1
|
Mozaffari N, Mohammadi R, Delirezh N, Hobbenaghi R, Mohammadi V. Effect of macrophages combined with supernatant of mesenchymal stem cell culture and macrophage culture on wound healing in rats. Tissue Cell 2024; 90:102474. [PMID: 39079451 DOI: 10.1016/j.tice.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024]
Abstract
Wound healing is an orderly sequence of events restoring the integrity of the damaged tissue. It consists of inflammatory, proliferation, and remodeling phases. The objective of the current study was to investigate the effect of local transplantation of cultured macrophage loaded with mesenchymal stem cell/macrophage culture supernatants on wound healing. Sixty-four healthy adult male Wistar rats were randomized into 4 groups of sixteen animals each: 1) SHAM group. 2) MAC-MSC/SN group: One-milliliter application of a mixture comprising mesenchymal stem cell and macrophage culture supernatants in a 1:1 ratio was administered locally to the wound bed. 3) MAC group: Local transplantation of macrophage cells cultured in the wound bed. 4) MAC + MAC-MSC/SN group: Local transplantation of cultured macrophage in combination with mesenchymal stem cell/ macrophage culture supernatants in the wound bed. An incisional wound model was used for biomechanical studies, while an excisional wound model was used for biochemical, histopathological, and planimetric assessments. The wound area was significantly reduced in the MAC + MAC-MSC/SN group compared to other groups (P < 0.05). Biomechanical measurements from the MAC + MAC-MSC/SN group were significantly higher compared to other experimental groups (P < 0.05). Biochemical and quantitative histopathological analyses revealed a significant difference between MAC + MAC-MSC/SN and other groups (P < 0.05). MAC + MAC-MSC/SN showed the potential to improve wound healing significantly. This appears to work by angiogenesis stimulation, fibroblast proliferation, inflammation reduction, and granulation tissue formation during the initial stages of the healing process. This accelerated healing leads to earlier wound area reduction and enhanced tensile strength of the damaged area due to the reorganization of granulation tissue and collagen fibers.
Collapse
Affiliation(s)
- Nima Mozaffari
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Vahid Mohammadi
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Das P, Pal D, Roy S, Chaudhuri S, Kesh SS, Basak P, Nandi SK. Unveiling advanced strategies for therapeutic stem cell interventions in severe burn injuries: a comprehensive review. Int J Surg 2024; 110:01279778-990000000-01661. [PMID: 38869979 PMCID: PMC11487052 DOI: 10.1097/js9.0000000000001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive review explores the complex terrain of stem cell therapies as a potential therapeutic frontier in the healing of complicated burn wounds. Serious tissue damage, impaired healing processes, and possible long-term consequences make burn wounds a complex problem. An in-depth review is required since, despite medical progress, existing methods for treating severe burn wounds have significant limitations. Burn wounds are difficult to heal because they cause extensive tissue damage. The challenges of burn injury-induced tissue regeneration and functional recovery are also the subject of this review. Although there is a lot of promise in current stem cell treatments, there are also some limitations with scalability, finding the best way to transport the cells, and finding consistent results across different types of patients. To shed light on how to improve stem cell interventions to heal severe burn wounds, this review covers various stem cell applications in burn wounds and examines these obstacles. To overcome these obstacles, one solution is to enhance methods of stem cell distribution, modify therapies according to the severity of the burn, and conduct more studies on how stem cell therapy affects individual patients. Novel solutions may also be possible through the combination of cutting-edge technologies like nanotechnology and biotechnology. This review seeks to increase stem cell interventions by analyzing present challenges and suggesting strategic improvements. The goal is to provide a more effective and tailored way to repair serious burn wounds.
Collapse
Affiliation(s)
- Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- School of Bioscience and Engineering, Jadavpur University
| | - Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Sudipta Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Shyam S. Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| |
Collapse
|
3
|
He J, Wang Z, Ao C, Tu C, Zhang Y, Chang C, Xiao C, Xiang E, Rao W, Li C, Wu D. A highly sensitive and specific Homo1-based real-time qPCR method for quantification of human umbilical cord mesenchymal stem cells in rats. Biotechnol J 2024; 19:e2300484. [PMID: 38403446 DOI: 10.1002/biot.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Owing to the characteristics of easier access in vitro, low immunogenicity, and high plasticity, human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered as a promising cell-based drugs for clinical application. No internationally recognized technology exists to evaluate the pharmacokinetics and distribution of cell-based drugs in vivo. METHODS We determined the human-specific gene sequence, Homo1, from differential fragments Homo sapiens mitochondrion and Rattus norvegicus mitochondrion. The expression of Homo1 was utilized to determine the distribution of UC-MSCs in the normal and diabetic nephropathy (DN) rats. RESULTS We observed a significant correlation between the number of UC-MSCs and the expression level of Homo1. Following intravenous transplantation, the blood levels of UC-MSCs peaked at 30 min. A large amount of intravenously injected MSCs were trapped in the lungs, but the number of them decreased rapidly after 24 h. Additionally, the distribution of UC-MSCs in the kidneys of DN rats was significantly higher than that of normal rats. CONCLUSIONS In this study, we establish a highly sensitive and specific Homo1-based real-time quantitative PCR method to quantify the distribution of human UC-MSCs in rats. The method provides guidelines for the safety research of cells in preclinical stages.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Zhangfan Wang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cheng Chang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cuihong Xiao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - E Xiang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Wei Rao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
4
|
Qiao Y, Zhang Q, Peng Y, Qiao X, Yan J, Wang B, Zhu Z, Li Z, Zhang Y. Effect of stem cell treatment on burn wounds: A systemic review and a meta-analysis. Int Wound J 2023; 20:8-17. [PMID: 35560869 PMCID: PMC9797938 DOI: 10.1111/iwj.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
A meta-analysis was performed to evaluate the effect of stem cells treatment in managing burn wounds. A systematic literature search up to March 2022 incorporated 24 studies reported between 2013 and 2021 including 400 animals with burn wounds at the beginning of the study; 211 were using stem cells treatment, and 189 controlled. Statistical tools like the contentious method were used within a random or fixed-influence model to establish the mean difference (MD) with 95% confidence intervals (CIs) to evaluate the influence of stem cells treatment in managing burn wounds. Stem cells treatment had a significantly higher burn wound healing rate (MD, 15.18; 95% CI, 11.29-19.07, P < .001), higher blood vessel number (MD, 12.28; 95% CI, 10.06-14.51, P < .001), higher vascular endothelial growth factor (MD, 10.24; 95% CI, 7.19-13.29, P < .001), lower interleukin-1 level (MD, -98.48; 95% CI, -155.33 to -41.63, P < .001), and lower tumour necrosis factor α level (MD, -28.71; 95% CI, -46.65 to -10.76, P < .002) compared with control in animals' models with burn wounds. Stem cells treatment had a significantly higher burn wound healing rate, higher blood vessel number, higher vascular endothelial growth factor, lower interleukin-1 level, and lower tumour necrosis factor α level compared with control in animals' models with burn wounds. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Yating Qiao
- Department of Gastrointestinal SurgeryAffiliated Hospital of Hebei UniversityBoadingChina
