental CP animal models and achieved good results.
Compared with other types of stem cells, those from UCB have advantages in terms
of treatment safety and efficacy, ethics, non-neoplastic proliferation,
accessibility, ease of preservation, and regulation of immune responses, based
on findings in animal models and clinical trials. Currently, the use of
UCB-based interventions for CP is limited as the components of UCB are complex
and possess different therapeutic mechanisms. These can be categorized by three
aspects: homing and neuroregeneration, trophic factor secretion, and
neuroprotective effects. Our review summarizes the features of active components
of UCB and their therapeutic mechanism of action. This review highlights current
research findings and clinical evidence regarding UCB that contribute to
treatment suggestions, inform decision-making for therapeutic interventions, and
help to direct future research.
Collapse
Affiliation(s)
- Yang Jiao
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiao-Yan Li
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jing Liu
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
11
|
The Distribution of Transplanted Umbilical Cord Mesenchymal Stem Cells in Large Blood Vessel of Experimental Design With Traumatic Brain Injury. J Craniofac Surg 2018; 28:1615-1619. [PMID: 28863113 DOI: 10.1097/scs.0000000000003563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The authors aim to track the distribution of human umbilical cord mesenchymal stem cells (MSCs) in large blood vessel of traumatic brain injury -rats through immunohistochemical method and small animal imaging system. After green fluorescent protein (GFP) gene was transfected into 293T cell, virus was packaged and MSCs were transfected. Mesenchymal stem cells containing GFP were transplanted into brain ventricle of rats when the infection rate reaches 95%. The immunohistochemical and small animal imaging system was used to detect the distribution of MSCs in large blood vessels of rats. Mesenchymal stem cells could be observed in large vessels with positive GFP expression 10 days after transplantation, while control groups (normal group and traumatic brain injury group) have negative GFP expression. The vascular endothelial growth factor in transplantation group was higher than that in control groups. The in vivo imaging showed obvious distribution of MSCs in the blood vessels of rats, while no MSCs could be seen in control groups. The intravascular migration and homing of MSCs could be seen in rats received MSCs transplantation, and new angiogenesis could be seen in MSCs-transplanted blood vessels.
Collapse
|
12
|
Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res 2018; 83:345-355. [PMID: 28922350 DOI: 10.1038/pr.2017.233] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Cell-based therapies hold significant promise for infants at risk for cerebral palsy (CP) from perinatal brain injury (PBI). PBI leading to CP results from multifaceted damage to neural cells. Complex developing neural networks are injured by neural cell damage plus unique perturbations in cell signaling. Given that cell-based therapies can simultaneously repair multiple injured neural components during critical neurodevelopmental windows, these interventions potentially offer efficacy for patients with CP. Currently, the use of cell-based interventions in infants at risk for CP is limited by critical gaps in knowledge. In this review, we will highlight key questions facing the field, including: Who are optimal candidates for treatment? What are the goals of therapeutic interventions? What are the best strategies for agent delivery, including timing, dosage, location, and type? And, how are short- and long-term efficacy reliably tracked? Challenges unique to treating PBI with cell-based therapies, and lessons learned from cell-based therapies in closely related neurological disorders in the mature central nervous system, will be reviewed. Our goal is to update pediatric specialists who may be counseling families about the current state of the field. Finally, we will evaluate how rigor can be increased in the field to ensure the safety and best interests of this vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Joseph Scafidi
- Department of Neurology, Children's National Health System, Washington, DC
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Gatica-Rojas V, Cartes-Velásquez R, Méndez-Rebolledo G, Guzman-Muñoz E, Lizama LEC. Effects of a Nintendo Wii exercise program on spasticity and static standing balance in spastic cerebral palsy. Dev Neurorehabil 2017; 20:388-391. [PMID: 27538127 DOI: 10.1080/17518423.2016.1211770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study sought to evaluate the effects of a Nintendo Wii Balance Board (NWBB) intervention on ankle spasticity and static standing balance in young people with spastic cerebral palsy (SCP). METHODS Ten children and adolescents (aged 72-204 months) with SCP participated in an exercise program with NWBB. The intervention lasted 6 weeks, 3 sessions per week, 25 minutes for each session. Ankle spasticity was assessed using the Modified Modified Ashworth Scale (MMAS), and static standing balance was quantified using posturographic measures (center-of-pressure [CoP] measures). Pre- and post-intervention measures were compared. RESULTS Significant decreases of spasticity in the ankle plantar flexor muscles (p < 0.01). There was also a significant reduction in the CoP sway area (p = 0.04), CoP mediolateral velocity (p =0.03), and CoP anterior-posterior velocity (p = 0.03). CONCLUSION A 6-session NWBB program reduces the spasticity at the ankle plantar flexors and improves the static standing balance in young people with SCP.
