1
|
Pahlavanneshan S, Behmanesh M, Tahamtani Y, Hajizadeh-Saffar E, Basiri M, Baharvand H. Induction of ß Cell Replication by Small Molecule-Mediated Menin Inhibition and Combined PKC Activation and TGF‑ß Inhibition as Revealed by A Refined Primary Culture Screening. CELL JOURNAL 2021; 23:633-639. [PMID: 34939756 PMCID: PMC8665985 DOI: 10.22074/cellj.2021.7437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/04/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Pancreatic β cells are recognized as central players in the pathogenesis of types 1 and 2 diabetes. Efficient and robust primary culture methods are required to interrogate β cell biology and screen potential anti-diabetic therapeutics. The aim of this study was to refine monolayer culture of beta cells and to investigate potential inducers of beta cell proliferation. MATERIALS AND METHODS In this experimental study, we compared different culture methods to optimize conditions required for a monolayer culture of rat pancreatic islet cells in order to facilitate image analysis-based assays. We also used the refined culture method to screen a group of rationally selected candidate small molecules and their combinations to determine their potential proliferative effects on the β cells. RESULTS Ham's F10 medium supplemented with 2% foetal bovine serum (FBS) in the absence of any surface coating provided a superior monolayer β cell culture, while other conditions induced fibroblast-like cell growth or multilayer cell aggregation over two weeks. Evaluation of candidate small molecules showed that a menin inhibitor MI-2 and a combination of transforming growth factor-β (TGF-β) inhibitor SB481542 and protein kinase C (PKC) activator indolactam V (IndV) significantly induced replication of pancreatic β cells. CONCLUSION Overall, our optimized culture condition provided a convenient approach to study the cultured pancreatic islet cells and enabled us to detect the proliferative effect of menin inhibition and combined TGF-β inhibition and PKC activation, which could be considered as potential strategies for inducing β cell proliferation and regeneration.
Collapse
Affiliation(s)
- Saghar Pahlavanneshan
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,P.O.Box: 14115-154Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIranP.O.Box: 16635-148Department of Stem Cells and Developmental BiologyCell Science Research CentreRoyan Institute for Stem Cell Biology
and TechnologyACECRTehranIran
Emails: ,
| | - Yaser Tahamtani
- . Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran
| | - Mohsen Basiri
- . Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- . Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Department of Developmental Biology, University of Science and Culture, Tehran, Iran,P.O.Box: 14115-154Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIranP.O.Box: 16635-148Department of Stem Cells and Developmental BiologyCell Science Research CentreRoyan Institute for Stem Cell Biology
and TechnologyACECRTehranIran
Emails: ,
| |
Collapse
|
2
|
Goddi A, Schroedl L, Brey EM, Cohen RN. Laminins in metabolic tissues. Metabolism 2021; 120:154775. [PMID: 33857525 DOI: 10.1016/j.metabol.2021.154775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Laminins are extracellular matrix proteins that reside in the basement membrane and provide structural support in addition to promoting cellular adhesion and migration. Through interactions with cell surface receptors, laminins stimulate intracellular signaling cascades which direct specific survival and differentiation outcomes. In metabolic tissues such as the pancreas, adipose, muscle, and liver, laminin isoforms are expressed in discrete temporal and spatial patterns suggesting that certain isoforms may support the development and function of particular metabolic cell types. This review focuses on the research to date detailing the expression of laminin isoforms, their potential function, as well as known pathways involved in laminin signaling in metabolic tissues. We will also discuss the current biomedical therapies involving laminins in these tissues in addition to prospective applications, with the goal being to encourage future investigation of laminins in the context of metabolic disease.
Collapse
Affiliation(s)
- Anna Goddi
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA
| | - Liesl Schroedl
- Pritzker School of Medicine, The University of Chicago, 924 E 57th St, Chicago, IL 60637, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ronald N Cohen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA; Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
4
|
In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells. J Genet Eng Biotechnol 2018; 16:433-440. [PMID: 30733757 PMCID: PMC6354004 DOI: 10.1016/j.jgeb.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/09/2018] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSCs) is a heterogeneous population. Muse cells is a rare pluripotent subpopulation within MSCs. This study aims to evaluate the pulirpotency and the ability of Muse cells to generate insulin producing cells (IPCs) after in vitro differentiation protocol compared to the non-Muse cells. Muse cells were isolated by FACSAria III cell sorter from adipose-derived MSCs and were evaluated for its pluripotency. Following in vitro differentiation, IPCs derived from Muse and non-Muse cells were evaluated for insulin production. Muse cells comprised 3.2 ± 0.7% of MSCs, approximately 82% of Muse cells were positive for anti stage-specific embryonic antigen-3 (SSEA-3). Pluripotent markers were highly expressed in Muse versus non-Muse cells. The percentage of generated IPCs by flow cytometric analysis was higher in Muse cells. Under confocal microscopy, Muse cells expressed insulin and c-peptide while it was undetected in non-Muse cells. Our results introduced Muse cells as a new adult pluripotent subpopulation, which is capable to produce higher number of functional IPCs.