| | - Qingrong Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Ying Peng
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | | | - Jun Yan
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Bolin Wang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Zhihan Zhu
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Zihan Li
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
5
|
Shimizu Y, Ntege EH, Sunami H. Current regenerative medicine-based approaches for skin regeneration: A review of literature and a report on clinical applications in Japan. Regen Ther 2022; 21:73-80. [PMID: 35785041 PMCID: PMC9213559 DOI: 10.1016/j.reth.2022.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Current trends indicate a growing interest among healthcare specialists and the public in the use of regenerative medicine-based approaches for skin regeneration. The approaches are categorised in either cell-based or cell-free therapies and are reportedly safe and effective. Cell-based therapies include mesenchymal stem cells (MSCs), tissue induced pluripotent stem cells (iPSCs), fibroblast-based products, and blood-derived therapies, such as those employing platelet-rich plasma (PRP) products. Cell-free therapies primarily involve the use of MSC-derived extracellular vesicles/exosomes. MSCs are isolated from various tissues, such as fat, bone marrow, umbilical cord, menstrual blood, and foetal skin, and expanded ex vivo before transplantation. In cell-free therapies, MSC exosomes, MSC-derived cultured media, and MSC-derived extracellular vesicles are collected from MSC-conditioned media or supernatant. In this review, a literature search of the Cochrane Library, MEDLINE (PubMed), EMBASE, and Scopus was conducted using several combinations of terms, such as ‘stem’, ‘cell’, ‘aging’, ‘wrinkles’, ‘nasolabial folds’, ‘therapy’, ‘mesenchymal stem cells’, and ‘skin’, to identify relevant articles providing a comprehensive update on the different regenerative medicine-based therapies and their application to skin regeneration. In addition, the regulatory perspectives on the clinical application of some of these therapies in Japan are highlighted. The use of regenerative medicine-based therapy for skin rejuvenation is expanding. Therapies can be categorised as either cell-based or cell-free therapies. MSCs can be isolated from various tissues for cosmetic applications. MSC-derived exosomes increase skin cell proliferation and migration. In Japan, most cell-based treatments carry class II/III regenerative medicine risks.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, 903-0215 Okinawa, Japan
- Corresponding author. Department of Plastic and Reconstructive Surgery Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, 903-0215 Okinawa, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, 903-0215 Okinawa, Japan
| |
Collapse
|
6
|
Ramos-Gonzalez G, Salazar L, Wittig O, Diaz-Solano D, Cardier JE. The effects of mesenchymal stromal cells and platelet-rich plasma treatments on cutaneous wound healing. Arch Dermatol Res 2022; 315:815-823. [PMID: 36326886 DOI: 10.1007/s00403-022-02451-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cellular therapy and platelet-rich plasma (PRP) have been used as a treatment for skin wounds. Previous evidence has shown that mesenchymal stromal cells (MSC) may improve skin wound healing. In contrast, contradictory effects have been reported by using PRP treatment on skin wound healing. However, there is evidence that PRP constitutes an excellent scaffold for tissue engineering. In this work, we aim to study the effect of MSC on skin wound healing. We used an experimental murine model of full-thickness wounds. Wounds were treated with human bone marrow-MSC contained in a PRP clot. Untreated or PRP-treated wounds were used as controls. Wound healing was evaluated by macroscopic observation and histological analysis at day 7 post-wounding. Immunohistochemical studies were performed to detect the presence of epithelial progenitor cells (EPC) and the expression of basic fibroblast growth factor (bFGF). MSC/PRP implantation induced a significant wound closure and re-epithelialization as compared with the controls. Increase of CD34+ cells and bFGF was observed in the wounds treated with MSC/PRP. Our results show that MSC included in PRP clot induce cutaneous wound repair by promoting re-epithelialization, migration of EPC and expression of bFGF. PRP alone does not exert a significant effect on wound healing. Our results support the possible clinical use of MSC in PRP scaffold as potential treatment of skin wounds.
Collapse
Affiliation(s)
- Giselle Ramos-Gonzalez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela
| | - Lianeth Salazar
- Servicio de Cirugía Plástica, Hospital de la Cruz Roja, Caracas, 1080, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado Postal: 20632, Caracas, 1020A, Venezuela.
| |
Collapse
|
7
|
The effect of mesenchymal stem cell lyophilizate on the recovery of the zone of stasis following thermal burns. Burns 2022; 48:1221-1229. [PMID: 34916090 DOI: 10.1016/j.burns.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION AND AIM Mesenchymal Stem Cells (MSCs) are known to contribute to wound healing by increasing tissue regeneration. This study examined the effect of MSC-Lyophilizate (MSC-L) on the recovery of the zone of stasis in thermal burns. METHODS A comb was used to induce second-degree thermal burns (1 × 2 cm) on the dorsum of the rats. Within 30 min after the burn, MSC-L derived from the umbilical cord was administered to the experimental group and 1.5 ml of 0.9% isotonic sodium chloride to the sham group. The control group did not receive any intervention. Tissue samples were collected on postoperative day 7. Histopathological assessments were made using a microscope with digital camera attachment. SPSS for IBM 25 was used for data analysis. RESULTS Epithelial loss and subepidermal bullae were observed in the control and sham groups on day 7. In the experimental group, the MSC-L administration was found to increase epithelial tissue formation and neovascularization in the dermis. We found no significant pathological findings in the epidermis and dermis in the experimental group. CONCLUSION Administration of umbilical cord-derived MSC-L is of potential importance in wound healing. In our study, we observed that MSC-L that contained 1.5 million cells contributed significantly to the recovery of the stasis zone of burn.
Collapse
|
8
|
The Inability of Ex Vivo Expanded Mesenchymal Stem/Stromal Cells to Survive in Newborn Mice and to Induce Transplantation Tolerance. Stem Cell Rev Rep 2022; 18:2365-2375. [PMID: 35288846 DOI: 10.1007/s12015-022-10363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
An encounter of the developing immune system with an antigen results in the induction of immunological areactivity to this antigen. In the case of transplantation antigens, the application of allogeneic hematopoietic cells induces a state of neonatal transplantation tolerance. This tolerance depends on the establishment of cellular chimerism, when allogeneic cells survive in the neonatally treated recipient. Since mesenchymal stem/stromal cells (MSCs) have been shown to have low immunogenicity and often survive in allogeneic recipients, we attempted to use these cells for induction of transplantation tolerance. Newborn (less than 24 h old) C57BL/6 mice were injected intraperitoneally with 5 × 106 adipose tissue-derived MSCs isolated from allogeneic donors and the fate and survival of these cells were monitored. The impact of MSC application on the proportion of cell populations of the immune system and immunological reactivity was assessed. In addition, the survival of skin allografts in neonatally treated recipients was tested. We found that in vitro expanded MSCs did not survive in neonatal recipients, and the living MSCs were not detected few days after their application. Furthermore, there were no significant changes in the proportion of individual immune cell populations including CD4+ cell lineages, but we detected an apparent shift to the production of Th1 cytokines IL-2 and IFN-γ in neonatally treated mice. However, skin allografts in the MSC-treated recipients were promptly rejected. These results therefore show that in vitro expanded MSCs do not survive in neonatal recipients, but induce a cytokine imbalance without induction of transplantation tolerance.
