1
|
Curt MD, Sánchez G, Aguado PL, Santín-Montanyá I. Lindernia dubia (L.) Pennel as an Alien Weed in Central Spain: A Case Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1859. [PMID: 38999698 PMCID: PMC11244003 DOI: 10.3390/plants13131859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Lindernia dubia (L.) Pennell is a species with invasive behavior outside of its native range of distribution (America), linked mainly to aquatic habitats. This annual species has been acknowledged as a weed in rice paddies in Europe and Asia. Due to the impacts of this invasive plant, some authors have even listed this species as a global invader. The present work focused on spontaneous plant species occurring in seedlings of Typha domingensis Pers. grown in central Spain for the establishment of constructed wetlands. Weed inventory revealed the presence of L. dubia as a dominant spontaneous species in this crop environment. A suite of mesocosm experiments were designed to study the population density of L. dubia versus that of the other dominant plant species, and to determine traits associated with its weedy potential. The results showed that L. dubia presents competitive attributes such as morphological variability, early flowering, long seeding time, short growth cycle, small and light seeds and a high seed production and germination rate (25 °C), meaning a high reproductive capacity in a cycle of about three months for plant growth in non-limiting conditions. The data obtained from this work provide a basis for understanding the weedy potential of L. dubia, and for management decisions of a potentially invasive species, which has been little investigated in Europe.
Collapse
Affiliation(s)
- María Dolores Curt
- Department of Agrarian Production, Universidad Politécnica de Madrid (UPM), Calle Ramiro de Maeztu 7, 28040 Madrid, Spain; (G.S.); (P.L.A.)
| | - Gema Sánchez
- Department of Agrarian Production, Universidad Politécnica de Madrid (UPM), Calle Ramiro de Maeztu 7, 28040 Madrid, Spain; (G.S.); (P.L.A.)
| | - Pedro Luis Aguado
- Department of Agrarian Production, Universidad Politécnica de Madrid (UPM), Calle Ramiro de Maeztu 7, 28040 Madrid, Spain; (G.S.); (P.L.A.)
| | - Inés Santín-Montanyá
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
2
|
Hesse-Withbroe JL, Whitaker DL. Backspin in Ruellia ciliatiflora does not maximize seed dispersal range, but provides moderate dispersal range that is robust to launch conditions. J R Soc Interface 2024; 21:20230486. [PMID: 38471534 PMCID: PMC10932702 DOI: 10.1098/rsif.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Ruellia ciliatiflora is a perennial herb whose fruits explosively dehisce, launching their thin disc-like seeds over 6 m with a backspin up to 1660 Hz. While it has been previously shown that the backspin launch orientation minimizes the aerodynamic drag experienced by the seeds, it is not immediately obvious whether backspin is also the range-maximizing launch orientation. Here the three-dimensional equation of motion of a thin, spinning disc flying through a fluid medium was derived and solved numerically to simulate the flight of seeds of R. ciliatiflora under different launch conditions. Simulations of seed flights reveal that the range-maximizing launch orientation lies between sidespin and topspin, far from the backspin that is observed in nature. While this range-maximizing orientation results in dispersal ranges of nearly 10 m, the precise orientation is highly sensitive to other launch parameters, chiefly spin rate and launch angle. By contrast, backspin, which yields moderate dispersal ranges about 60% of the range-maximizing orientation, is robust to perturbations in launch parameters that the plant cannot precisely control.
Collapse
Affiliation(s)
| | - Dwight L. Whitaker
- Department of Physics and Astronomy, Pomona College, Claremont, CA, USA
- California Botanic Garden, Claremont, CA, USA
| |
Collapse
|
3
|
Chen YS, Muellner-Riehl AN, Yang Y, Liu J, Dimitrov D, Luo A, Luo Y, Sun H, Wang ZH. Dispersal modes affect Rhamnaceae diversification rates in a differentiated manner. Proc Biol Sci 2023; 290:20231926. [PMID: 37989241 PMCID: PMC10688438 DOI: 10.1098/rspb.2023.1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
The evolution of dispersal modes has been proposed to promote the diversification of angiosperms. However, little is known about the relative impact of different dispersal modes on plant diversification. We test the association between dispersal modes and diversification rates using Rhamnaceae, the cosmopolitan buckthorn family, as a model. We found that species with diplochory have the highest diversification rates followed by those with myrmecochory and ballistic dispersal, while lineages dispersed by vertebrates and wind have relatively low diversification rates. The difference in diversification rates may be closely linked to the difference in dispersal distance and ecological interactions implied by each dispersal mode. Species which disperse over larger geographical distances may have much higher speciation rates due to the increased chance of establishing isolated populations due to geological barriers or habitat fragmentation. However, long-distance dispersal may also increase the chance of extinction. By contrast, species with short-distance dispersal modes may have low speciation rates. Complex interactions with the surrounding environment may, however, impact diversification rates positively by increasing plant survival and reproductive success.
