1
|
Van Dender C, Timmermans S, Paakinaho V, Vanderhaeghen T, Vandewalle J, Claes M, Garcia B, Roman B, De Waele J, Croubels S, De Bosscher K, Meuleman P, Herpain A, Palvimo JJ, Libert C. A critical role for HNF4α in polymicrobial sepsis-associated metabolic reprogramming and death. EMBO Mol Med 2024; 16:2485-2515. [PMID: 39261648 PMCID: PMC11473810 DOI: 10.1038/s44321-024-00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
In sepsis, limited food intake and increased energy expenditure induce a starvation response, which is compromised by a quick decline in the expression of hepatic PPARα, a transcription factor essential in intracellular catabolism of free fatty acids. The mechanism upstream of this PPARα downregulation is unknown. We found that sepsis causes a progressive hepatic loss-of-function of HNF4α, which has a strong impact on the expression of several important nuclear receptors, including PPARα. HNF4α depletion in hepatocytes dramatically increases sepsis lethality, steatosis, and organ damage and prevents an adequate response to IL6, which is critical for liver regeneration and survival. An HNF4α agonist protects against sepsis at all levels, irrespectively of bacterial loads, suggesting HNF4α is crucial in tolerance to sepsis. In conclusion, hepatic HNF4α activity is decreased during sepsis, causing PPARα downregulation, metabolic problems, and a disturbed IL6-mediated acute phase response. The findings provide new insights and therapeutic options in sepsis.
Collapse
Affiliation(s)
- Céline Van Dender
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maarten Claes
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, Center Hospitalier Universitaire de Lille, 59000, Lille, France
| | - Bart Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, St.-Pierre University Hospital, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Perry AS, Farber-Eger E, Gonzales T, Tanaka T, Robbins JM, Murthy VL, Stolze LK, Zhao S, Huang S, Colangelo LA, Deng S, Hou L, Lloyd-Jones DM, Walker KA, Ferrucci L, Watts EL, Barber JL, Rao P, Mi MY, Gabriel KP, Hornikel B, Sidney S, Houstis N, Lewis GD, Liu GY, Thyagarajan B, Khan SS, Choi B, Washko G, Kalhan R, Wareham N, Bouchard C, Sarzynski MA, Gerszten RE, Brage S, Wells QS, Nayor M, Shah RV. Proteomic analysis of cardiorespiratory fitness for prediction of mortality and multisystem disease risks. Nat Med 2024; 30:1711-1721. [PMID: 38834850 PMCID: PMC11186767 DOI: 10.1038/s41591-024-03039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Gonzales
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Toshiko Tanaka
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeremy M Robbins
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shuliang Deng
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keenan A Walker
- Multimodal Imaging of Neurodegenerative Disease (MIND) Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jacob L Barber
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Prashant Rao
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Y Mi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelley Pettee Gabriel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjoern Hornikel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas Houstis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gabrielle Y Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, MN, USA
| | - Sadiya S Khan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina Columbia, Columbia, SC, USA
| | - Robert E Gerszten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
3
|
Alcober-Boquet L, Kraus N, Huber LS, Vutukuri R, Fuhrmann DC, Stross C, Schaefer L, Scholich K, Zeuzem S, Piiper A, Schulz MH, Trebicka J, Welsch C, Ortiz C. BI-3231, an enzymatic inhibitor of HSD17B13, reduces lipotoxic effects induced by palmitic acid in murine and human hepatocytes. Am J Physiol Cell Physiol 2024; 326:C880-C892. [PMID: 38223924 DOI: 10.1152/ajpcell.00413.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
17-β-hydroxysteroid dehydrogenase 13 (HSD17B13), a lipid droplet-associated enzyme, is primarily expressed in the liver and plays an important role in lipid metabolism. Targeted inhibition of enzymatic function is a potential therapeutic strategy for treating steatotic liver disease (SLD). The present study is aimed at investigating the effects of the first selective HSD17B13 inhibitor, BI-3231, in a model of hepatocellular lipotoxicity using human cell lines and primary mouse hepatocytes in vitro. Lipotoxicity was induced with palmitic acid in HepG2 cells and freshly isolated mouse hepatocytes and the cells were coincubated with BI-3231 to assess the protective effects. Under lipotoxic stress, triglyceride (TG) accumulation was significantly decreased in the BI-3231-treated cells compared with that of the control untreated human and mouse hepatocytes. In addition, treatment with BI-3231 led to considerable improvement in hepatocyte proliferation, cell differentiation, and lipid homeostasis. Mechanistically, BI-3231 increased the mitochondrial respiratory function without affecting β-oxidation. BI-3231 inhibited the lipotoxic effects of palmitic acid in hepatocytes, highlighting the potential of targeting HSD17B13 as a specific therapeutic approach in steatotic liver disease.NEW & NOTEWORTHY 17-β-Hydroxysteroid dehydrogenase 13 (HSD17B13) is a lipid droplet protein primarily expressed in the liver hepatocytes. HSD17B13 is associated with the clinical outcome of chronic liver diseases and is therefore a target for the development of drugs. Here, we demonstrate the promising therapeutic effect of BI-3231 as a potent inhibitor of HSD17B13 based on its ability to inhibit triglyceride accumulation in lipid droplets (LDs), restore lipid metabolism and homeostasis, and increase mitochondrial activity in vitro.