Collapse
|
9
|
Gomez M, Wittig O, Diaz-Solano D, Cardier JE. Mesenchymal Stromal Cell Transplantation Induces Regeneration of Large and Full-Thickness Cartilage Defect of the Temporomandibular Joint. Cartilage 2021; 13:1814S-1821S. [PMID: 32493042 PMCID: PMC8808815 DOI: 10.1177/1947603520926711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Cartilage damage (CD) in the temporomandibular joint (TMJ) continues being a major problem in maxillofacial field. Evidence suggests that cellular therapy may be used for repairing CD in the TMJ. DESIGN A murine model of condyle CD (CCD) was generated in the TMJ to evaluate the capacity of mesenchymal stromal cells (MSCs) to induce cartilage regeneration in CCD. A large CCD was surgically created in a condyle head of the TMJ of C57BL/6 mice. Human MSC embedded into preclotted platelet-rich plasma (PRP) were placed on the surface of CCD. As controls, untreated CCD and exposed TMJ condyle (sham) were used. After 6 weeks, animals were sacrificed, and each mandibular condyle was removed and CCD healing was assessed macroscopically and histologically. RESULTS Macroscopic observation of CCD treated with MSC showed the presence of cartilage-like tissue in the CCD site. Histological analysis showed a complete repair of the articular surface with the presence of cartilage-like tissue and subchondral bone filling the CCD area. Chondrocytes were observed into collagen and glycosaminoglycans extracellular matrix filling the repaired tissue. There was no evidence of subchondral bone sclerosis. Untreated CCD showed denudated osteochondral lesions without signs of cartilage repair. Histological analysis showed the absence of tissue formation over the CCD. CONCLUSIONS Transplantation of MSC induces regeneration of TMJ-CCD. These results provide strong evidence to use MSC as potential treatment in patients with cartilage lesions in the TMJ.
Collapse
Affiliation(s)
- Marcos Gomez
- Unidad de Terapia Celular,
Laboratorio de Patología Celular y Molecular, Instituto Venezolano de
Investigaciones Científicas (IVIC), Caracas, Miranda, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular,
Laboratorio de Patología Celular y Molecular, Instituto Venezolano de
Investigaciones Científicas (IVIC), Caracas, Miranda, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular,
Laboratorio de Patología Celular y Molecular, Instituto Venezolano de
Investigaciones Científicas (IVIC), Caracas, Miranda, Venezuela
| | - José E. Cardier
- Unidad de Terapia Celular,
Laboratorio de Patología Celular y Molecular, Instituto Venezolano de
Investigaciones Científicas (IVIC), Caracas, Miranda, Venezuela,José E. Cardier, Unidad de Terapia
Celular, Laboratorio de Patología Celular y Molecular, Centro de
Medicina Experimental, Instituto Venezolano de Investigaciones
Científicas (IVIC). Apartado Postal: 20632. Caracas, Miranda, 1020A,
Venezuela.
| |
Collapse
|
10
|
Peña-Lozano SP, Sánchez-García SA, Velasco-Ruiz IY, Valencia-Alcocer AI, Palacios-Zertuche JT, Mancías-Guerra C. Total nucleated cells from bone marrow as an adjuvant treatment in a patient with third-degree burn. BURNS OPEN 2021. [DOI: 10.1016/j.burnso.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Gu C, Feng J, Waqas A, Deng Y, Zhang Y, Chen W, Long J, Huang S, Chen L. Technological Advances of 3D Scaffold-Based Stem Cell/Exosome Therapy in Tissues and Organs. Front Cell Dev Biol 2021; 9:709204. [PMID: 34568322 PMCID: PMC8458970 DOI: 10.3389/fcell.2021.709204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering and regenerative medicine. Due to different production methods, unique types of three-dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects of stem cell (SC) therapy in tissues and organs are considerable and have attracted the attention of academic researchers worldwide. However, due to the limitations and challenges of SC therapy, exosome therapy can be used for basic research and clinical translation. The review briefly introduces the materials (nature or polymer), shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy with 3D scaffolds over the past 5 years (2016-2020). Normal SC/exosome therapy can improve the structure and function of diseased and damaged tissues and organs. In addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure and function cardiac and neural tissues for the treatment of various refractory diseases. Besides, exosome therapy has the same therapeutic effects as SC therapy but without the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for treatment of refractory and incurable diseases and has entered a transformation period from basic research into clinical translation as a viable therapeutic option in the future.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| | - Ahmed Waqas
- School of Medicine, Southeast University, Nanjing, China
| | - Yushu Deng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Jian-Xing D, Wen-Jun L, Yue-Qin Z, Wang D, Gao-Fei Z, Jia-Mei L, Han-Xiao L. Umbilical Cord Mesenchymal Stem Cells for Inflammatory Regulation After Excision and Grafting of Severe Burn Wounds in Rats. J Burn Care Res 2021; 42:766-773. [PMID: 33313794 DOI: 10.1093/jbcr/iraa207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Severe burns predispose to shock and necessitate escharectomy and skin grafting. Previous studies show that mesenchymal stem cells are effective for burn wound healing and immune regulation. In this study, we combined escharectomy and skin grafting after burn injury with stem cell application, so as to examine the immune regulation of stem cells and the effect on the transplanted skin graft. SD rats were randomly divided into normal group, sham group, normal + hUCMSCs group, and normal + SB203580 group. Normal saline, hUCMSCs, and SB203580 were injected into the tail vein of each group, and serum inflammatory factors were detected by ELISA. The expression of p38 MAPK/NF-κB pathway proteins in rat liver was detected by western blot. Skin activity was detected by Trypan blue staining and western blot. Skin graft inflammatory infiltration was detected by histological analysis. We found that hUCMSCs could regulate the phosphorylation levels of P38MAPK and NF-B P65 proteins in the liver to reduce the inflammatory response. These effects could continue to reduce the production of inflammatory factors HMGB-1, IL-6, and TNF-α, and increase the anti-inflammatory factor IL-10. The infiltration of inflammatory cells in skin graft was significantly reduced in the normal + hUCMSCs group, and the macrophages in the hUCMSCs group polarized to the anti-inflammatory M2 direction in 3 days. However, the changes of skin graft activity and necroptosis markers protein RIP3 were not observed. The present study demonstrates the immunomodulatory effects of hUCMSCs on the systemic and skin graft microenvironment after excision.
Collapse
Affiliation(s)
- Duan Jian-Xing
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liu Wen-Jun
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zeng Yue-Qin
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Di Wang
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhang Gao-Fei
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Li Jia-Mei
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lou Han-Xiao
- Department of Burn, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Therapeutic effect of mesenchymal stem cells on histopathological, immunohistochemical, and molecular analysis in second-grade burn model. Stem Cell Res Ther 2021; 12:308. [PMID: 34051875 PMCID: PMC8164255 DOI: 10.1186/s13287-021-02365-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aim Deleterious cutaneous tissue damages could result from exposure to thermal trauma, which could be ameliorated structurally and functionally through therapy via the most multipotent progenitor bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to induce burns and examine the effect of BM-MSCs during a short and long period of therapy. Material and methods Ninety albino rats were divided into three groups: group I (control); group II (burn model), the animals were exposed to the preheated aluminum bar at 100°C for 15 s; and group III (the burned animals subcutaneously injected with BM-MSCs (2×106 cells/ ml)); they were clinically observed and sacrificed at different short and long time intervals, and skin samples were collected for histopathological and immunohistochemical examination and analysis of different wound healing mediators via quantitative polymerase chain reaction (qPCR). Results Subcutaneous injection of BM-MSCs resulted in the decrease of the wound contraction rate; the wound having a pinpoint appearance and regular arrangement of the epidermal layer with thin stratum corneum; decrease in the area percentages of ADAMs10 expression; significant downregulation of transforming growth factor-β (TGF-β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), metalloproteinase-9 (MMP-9), and microRNA-21; and marked upregulation of heat shock protein-90α (HSP-90α) especially in late stages. Conclusion BM-MSCs exhibited a powerful healing property through regulating the mediators of wound healing and restoring the normal skin structures, reducing the scar formation and the wound size.