Collapse
|
5
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
6
|
Sigmundsson K, Ojala JR, Öhman MK, Österholm AM, Moreno-Moral A, Domogatskaya A, Chong LY, Sun Y, Chai X, Steele JA, George B, Patarroyo M, Nilsson AS, Rodin S, Ghosh S, Stevens MM, Petretto E, Tryggvason K. Culturing functional pancreatic islets on α5-laminins and curative transplantation to diabetic mice. Matrix Biol 2018; 70:5-19. [DOI: 10.1016/j.matbio.2018.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022]
|
7
|
Fujita I, Utoh R, Yamamoto M, Okano T, Yamato M. The liver surface as a favorable site for islet cell sheet transplantation in type 1 diabetes model mice. Regen Ther 2018; 8:65-72. [PMID: 30271868 PMCID: PMC6147207 DOI: 10.1016/j.reth.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Islet transplantation is one of the most promising therapeutic approaches for patients with severe type 1 diabetes mellitus (T1DM). Transplantation of engineered islet cell sheets holds great potential for treating T1DM as it enables the creation of stable neo-islet tissues. However, a large mass of islet cell sheets is required for the subcutaneous transplantation to reverse hyperglycemia in diabetic mice. Here, we investigated whether the liver surface could serve as an alternative site for islet cell sheet transplantation. METHODS Dispersed rat islet cells (0.8 × 106 cells) were cultured on laminin-332-coated thermoresponsive culture dishes. After 2 days of cultivation, we harvested the islet cell sheets by lowering the culture temperature using a support membrane with a gelatin gel. We transplanted two recovered islet cell sheets into the subcutaneous space or onto the liver surface of severe combined immunodeficiency (SCID) mice with streptozocin-induced diabetes. RESULTS In the liver surface group, the non-fasting blood glucose level decreased rapidly within several days after transplantation. In marked contrast, the hyperglycemia state was maintained in the subcutaneous space transplantation group. The levels of rat C-peptide and insulin in the liver surface group were significantly higher than those in the subcutaneous space group. An immunohistological analysis confirmed that most of the islet cells engrafted on the liver surface were insulin-positive. The CD31-positive endothelial cells formed vascular networks within the neo-islets and in the surrounding tissues. In contrast, viable islet cells were not found in the subcutaneous space group. CONCLUSIONS Compared with the subcutaneous space, a relatively small mass of islet cell sheets was enough to achieve normoglycemia in diabetic mice when the liver surface was selected as the transplantation site. Our results demonstrate that the optimization of the transplantation site for islet cell sheets leads to significant improvements in the therapeutic efficiency for T1DM.
Collapse
Affiliation(s)
- Izumi Fujita
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
8
|
Smink AM, de Vos P. Therapeutic Strategies for Modulating the Extracellular Matrix to Improve Pancreatic Islet Function and Survival After Transplantation. Curr Diab Rep 2018; 18:39. [PMID: 29779190 PMCID: PMC5960477 DOI: 10.1007/s11892-018-1014-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSES OF REVIEW Extracellular matrix (ECM) components modulate the interaction between pancreatic islet cells. During the islet isolation prior to transplantation as treatment for type 1 diabetes, the ECM is disrupted impacting functional graft survival. Recently, strategies for restoring ECM have shown to improve transplantation outcomes. This review discusses the current therapeutic strategies to modulate ECM components to improve islet engraftment. RECENT FINDINGS Approaches applied are seeding islets in ECM of decellularized organs, supplementation of specific ECM components in polymeric scaffolds or immunoisolating capsules, and stimulating islet ECM production with specific growth factors or ECM-producing cells. These strategies have shown success in improving functional islet survival. However, the same experiments show that caution should be taken as some ECM components may negatively impact islet function and engraftment. ECM restoration resulted in improved transplantation outcomes, but careful selection of beneficial ECM components and strategies is warranted.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9713 GZ, Groningen, The Netherlands.