Collapse
Affiliation(s)
- Valeska Gatica-Rojas
- a Human Motor Control Laboratory, Department of Human Movement Sciences, Faculty of Health Sciences , Universidad de Talca , Talca , Chile
| | | | - Guillermo Méndez-Rebolledo
- a Human Motor Control Laboratory, Department of Human Movement Sciences, Faculty of Health Sciences , Universidad de Talca , Talca , Chile
| | - Eduardo Guzman-Muñoz
- c Escuela de Kinesiología, Facultad de la Salud , Universidad Santo Tomás , Talca , Chile
| | - L Eduardo Cofré Lizama
- d Department of Medicine , Royal Melbourne Hospital, The University of Melbourne , Melbourne , Australia
| |
Collapse
|
14
|
Guo T, Zhu B, Zhang Q, Yang Y, He Q, Zhang X, Tai X. Acupuncture for Children with Cerebral Palsy: A Systematic Review Protocol. JMIR Res Protoc 2017; 6:e2. [PMID: 28057608 PMCID: PMC5247621 DOI: 10.2196/resprot.5944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Background Cerebral palsy (CP), a childhood disease of high morbidity and serious harmfulness, has no effective therapies to completely relieve the associated pain. Acupuncture has been used widely in China to alleviate several CP symptoms, such as pain and motion disorders, despite the deficiency of high-quality evidence related to this practice. Objective The aim of this systematic review protocol is to assess the efficacy and safety of acupuncture for the treatment of children with CP. Methods The following electronic databases will be searched: Cochrane Library, Web of Science, EBASE, Springer, World Health Organization International Clinical Trials Registry Platform, China National Knowledge Infrastructure, Wan-fang database, Chinese Biomedical Literature Database, Chinese Scientific Journal Database, and other sources. All published randomized controlled trials from inception to December 2016 will be included. RevMan V.5.3 software will be implemented for the assessment of bias risk, data synthesis, subgroup analysis, and meta-analyses if inclusion conditions are met. Individuals recruited into the trials will include children with all types of CP, and these individuals will be involved as coresearchers to develop and evaluate the efficacy and safety of acupuncture for the treatment of children with CP. Due to language barriers, only English and Chinese articles will be retrieved. Results The systematic review will synthesize the available knowledge surrounding acupuncture for children with CP. The findings will be synthesized to determine the efficacy and safety of acupuncture for children with CP. Conclusions The review has not been completed. This protocol presents a proper method to implement the systematic review, and ensures transparency for the completed review. Findings from the systematic review will be disseminated in a peer-reviewed journal and results will be presented at relevant conferences. The data of individual patients will not be included, so ethical approval is not required. Trial Registration PROSPERO registration number: CRD42016038275, http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42016038275 (Archived by WebCite at http://www.webcitation/6nGxoJrqm
Collapse
Affiliation(s)
- Taipin Guo
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bowen Zhu
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qian Zhang
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yejiao Yang
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qi He
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xinghe Zhang
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiantao Tai
- School of Acupuncture-Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
15
|
Shroff G. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease. AMERICAN JOURNAL OF CASE REPORTS 2016; 17:944-949. [PMID: 27956736 PMCID: PMC5156555 DOI: 10.12659/ajcr.899745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Case series Patient: Male, 42 • Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue • weakness in limbs Medication: — Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology
Collapse
Affiliation(s)
- Geeta Shroff
- Department of Stem Cell Therapy, Nutech Mediworld, New Delhi, India
| |
Collapse
|
16
|
The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol Neurobiol 2016; 54:4963-4972. [PMID: 27520277 DOI: 10.1007/s12035-016-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant's brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.
Collapse
|
17
|
Brucker MC. The Placenta--An Undervalued Miracle. Nurs Womens Health 2015; 19:291-2. [PMID: 26264793 DOI: 10.1111/1751-486x.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|