Collapse
|
14
|
Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. BURNS & TRAUMA 2021; 9:tkab002. [PMID: 34212055 PMCID: PMC8240555 DOI: 10.1093/burnst/tkab002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Burns, with their high incidence and mortality rates, have a devastating effect on patients. There are still huge challenges in the management of burns. Mesenchymal stem cells (MSCs), which have multidirectional differentiation potential, have aroused interest in exploring the capacity for treating different intractable diseases due to their strong proliferation, tissue repair, immune tolerance and paracrine abilities, among other features. Currently, several animal studies have shown that MSCs play various roles and have beneficial effects in promoting wound healing, inhibiting burn inflammation and preventing the formation of pathological scars during burn healing process. The substances MSCs secrete can act on peripheral cells and promote burn repair. According to preclinical research, MSC-based treatments can effectively improve burn wound healing and reduce pain. However, due to the small number of patients and the lack of controls, treatment plans and evaluation criteria vary widely, thus limiting the value of these clinical studies. Therefore, to better evaluate the safety and effectiveness of MSC-based burn treatments, standardization of the application scheme and evaluation criteria of MSC therapy in burn treatment is required in the future. In addition, the combination of MSC pretreatment and dressing materials are also conducive to improving the therapeutic effect of MSCs on burns. In this article, we review current animal research and clinical trials based on the use of stem cell therapy for treating burns and discuss the main challenges and coping strategies facing future clinical applications.
Collapse
Affiliation(s)
- Mingyao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinxuan Xu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiongxin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
An update on stem cells applications in burn wound healing. Tissue Cell 2021; 72:101527. [PMID: 33756272 DOI: 10.1016/j.tice.2021.101527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Burn wounds have proven to be capable of having a long lasting devastating effects on human body. Conventional therapeutic approaches are not up to the mark as they are unable to completely heal the burn wound easily and effectively. Major pitfalls of these treatments include hypertrophic scarring, contracture and necrosis. Presence of these limitations in the current therapies necessitate the search for a better and more efficient cure. Regenerative potency of stem cells in burn wound healing outweigh the traditional treatment procedures. The use of multiple kinds of stem cells are gaining interest due to their enhanced healing efficiency. Distinctions of stem cells include better and faster burn wound healing, decreased inflammation levels, less scar progression and fibrosis on site. In this review, we have discussed the wound-healing process, present methods used for stem cells administration, methods of enhancing stem cells potency and human studies. Pre-clinical and the clinical studies focused on the treatment of thermal and radiation burns using stem cells from 2003 till the present time have been enlisted. Studies shows that the use of stem cells on burn wounds, whether alone or by the help of a scaffold significantly improves healing. Homing of the stem cells at the wound site results in the re-epithelialization, angiogenesis, granulation, inhibition of apoptosis, and regeneration of skin appendages together with reduced infection rate in the human studies. Several studies on animals have shown that stem cells can effectively promote wound healing. Although more research is needed to find out the effectiveness of this treatment in patients with severe burn wounds.
Collapse
|
16
|
Lin S, He X, He Y. Co-culture of ASCs/EPCs and dermal extracellular matrix hydrogel enhances the repair of full-thickness skin wound by promoting angiogenesis. Stem Cell Res Ther 2021; 12:129. [PMID: 33579369 PMCID: PMC7881476 DOI: 10.1186/s13287-021-02203-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue. Method The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of dermal and angiogenic genes. Furthermore, the co-culture system combined with dermal extracellular matrix hydrogel was used to repair the full-scale skin defects in rats. Result The co-culture of ASCs/EPCs could increase skin- and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could significantly accelerate the repair of skin defects by promoting the regeneration of vascularized skin. Conclusion It is feasible to replace traditional single-seed cells with the ASC/EPC co-culture system for vascularized skin regeneration. This system could ultimately enable clinicians to better repair the full-thickness skin defects and avoid donor site morbidity.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Plastic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoning He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanjia He
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Henriksen JL, Sørensen NB, Fink T, Zachar V, Porsborg SR. Systematic Review of Stem-Cell-Based Therapy of Burn Wounds: Lessons Learned from Animal and Clinical Studies. Cells 2020; 9:E2545. [PMID: 33256038 PMCID: PMC7761075 DOI: 10.3390/cells9122545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Treatment of severe burn wounds presents a daunting medical challenge, and novel approaches promoting healing and reducing scarring are highly desirable. The application of mesenchymal stem/stromal cells (MSCs) has been suggested as a novel treatment. In this paper, we present systematic reviews of pre-clinical and clinical studies of MSC therapy for second- or third-degree thermal burn wounds. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, the PubMed and Embase databases were searched, and interventional studies of MSC therapy using rodent models (21 studies) or human burn patients (three studies) were included in the pre-clinical and clinical reviews, respectively, where both overall outcome and wound-healing-phase-specific methodologies and effects were assessed. The pre-clinical studies demonstrated a promising effect of the application of MSCs on several wound healing phases. The clinical studies also suggested that the MSC treatment was beneficial, particularly in the remodeling phase. However, the limited number of studies, their lack of homogeneity in study design, relatively high risk of bias, lack of reporting on mode of action (MOA), and discontinuity of evidence restrict the strength of these findings. This comprehensive review presents an overview of available methodologies to assess the MOA of MSC treatment for distinct wound healing phases. Furthermore, it includes a set of recommendations for the design of high-quality clinical studies that can determine the efficacy of MSCs as a therapy for burn wounds.
Collapse
Affiliation(s)
- Josefine Lin Henriksen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Nana Brandborg Sørensen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; (J.L.H.); (N.B.S.)
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (T.F.); (V.Z.)
| |
Collapse
|
18
|
Characterization of macrophages, giant cells and granulomas during muscle regeneration after irradiation. Cytokine 2020; 137:155318. [PMID: 33045525 DOI: 10.1016/j.cyto.2020.155318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Macrophages play a fundamental role in the different stages of muscle regeneration although the precise mechanisms involved are not entirely understood. Here we investigated the types of macrophages and cytokines that appeared in muscles after local gamma irradiation of mini-pigs that underwent no subsequent treatment or received three successive adipose tissue-derived stem cell (ASC) injections. Although some variability was observed among the three animals included in each study group, a general picture emerged. No macrophages appeared in control muscles from regions that had not been irradiated nor in muscles from irradiated regions derived from two animals. A third irradiated, but untreated animal, with characteristic muscle fibrosis and necrosis due to irradiation, showed invasion of M2 macrophages within small muscle lesions. In contrast, among the three ASC-treated and irradiated animals, one of them had completely recovered normal muscle architecture at the time of sampling with no invading macrophages, muscle from a second one contained mostly M1 macrophages and some M2-like macrophages whereas muscle from a third one displayed granulomas and giant cells. ASC treatment was associated with the presence of similar levels of pro-inflammatory cytokines within the two animals in the process of muscle regeneration whereas the levels of IL-4 and IL-10 expression were distinct from one animal to another. Microspectrofluorimetry and in situ hybridization revealed strong expression of TGF-β1 and TNFα in regenerating muscle. Overall, the data confirm the critical role of macrophages in muscle regeneration and suggest the involvement of a complex network of cytokine expression for successful recovery.