Collapse
Affiliation(s)
- Lucia Alcober-Boquet
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Nico Kraus
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Lisa Sophie Huber
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rajkumar Vutukuri
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Claudia Stross
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Liliana Schaefer
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Klaus Scholich
- Faculty of Medicine, Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Albrecht Piiper
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Marcel H Schulz
- Faculty of Medicine, Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University Hospital Münster, Münster, Germany
| | - Christoph Welsch
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Cristina Ortiz
- Medical Clinic 1, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| |
Collapse
|
4
|
Namachivayam A, Valsala Gopalakrishnan A. Effect of Lauric acid against ethanol-induced hepatotoxicity by modulating oxidative stress/apoptosis signalling and HNF4α in Wistar albino rats. Heliyon 2023; 9:e21267. [PMID: 37908709 PMCID: PMC10613920 DOI: 10.1016/j.heliyon.2023.e21267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Ethanol (EtOH) is most widely used in alcoholic beverages to prepare alcohol. As EtOH is mainly metabolised in the liver, the excessive consumption of EtOH forms a primary toxic metabolic product called acetaldehyde, as the gradual increase in acetaldehyde leads to liver injury, as reported. Lauric acid (LA) is rich in antioxidant, antifungal, antibacterial, anticancer, and antiviral properties. LA is an edible component highly present in coconut oil. However, no report on LA protective effects against the EtOH-instigated hepatotoxicity exists. Therefore, the experiment is carried out to investigate the potency effects of LA on EtOH-instigated hepatotoxicity in thirty male albino rats. Rats were divided into five groups (n-6): control DMSO alone, EtOH -intoxicated, EtOH + LA 180 mg/kg, EtOH + LA 360 mg/kg, and LA alone were administered orally using oral gavage. The study measured body weight every weekend in all rat groups. The rats were sacrificed and assessed for serum markers (alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase), antioxidant activity (superoxide dismutase, reduced glutathione, glutathione peroxidase), lipid peroxidation (malondialdehyde), histopathological, cytokine levels (TNF-α, IL-1β and IL-6), protein expression (caspase 3 and caspase 8 and Bcl-2 and HNF4α) were evaluated after the 56-days study period. The impact of EtOH intoxication reduces the rat's body weight by 90 g, upregulates the liver enzyme markers, depletes the antioxidant levels, produces malondialdehyde, changes the histoarchitecture (periportal inflammation and hepatocyte damage), downregulates the Bcl-2 expressions and HNF4α, and elevates the expression of cytokines and apoptotic markers. LA alleviated EtOH-induced liver toxicity by significant (p < 0.05) modulation of biochemical levels, caspase-8/3 signalling, reducing pro-inflammatory cytokines, and restoring the normal histoarchitecture, upregulating the Bcl-2 and HNF4α Expressions. In conclusion, LA treatment can protect the liver against EtOH-induced hepatotoxicity, evidenced by alleviating Oxidative stress, lipid peroxidation, inflammation, apoptosis, and upregulation of HNF4α.
Collapse
Affiliation(s)
- Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
5
|
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is a highly conserved member of the nuclear receptor superfamily expressed at high levels in the liver, kidney, pancreas, and gut. In the liver, HNF4α is exclusively expressed in hepatocytes, where it is indispensable for embryonic and postnatal liver development and for normal liver function in adults. It is considered a master regulator of hepatic differentiation because it regulates a significant number of genes involved in hepatocyte-specific functions. Loss of HNF4α expression and function is associated with the progression of chronic liver disease. Further, HNF4α is a target of chemical-induced liver injury. In this review, we discuss the role of HNF4α in liver pathophysiology and highlight its potential use as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
Shu Y, Hassan F, Ostrowski MC, Mehta KD. Role of hepatic PKCβ in nutritional regulation of hepatic glycogen synthesis. JCI Insight 2021; 6:149023. [PMID: 34622807 PMCID: PMC8525638 DOI: 10.1172/jci.insight.149023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
The signaling mechanisms by which dietary fat and cholesterol signals regulate central pathways of glucose homeostasis are not completely understood. By using a hepatocyte-specific PKCβ-deficient (PKCβHep-/-) mouse model, we demonstrated the role of hepatic PKCβ in slowing disposal of glucose overload by suppressing glycogenesis and increasing hepatic glucose output. PKCβHep-/- mice exhibited lower plasma glucose under the fed condition, modestly improved systemic glucose tolerance and mildly suppressed gluconeogenesis, increased hepatic glycogen accumulation and synthesis due to elevated glucokinase expression and activated glycogen synthase (GS), and suppressed glucose-6-phosphatase expression compared with controls. These events were independent of hepatic AKT/GSK-3α/β signaling and were accompanied by increased HNF-4α transactivation, reduced FoxO1 protein abundance, and elevated expression of GS targeting protein phosphatase 1 regulatory subunit 3C in the PKCβHep-/- liver compared with controls. The above data strongly imply that hepatic PKCβ deficiency causes hypoglycemia postprandially by promoting glucose phosphorylation via upregulating glucokinase and subsequently redirecting more glucose-6-phosphate to glycogen via activating GS. In summary, hepatic PKCβ has a unique and essential ability to induce a coordinated response that negatively affects glycogenesis at multiple levels under physiological postprandial conditions, thereby integrating nutritional fat intake with dysregulation of glucose homeostasis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Faizule Hassan
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael C Ostrowski
- Department of Biochemistry & Molecular Biology, Holling Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kamal D Mehta
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Instacare Therapeutics, Dublin, Ohio, USA
| |
Collapse
|