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Haraguchi Y, Kagawa Y, Hasegawa A, Kubo H, Shimizu T. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge. Biotechnol Prog 2018; 34:692-701. [PMID: 29345093 DOI: 10.1002/btpr.2612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/19/2017] [Indexed: 11/12/2022]
Abstract
Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:692-701, 2018.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuki Kagawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Akiyuki Hasegawa
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Wang YL, He M, Miron RJ, Chen AY, Zhao YB, Zhang YF. Temperature/pH-Sensitive Nanoantibiotics and Their Sequential Assembly for Optimal Collaborations between Antibacterial and Immunoregulation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31589-31599. [PMID: 28856893 DOI: 10.1021/acsami.7b10384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Treatment of bacterial infections due to the fast emergence of drug-resistant bacteria is a significant challenge faced in modern medicine. Here the authors report a drug-induced self-assembly nanoantibiotic for treating bacterial infection, with temperature/pH-sensitivity, synergistic antibacterial effect of silver and antibiotics, and immunoregulatory effect. In this nanoantibiotic, smart polymer p(N-isopropylacrylamide-b-acrylic acid) triblock polymer (PNA) utilized to encapsulate the drugs provides convenience in preparing this structure simply through drug-induced self-assembly and controllable release profile by changing the sequence of addition of different drugs. The polymer also allows the nanoantibiotic to be responsive to multiple external stimuli such as pH, temperature, and ionic strength. The silver and antibiotics codelivered in this nanoantibiotic can exert a synergistic antibacterial effect due to the different antibacterial mechanisms. More importantly, macrophages can be activated into an M2 phenotype to promote tissue repair by this nanoantibiotic for the negative surface charge and the antibiotics contained. The self-assembly nanoantibiotic exhibited great promise to be applied in the treatment of bacterial infection and provide favorable utility for inflammation treatment, tissue engineering, and targeted therapy.
Collapse
Affiliation(s)
- Yu-Lan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University , Wuhan, 430071, P. R. China
| | - Ming He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, 430074, P. R. China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, 430079, P. R. China
| | - Ao-Ying Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, 430079, P. R. China
| | - Yan-Bing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, 430074, P. R. China
| | - Yu-Feng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan, 430079, P. R. China
- Medical Research Institute, School of Medicine, Wuhan University , Wuhan, 430071, P. R. China
| |
Collapse
|
11
|
Rawal S, Williams SJ, Ramachandran K, Stehno-Bittel L. Integration of mesenchymal stem cells into islet cell spheroids improves long-term viability, but not islet function. Islets 2017; 9:87-98. [PMID: 28662368 PMCID: PMC5624285 DOI: 10.1080/19382014.2017.1341455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pancreatic islets, especially the large islets (> 150µm in diameter) have poor survival rates in culture. Co-culturing with mesenchymal stem cells (MSCs) has been shown to improve islet survival and function. However, most co-culture studies have been comprised of MSC surrounding islets in the media. The purpose of this study was to determine whether islet survival and function was improved when the 2 populations of cells were intermingled with each other in a defined geometry. Hybrid spheroids containing 25, 50 or 75 or 90% islets cells with appropriate numbers of MSCs were created along with spheroids comprised of only islet cells or only MSCs. Spheroids were tested for yield, viability, diameter, cellular composition, and glucose-stimulated insulin secretion. The 25% islet/75% MSC group created the fewest spheroids, with the poorest survival and insulin secretion and the largest diameter. The remaining groups were highly viable with average diameters under 80µm at formation. However, the hybrid spheroid groups preferred to cluster in islet-only spheroids. The 50, 75 and 90% islet cell groups had excellent long-term survival with 90-95% viability at 2 weeks in culture, compared with the islet only group that were below 80% viability. The glucose-stimulated insulin secretion was not statistically different for the 50, 75, or 90 groups when exposed to 2.4, 16.8, or 22.4 mM glucose. Only the spheroids with 25% islet cells had a statistically lower levels of insulin release, and the 100% had statistically higher levels at 22.4 mM glucose and in response to secretagogue. Thus, imbedded co-culture improved long-term viability, but failed to enhance glucose-stimulated insulin secretion in vitro.
Collapse
Affiliation(s)
- Sonia Rawal
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - S. Janette Williams
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Likarda LLC, Kansas City, KS, USA
| | | | - Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Likarda LLC, Kansas City, KS, USA
- CONTACT Lisa Stehno-Bittel Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 2002, Kansas City, KS 66160, USA
| |
Collapse
|
12
|
Pancreatic Islet Transplantation Technologies: State of the Art of Micro- and Macro-Encapsulation. CURRENT TRANSPLANTATION REPORTS 2017. [DOI: 10.1007/s40472-017-0154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|