Collapse
|
19
|
Bello-Rodriguez C, Wittig O, Diaz-Solano D, Bolaños P, Cardier JE. A 3D construct based on mesenchymal stromal cells, collagen microspheres and plasma clot supports the survival, proliferation and differentiation of hematopoietic cells in vivo. Cell Tissue Res 2020; 382:499-507. [PMID: 32789682 DOI: 10.1007/s00441-020-03265-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/22/2020] [Indexed: 01/09/2023]
Abstract
The hematopoietic niche is a specialized microenvironment that supports the survival, proliferation and differentiation of hematopoietic stem progenitor cells (HSPCs). Three-dimensional (3D) models mimicking hematopoiesis might allow in vitro and in vivo studies of the hematopoietic (HP) process. Here, we investigate the capacity of a 3D construct based on non-adherent murine bone marrow mononuclear cells (NA-BMMNCs), mesenchymal stromal cells (MSCs) and collagen microspheres (CMs), all embedded into plasma clot (PC) to support in vitro and in vivo hematopoiesis. Confocal analysis of the 3D hematopoietic construct (3D-HPC), cultured for 24 h, showed MSC lining the CM and the NA-BMMNCs closely associated with MSC. In vivo hematopoiesis was examined in 3D-HPC subcutaneously implanted in mice and harvested at different intervals. Hematopoiesis in the 3D-HPC was evaluated by histology, cell morphology, flow cytometry, confocal microscopy and hematopoietic colony formation assay. 3D-HPC implants were integrated and vascularized in the host tissue, after 3 months of implantation. Histological studies showed the presence of hematopoietic tissue with the presence of mature blood cells. Cells from 3D-HPC showed viability greater than 90%, expressed HSPCs markers, and formed hematopoietic colonies, in vitro. Confocal microscopy studies showed that MSCs adhered to the CM and NA-BMMNCs were scattered across the 3D-HPC area and in close association with MSC. In conclusion, the 3D-HPC mimics a hematopoietic niche supporting the survival, proliferation and differentiation of HSPCs, in vivo. 3D-HPC may allow evaluation of regulatory mechanisms involved in hematopoiesis.
Collapse
Affiliation(s)
- Carlos Bello-Rodriguez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela.,Facultad de Ciencias, Universidad Central de Venezuela, Caracas, 1080, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, 1020-A, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela. .,Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, 1020-A, Venezuela.
| |
Collapse
|
20
|
Li Y, Xia WD, Van der Merwe L, Dai WT, Lin C. Efficacy of stem cell therapy for burn wounds: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:322. [PMID: 32727568 PMCID: PMC7389817 DOI: 10.1186/s13287-020-01839-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Burns remain a serious public health problem with high morbidity and mortality rates worldwide. Although there are various treatment options available, there is no consensus on the best treatment for severe burns as of yet. Stem cell therapy has a bright prospect in many preclinical studies of burn wounds. The systematic review was performed for these preclinical studies to assess the efficacy and possible mechanisms of stem cells in treating burn wounds. METHODS Twenty-two studies with 595 animals were identified by searching PubMed, EMBASE, Web of Science, and Cochrane Library databases from inception to 13 May 2020. In addition, a manual search of references of studies was performed to obtain potential studies. No language or time restrictions were enforced. RevMan 5.3 was used for all data analysis. RESULTS The overall meta-analysis showed that stem cell therapy significantly improved burn healing rate (SMD 3.06, 95% CI 1.98 to 4.14), irrespective of transplant type, burn area, and treatment method in the control group. Subgroup analyses indicated that hair follicle stem cells seemed to exert more beneficial effects on animals with burn wounds (SMD 7.53, 95% CI 3.11 to 11.95) compared with other stem cells. Furthermore, stem cell therapy seemed to exert more beneficial effects on burn wounds with second-degree (SMD 7.53, 95% CI 3.11 to 11.95) compared with third-degree (SMD 2.65, 95% CI 1.31 to 4.00). CONCLUSIONS Meta-analysis showed that stem cell therapy exerts a healing function for burn wounds, mainly through angiogenesis and anti-inflammatory actions. These findings also demonstrate the need for considering variations in future clinical studies using stem cells to treat a burn wound in order to maximize the effectiveness. In general, stem cells can potentially become a novel therapy candidate for burn wounds.
Collapse
Affiliation(s)
- Yuan Li
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Wei-Dong Xia
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Leanne Van der Merwe
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Wen-Tong Dai
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Cai Lin
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
21
|
Wittig O, Diaz-Solano D, Chacín T, Rodriguez Y, Ramos G, Acurero G, Leal F, Cardier JE. Healing of deep dermal burns by allogeneic mesenchymal stromal cell transplantation. Int J Dermatol 2020; 59:941-950. [PMID: 32501530 DOI: 10.1111/ijd.14949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep dermal and full-thickness burns are not only difficult to treat, but they are also associated with significant morbidity and mortality. Recent reports have proposed the use of mesenchymal stromal cells (MSCs) for inducing tissue repair in burn injuries. OBJECTIVE We aim to evaluate the effect of allogeneic MSC transplantation on full-thickness burns with delayed healing. MATERIAL AND METHODS This study includes five patients with AB B/B burns. All patients received conservative treatments, including cleaning, debridement of necrotic tissue, and silver based dressing on the burn wounds. Cryopreserved allogeneic MSCs were thawed and rapidly expanded and used for application in burned patients. MSCs were implanted into preclotted platelet-rich plasma onto the surface of burn wounds. RESULTS All treated burn wounds showed early granulation tissue and rapid re-epithelialization after MSC transplantation. Healing took between 1 and 5 months after MSC transplantation. Repair of burn wounds was associated with slight discoloration of the regenerated skin without hypertrophic scarring or contractures. CONCLUSION Our results provide evidence of healing in deep- and full-thickness burns by allogeneic MSC transplantation. Rapid healing of burn patients, after MSC transplantation, improves their quality of life and reduces the length of hospitalization. Future studies incorporating a larger number of patients may confirm the results obtained in this work.
Collapse
Affiliation(s)
- Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| | - Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| | - Tulio Chacín
- Centro de Atención Integral Para el Quemado (Cainpaq), Hospital Coromoto - PDVSA, Maracaibo Apartado, Venezuela
| | | | - Giselle Ramos
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| | - Gleriset Acurero
- Centro de Atención Integral Para el Quemado (Cainpaq), Hospital Coromoto - PDVSA, Maracaibo Apartado, Venezuela
| | - Fredy Leal
- Centro de Atención Integral Para el Quemado (Cainpaq), Hospital Coromoto - PDVSA, Maracaibo Apartado, Venezuela
| | - Jose E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado, Venezuela
| |
Collapse
|
22
|
Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal Stem Cells for Chronic Wound Healing: Current Status of Preclinical and Clinical Studies. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:555-570. [PMID: 32242479 DOI: 10.1089/ten.teb.2019.0351] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Healing skin wounds with anatomic and functional integrity, especially under chronic pathological conditions, remain an enormous challenge. Due to their outstanding regenerative potential, mesenchymal stem cells (MSCs) have been explored in many studies to determine the healing ability for difficult-to-treat diseases. In this article, we review current animal studies and clinical trials of MSC-based therapy for chronic wounds, and discuss major challenges that confront future clinical applications. We found that a wealth of animal studies have revealed the versatile roles and the benefits of MSCs for chronic wound healing. MSC treatment results in enhanced angiogenesis, facilitated reepithelialization, improved granulation, and accelerated wound closure. There are some evidences of the transdifferentiation of MSCs into skin cells. However, the healing effect of MSCs depends primarily on their paracrine actions, which alleviate the harsh microenvironment of chronic wounds and regulate local cellular responses. Consistent with the findings of preclinical studies, some clinical trials have shown improved wound healing after transplantation of MSCs in chronic wounds, mainly lower extremity ulcers, pressure sores, and radiation burns. However, there are some limitations in these clinical trials, especially a small number of patients and imperfect methodology. Therefore, to better define the safety and efficiency of MSC-based wound therapy, large-scale controlled multicenter trials are needed in the future. In addition, to build a robust pool of clinical evidence, standardized protocols, especially the cultivation and quality control of MSCs, are recommended. Altogether, based on current data, MSC-based therapy represents a promising treatment option for chronic wounds. Impact statement Chronic wounds persist as a significant health care problem, particularly with increasing number of patients and the lack of efficient treatments. The main goal of this article is to provide an overview of current status of mesenchymal stem cell (MSC)-based therapy for chronic wounds. The roles of MSCs in skin wound healing, as revealed in a large number of animal studies, are detailed. A critical view is made on the clinical application of MSCs for lower extremity ulcers, pressure sores, and radiation burns. Main challenges that confront future clinical applications are discussed, which hopefully contribute to innovations in MSC-based wound treatment.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Gou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin-Cui Da
- Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopaedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Mesenchymal stem cell therapy of acute thermal burns: A systematic review of the effect on inflammation and wound healing. Burns 2020; 47:270-294. [PMID: 33218945 DOI: 10.1016/j.burns.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
AIM Mesenchymal stem cell (MSC) therapies are emerging as a promising strategy to promote tissue repair, and may extend their utility to burn care. This comprehensive review of the extant literature, evaluated all in vivo studies, to elucidate the potential protective and therapeutic effect of MSCs in acute thermal skin burns. METHODS PubMed was systematically searched, according to PRISMA guidelines, and all relevant preclinical and clinical studies were included according to pre-specified eligibility criteria. RESULTS Forty-two studies were included in a qualitative synthesis, of which three were human and 39 were animal studies. The preclinical studies showed that MSCs can significantly reduce inflammation, burn wound progression and accelerate healing rate of acute burns. The underlying mechanisms are complex and not fully understood but paracrine modulators, such as immunomodulatory, antioxidative and trophic factors, seem to play important roles. Allogeneic MSC therapy has proved feasible in humans, and could allow for prompt treatment of acute burns in a clinical setting. CONCLUSION MSC therapy show positive results, regarding improved burn wound healing and immunologic response. However, most findings are based on small animal studies. Randomized clinical trials are warranted to investigate the regenerative effects in human burns before translating the findings into clinical practice.
Collapse
|
24
|
de Andrade ALM, Brassolatti P, Luna GF, Parisi JR, de Oliveira Leal ÂM, Frade MAC, Parizotto NA. Effect of photobiomodulation associated with cell therapy in the process of cutaneous regeneration in third degree burns in rats. J Tissue Eng Regen Med 2020; 14:673-683. [PMID: 32096323 DOI: 10.1002/term.3028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Due to the complexity involved in the healing process of full thickness burns, the literature looks for alternatives to optimize tissue reconstruction. The objective of this study was to explore the action of photobiomodulation therapy associated with MSCs in the healing process of third degree burns. A total of 96 male Wistar rats were used, distributed in four groups with 24 animals each: Control Group, Laser Group, Cell Therapy Group, and Laser Group and Cell Therapy. The burn was performed with aluminum plate (150 °C). We performed analysis of wound contraction, histology, immunohistochemistry, birefringence analysis, and immunoenzymatic assay to evaluate tissue quality. Our results demonstrate that the association of the techniques is able to accelerate the repair process, modulating the inflammatory process, presenting a cutaneous tissue with better quality. Thus, we conclude that the use of photobiomodulation therapy associated with cell therapy is a promising treatment in the repair of total thickness burns.
Collapse
Affiliation(s)
| | - Patricia Brassolatti
- Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Genoveva Flores Luna
- Department of Medicine, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Ângela Merice de Oliveira Leal
- Department of Medicine, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marco Andrey Cipriani Frade
- Dermatology Division of Internal Medicine Department, Ribeirão Preto Medical School at University of São Paulo (USP), Ribeirão Preto, Brazil
| | | |
Collapse
|
25
|
Masson‐Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade MAC. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 2020; 101:21-37. [PMID: 32227524 PMCID: PMC7306904 DOI: 10.1111/iep.12346] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Wound healing studies are intricate, mainly because of the multifaceted nature of the wound environment and the complexity of the healing process, which integrates a variety of cells and repair phases, including inflammation, proliferation, reepithelialization and remodelling. There are a variety of possible preclinical models, such as in mice, rabbits and pigs, which can be used to mimic acute or impaired for example, diabetic and nutrition-related wounds. These can be induced by many different techniques, with excision or incision being the most common. After determining a suitable model for a study, investigators need to select appropriate and reproducible methods that will allow the monitoring of the wound progression over time. The assessment can be performed by non-invasive protocols such as wound tracing, photographic documentation (including image analysis), biophysical techniques and/or by invasive protocols that will require wound biopsies. In this article, we provide an overview of some of the most often needed and used: (a) preclinical/animal models including incisional, excisional, burn and impaired wounds; (b) methods to evaluate the healing progression such as wound healing rate, wound analysis by image, biophysical assessment, histopathological, immunological and biochemical assays. The aim is to help researchers during the design and execution of their wound healing studies.
Collapse
Affiliation(s)
- Daniela S. Masson‐Meyers
- Marquette University School of DentistryMilwaukeeWisconsinUSA
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Thiago A. M. Andrade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Guilherme F. Caetano
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Francielle R. Guimaraes
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of Associated Schools of Education (UNIFAE)São João da Boa VistaSão PauloBrazil
| | - Marcel N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Saulo N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of the Educational Foundation Guaxupe (UNIFEG)GuaxupeMinas GeraisBrazil
| | - Marco Andrey C. Frade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| |
Collapse
|
26
|
Ahmadi AR, Chicco M, Huang J, Qi L, Burdick J, Williams GM, Cameron AM, Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns 2018; 45:1014-1023. [PMID: 30497816 DOI: 10.1016/j.burns.2018.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/11/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Severe burns are often associated with high morbidity and unsatisfactory functional and esthetic outcomes. Over the last two decades, stem cells have generated great hopes for the treatment of numerous conditions including burns. The aim of this systematic review is to evaluate the role of stem cell therapy as a means to promote burn wound healing. METHODS Comprehensive searches in major databases were carried out in March 2017 for articles on stem cell therapy in burn wound healing. In total 2103 articles were identified and screened on the basis of pre-determined inclusion and exclusion criteria. RESULTS Fifteen experimental and two clinical studies were included in the review. The majority of studies reported significant improvement in macroscopic burn wound appearance as well as a trend toward improved microscopic appearance, after stem cell therapy. Other parameters evaluated, such as re-vascularization, collagen formation, level of pro- and anti-inflammatory mediators, apoptosis and cellular infiltrates, yielded heterogeneous results across studies. CONCLUSION Stem cell therapy appears to exert a positive effect in burn wound healing. There is, therefore, justification for continued efforts to evaluate the use of stem cells as an adjunct to first-line therapies in burns.
Collapse
Affiliation(s)
- Ali R Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Maria Chicco
- Department of Surgery, St. Mary's Hospital, Imperial College London, London, United Kingdom
| | - Jinny Huang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - George M Williams
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Abstract
Supplemental Digital Content is available in the text Endogenously mobilized stem and progenitor cells (SPCs) or exogenously provided SPCs are thought to be beneficial for trauma therapy. However, still little is known about the synchronized dynamics of the number of SPCs in blood after severe injury and parameters like cytokine profiles that correlate with these numbers. We determined the number of hematopoietic stem cells, common myeloid progenitors, granulocyte-macrophage progenitors, and mesenchymal stem/stromal cells in peripheral blood (PB) 0 to 3, 8, 24, 48, and 120 h after polytrauma in individual patients (injury severity score ≥ 21). We found that the number of blood SPCs follows on average a synchronous, inverse bell-shaped distribution, with an increase at 0 to 3 h, followed by a strong decrease, with a nadir in SPC numbers in blood at 24 or 48 h. The change in numbers of SPCs in PB between 48 h and 120 h revealed two distinct patterns: Pattern 1 is characterized by an increase in the number of SPCs to a level higher than normal, pattern 2 is characterized by an almost absent increase in the number of SPCs compared to the nadir. Changes in the concentrations of the cytokines CK, MDC, IL-8, G-CSF Gro-α, VEGF, and MCP-1 correlated with changes in the number of SPCs in PB or were closely associated with Pattern 1 or Pattern 2. Our data provide novel rationale for investigations on the role of stem cell mobilization in polytraumatized patients and its likely positive impact on trauma outcome.
Collapse
|
28
|
Amniotic Epithelial Cells Accelerate Diabetic Wound Healing by Modulating Inflammation and Promoting Neovascularization. Stem Cells Int 2018; 2018:1082076. [PMID: 30210547 PMCID: PMC6120261 DOI: 10.1155/2018/1082076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/17/2018] [Accepted: 06/10/2018] [Indexed: 12/26/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) are nontumorigenic, highly abundant, and low immunogenic and possess multipotent differentiation ability, which make them become ideal alternative stem cell source for regenerative medicine. Previous studies have demonstrated the therapeutic potential of hAECs in many tissue repairs. However, the therapeutic effect of hAECs on diabetic wound healing is still unknown. In this study, we injected hAECs intradermally around the full-thickness excisional skin wounds of db/db mice and found that hAECs significantly accelerated diabetic wound healing and granulation tissue formation. To explore the underlying mechanisms, we measured inflammation and neovascularization in diabetic wounds. hAECs could modulate macrophage phenotype toward M2 macrophage, promote switch from proinflammatory status to prohealing status of wounds, and increase capillary density in diabetic wounds. Furthermore, we found that the hAEC-conditioned medium promoted macrophage polarization toward M2 phenotype and facilitated migration, proliferation, and tube formation of endothelial cells through in vitro experiments. Taken together, we first reported that hAECs could promote diabetic wound healing, at least partially, through paracrine effects to regulate inflammation and promote neovascularization.
Collapse
|
29
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
30
|
Mahmoudian-Sani MR, Rafeei F, Amini R, Saidijam M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J Cosmet Dermatol 2018; 17:650-659. [PMID: 29504236 DOI: 10.1111/jocd.12512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are multipotent stem cells that have the potential of proliferation, high self-renewal, and the potential of multilineage differentiation. The differentiation potential of the MSCs in vivo and in vitro has caused these cells to be regarded as potentially appropriate tools for wound healing. After the burn, trauma or removal of the tumor of wide wounds is developed. Although standard treatment for skin wounds is primary healing or skin grafting, they are not always practical mainly because of limited autologous skin grafting. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, PubMed (NLM), LISTA (EBSCO), and Web of Science have been searched. EVIDENCE SYNTHESIS For clinical use of the MSCs in wound healing, two key issues should be taken into account: First, engineering biocompatible scaffolds clinical use of which leads to the least amount of side effects without any immunologic response and secondly, use of stem cells secretions with the least amount of clinical complications despite their high capability of healing damage. CONCLUSION In light of the MSCs' high capability of proliferation and multilineage differentiation as well as their significant role in modulating immunity, these cells can be used in combination with tissue engineering techniques. Moreover, the MSCs' secretions can be used in cell therapy to heal many types of wounds. The combination of MSCs and PRP aids wound healing which could potentially be used to promote wound healing.
Collapse
Affiliation(s)
| | - Fatemeh Rafeei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Amini
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Andrade ALMD, Parisi JR, Brassolatti P, Parizotto NA. Alternative animal model for studies of total skin thickness burns. Acta Cir Bras 2018; 32:836-842. [PMID: 29160370 DOI: 10.1590/s0102-865020170100000005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To present an alternative experimental model of third degree burn of easy reproducibility. METHODS Eighteen male Wister rats were randomly divided into three groups, 6 of which were allocated to each group. A soldering iron coupled to an aluminum plate was used to produce burn, at a temperature of 150ºC, with different exposure times per group. Group 5 (G5) animals were burned at 150°C with exposure time of 5 seconds; Group 10 (G10) the animals were burned at 150°C with exposure time of 10 seconds and group 15 (G15) the animals were burned at 150°C with exposure time of 15 seconds. RESULTS Histopathological analyzes showed that all three groups had similar morphological characteristics, with total thickness involvement. CONCLUSION The technique is effective to reproduce a third degree burn and suggests the temperature of 150ºC with 5 seconds of exposure in order to minimize the risks to the animals.
Collapse
Affiliation(s)
- Ana Laura Martins de Andrade
- Fellow Master degree, Postgraduate Program in Physiotherapeutic Resources Laboratory, Universidade Federal de São Carlos (UFSCar), Brazil. Acquisition and interpretation of data, statistical analysis, manuscript writing
| | - Julia Risso Parisi
- Fellow Master degree, Postgraduate Program in Biosciences, Universidade Federal de Alfenas (UNIFAL), Brazil. Intellectual and scientific content of the study
| | - Patrícia Brassolatti
- PhD in Biotechnology, UFSCar, Sao Carlos-SP, Brazil. Intellectual and scientific content of the study
| | - Nivaldo Antonio Parizotto
- Fellow PhD degree, Postgraduate Program in Physiotherapeutic Resources Laboratory, UFSCar, Sao Carlos-SP, Brazil. Intellectual and scientific content of the study, technical procedures
| |
Collapse
|
32
|
Rodgers K, Jadhav SS. The application of mesenchymal stem cells to treat thermal and radiation burns. Adv Drug Deliv Rev 2018; 123:75-81. [PMID: 29031640 DOI: 10.1016/j.addr.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have been developed for a number of indications due to their regenerative and anti-inflammatory phenotypes and their utility is enhanced by the fact that allogeneic transplant is feasible with this cell type. Animal studies and early human cases indicate that this has the potential to be an exciting new therapy for treating chronic non-healing wounds such as diabetic ulcers, burns and cutaneous radiation burns. This review will focus on the use of MSCs to treat thermal and radiation burns. Large, severe burns are difficult to treat and pose a major public health burden worldwide. They are characterized by an extensive loss of the outer protective barrier, delayed wound healing, increased oxidative stress and a heightened inflammatory state. The breakdown of the protective barrier results in increased susceptibility to fluid loss and bacterial sepsis. In the case of radiation burns, chronic inflammation can result in subsequent waves of tissue injury leading to skin breakdown and necrosis. The aim of this review is to summarize the current knowledge on MSCs in treating thermal and radiation burns along with the specific scope of characterizing the biologic function of MSCs that help enhance wound healing in these chronic injuries.
Collapse
|
33
|
Vidmar J, Chingwaru C, Chingwaru W. Mammalian cell models to advance our understanding of wound healing: a review. J Surg Res 2017; 210:269-280. [DOI: 10.1016/j.jss.2016.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 07/12/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022]
|
34
|
Hosni Ahmed H, Rashed LA, Mahfouz S, Elsayed Hussein R, Alkaffas M, Mostafa S, Abusree A. Can mesenchymal stem cells pretreated with platelet-rich plasma modulate tissue remodeling in a rat with burned skin? Biochem Cell Biol 2017; 95:537-548. [PMID: 28314112 DOI: 10.1139/bcb-2016-0224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Our aim was to study the effect of platelet-rich plasma (PRP) on the proliferation of bone-marrow-derived mesenchymal stem cells (BM-MSCs) and to investigate their roles in the healing of experimental burn injury and the possible mechanism of action. Our work was divided into in-vitro and in-vivo studies. The in-vitro study included untreated MSCs and MSCs treated with PRP. Levels of TGF-β and cell proliferation were assessed. In the in-vivo study, 72 rats were distributed equally among 6 groups: control, burn, burn with MSCs, burn with PRP, burn with both MSCs and PRP, and burn with MSCs pretreated with PRP. On the 7th and 20th day after injury, the serum levels of transforming growth factor beta (TGF-β) and tumor necrosis factor alpha (TNF-α), as well as interleukin-10 (IL-10) levels in skin tissue were measured by ELISA; histopathology and gene expression of MMP-1, TIMP-2, Ang-1, Ang-2, and vimentin by real-time PCR were performed in all groups. In vitro: proliferation of MSCs and TGF-β increased in the PRP-treated group compared with the control group. In vivo: Ang-1, Ang-2, and vimentin were upregulated, whereas MMP-1 and TIMP-2 were downregulated. TGF-β and IL-10 were increased, whereas TNF-α was decreased in all treated groups with more significance in MSCs and PRP on day 20. Histopathology of burn skin was improved in all treated groups, particularly in MSCs pretreated with PRP 20 days post-burn.
Collapse
Affiliation(s)
- Hanan Hosni Ahmed
- a Department of Medical Biochemistry and Molecular Biology, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- a Department of Medical Biochemistry and Molecular Biology, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sohair Mahfouz
- b Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania Elsayed Hussein
- a Department of Medical Biochemistry and Molecular Biology, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Alkaffas
- a Department of Medical Biochemistry and Molecular Biology, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shaimaa Mostafa
- c Plastic Surgery Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Azza Abusree
- a Department of Medical Biochemistry and Molecular Biology, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
35
|
Hu J, Cao Y, Xie Y, Wang H, Fan Z, Wang J, Zhang C, Wang J, Wu CT, Wang S. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther 2016; 7:130. [PMID: 27613503 PMCID: PMC5017121 DOI: 10.1186/s13287-016-0362-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Background Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. Methods In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone defects of 5 mm in width, 7 mm in length, and 3 mm in depth. hDPSCs were obtained for bone regeneration using cell injection or cell sheet transplantation. After 12 weeks, clinical, radiological, and histological assessments of regenerated periodontal tissues were performed to compare periodontal regeneration treated with xenogeneic cell injection and cell sheet implantation. Results Our study showed that translating hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. After 12 weeks, both the hDPSC sheet treatment and hDPSC injection significantly improved periodontal tissue healing clinically in comparison with the control group. The volume of regenerative bone in the hDPSC sheet group (52.7 ± 4.1 mm3) was significantly larger than in the hDPSC injection group (32.4 ± 5.1 mm3) (P < 0.05). The percentage of bone in the periodontium in the hDPSC injection group was 12.8 ± 4.4 %, while it was 17.4 ± 5.3 % in the hDPSC sheet group (P < 0.05). Conclusion Both hDPSC injection and cell sheet transplantation significantly regenerated periodontal bone in swine. The hDPSC sheet had more bone regeneration capacity compared with hDPSC injection. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0362-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingchao Hu
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Yu Cao
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Yilin Xie
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Zhipeng Fan
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Jinsong Wang
- Beijing SH Bio-tech Corporation, Beijing, 100070, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy & Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No. 4, Beijing, 100050, China. .,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
| |
Collapse
|
36
|
Yates CC, Nuschke A, Rodrigues M, Whaley D, Dechant JJ, Taylor DP, Wells A. Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented With Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds. Cell Transplant 2016; 26:103-113. [PMID: 27452449 DOI: 10.3727/096368916x692249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) remain of great interest in regenerative medicine because of their ability to home to sites of injury, differentiate into a variety of relevant lineages, and modulate inflammation and angiogenesis through paracrine activity. Many studies have found that despite the promise of MSC therapy, cell survival upon implant is highly limited and greatly reduces the therapeutic utility of MSCs. The matrikine tenascin C, a protein expressed often at the edges of a healing wound, contains unique EGF-like repeats that are able to bind EGFR at low affinities and induce downstream prosurvival signaling without inducing receptor internalization. In this study, we utilized tenascin C in a collagen/GAG-based polymer (TPolymer) that has been shown to be beneficial for skin wound healing, incorporating human MSCs into the polymer prior to application to mouse punch biopsy wound beds. We found that the TPolymer was able to promote MSC survival for 21 days in vivo, leading to associated improvements in wound healing such as dermal maturation and collagen content. This was most marked in a model of hypertrophic scarring, in which the scar formation was limited. This approach also reduced the inflammatory response in the wound bed, limiting CD3e+ cell invasion by approximately 50% in the early wound-healing process, while increasing the numbers of endothelial cells during the first week of wound healing as well. Ultimately, this matrikine-based approach to improving MSC survival may be of great use across a variety of cell therapies utilizing matrices as delivery vehicles for cells.
Collapse
|
37
|
Domingues JA, Cherutti G, Motta AC, Hausen MA, Oliveira RT, Silva-Zacarin EC, Barbo MLP, Duek EA. Bilaminar Device of Poly(Lactic-co-Glycolic Acid)/Collagen Cultured With Adipose-Derived Stem Cells for Dermal Regeneration. Artif Organs 2016; 40:938-949. [DOI: 10.1111/aor.12671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juliana A. Domingues
- Department of Cell Biology and Structural; Biology Institute; UNICAMP; Campinas Brazil
| | - Giselle Cherutti
- Department of Materials Engineering; Faculty of Mechanical Engineering; UNICAMP; Campinas Brazil
| | - Adriana C. Motta
- Department of Physiological Sciences; Biomaterials Laboratory; PUC- SP; Sorocaba Brazil
| | - Moema A. Hausen
- Department of Biology; Structural Biology Laboratory; UFSCAR; Sorocaba Brazil
| | - Rômulo T.D. Oliveira
- Department of Physiological Sciences; Biomaterials Laboratory; PUC- SP; Sorocaba Brazil
| | | | | | - Eliana A.R. Duek
- Department of Materials Engineering; Faculty of Mechanical Engineering; UNICAMP; Campinas Brazil
- Department of Physiological Sciences; Biomaterials Laboratory; PUC- SP; Sorocaba Brazil
| |
Collapse
|