Collapse
Affiliation(s)
- Yong-Sheng Chen
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Alexandra N. Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, 04013 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04013 Leipzig, Germany
| | - Yi Yang
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, People's Republic of China
- Research Center of Ecological Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, People's Republic of China
| | - Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen 7800, 5020, Norway
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yuan Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhi-Heng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
4
|
Ohlendorf R, Tan NYH, Nakayama N. Engineering Themes in Plant Forms and Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:777-801. [PMID: 37216204 DOI: 10.1146/annurev-arplant-061422-094751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Living structures constantly interact with the biotic and abiotic environment by sensing and responding via specialized functional parts. In other words, biological bodies embody highly functional machines and actuators. What are the signatures of engineering mechanisms in biology? In this review, we connect the dots in the literature to seek engineering principles in plant structures. We identify three thematic motifs-bilayer actuator, slender-bodied functional surface, and self-similarity-and provide an overview of their structure-function relationships. Unlike human-engineered machines and actuators, biological counterparts may appear suboptimal in design, loosely complying with physical theories or engineering principles. We postulate what factors may influence the evolution of functional morphology and anatomy to dissect and comprehend better the why behind the biological forms.
Collapse
Affiliation(s)
- Rahel Ohlendorf
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| | | | - Naomi Nakayama
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
5
|
Huang LJ, Fu WL. A water drop-shaped slingshot in plants: geometry and mechanics in the explosive seed dispersal of Orixa japonica (Rutaceae). ANNALS OF BOTANY 2021; 127:765-774. [PMID: 33608717 PMCID: PMC8103806 DOI: 10.1093/aob/mcab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS In angiosperms, many species disperse their seeds autonomously by rapid movement of the pericarp. The fruits of these species often have long rod- or long plate-shaped pericarps, which are suitable for ejecting seeds during fruit dehiscence by bending or coiling. However, here we show that fruit with a completely different shape can also rely on pericarp movement to disperse seeds explosively, as in Orixa japonica. METHODS Fruit morphology was observed by hard tissue sectioning, scanning electron microscopy and micro-computed tomography, and the seed dispersal process was analysed using a high-speed camera. Comparisons were made of the geometric characteristics of pericarps before and after fruit dehiscence, and the mechanical process of pericarp movement was simulated with the aid of the finite element model. KEY RESULTS During fruit dehydration, the water drop-shaped endocarp of O. japonica with sandwich structure produced two-way bending deformation and cracking, and its width increased more than three-fold before opening. Meanwhile the same shaped exocarp with uniform structure could only produce small passive deformation under relatively large external forces. The endocarp forced the exocarp to open by hygroscopic movement before seed launching, and the exocarp provided the acceleration for seed launching through a reaction force. CONCLUSIONS Two layers of water drop-shaped pericarp in O. japonica form a structure similar to a slingshot, which launches the seed at high speed during fruit dehiscence. The results suggest that plants with explosive seed dispersal appear to have a wide variety of fruit morphology, and through a combination of different external shapes and internal structures, they are able to move rapidly using many sophisticated mechanisms.
Collapse
Affiliation(s)
- Lan-Jie Huang
- College of Life Sciences, Hubei University, WuhanChina
| | - Wen-Long Fu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, WuhanChina
- University of Chinese Academy of Sciences, BeijingChina
| |
Collapse
|
6
|
Neumann U, Hay A. Seed coat development in explosively dispersed seeds of Cardamine hirsuta. ANNALS OF BOTANY 2020; 126:39-59. [PMID: 31796954 PMCID: PMC7304473 DOI: 10.1093/aob/mcz190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Seeds are dispersed by explosive coiling of the fruit valves in Cardamine hirsuta. This rapid coiling launches the small seeds on ballistic trajectories to spread over a 2 m radius around the parent plant. The seed surface interacts with both the coiling fruit valve during launch and subsequently with the air during flight. We aim to identify features of the seed surface that may contribute to these interactions by characterizing seed coat differentiation. METHODS Differentiation of the outermost seed coat layers from the outer integuments of the ovule involves dramatic cellular changes that we characterize in detail at the light and electron microscopical level including immunofluorescence and immunogold labelling. KEY RESULTS We found that the two outer integument (oi) layers of the seed coat contributed differently to the topography of the seed surface in the explosively dispersed seeds of C. hirsuta vs. the related species Arabidopsis thaliana where seed dispersal is non-explosive. The surface of A. thaliana seeds is shaped by the columella and the anticlinal cell walls of the epidermal oi2 layer. In contrast, the surface of C. hirsuta seeds is shaped by a network of prominent ridges formed by the anticlinal walls of asymmetrically thickened cells of the sub-epidermal oi1 layer, especially at the seed margin. Both the oi2 and oi1 cell layers in C. hirsuta seeds are characterized by specialized, pectin-rich cell walls that are deposited asymmetrically in the cell. CONCLUSIONS The two outermost seed coat layers in C. hirsuta have distinct properties: the sub-epidermal oi1 layer determines the topography of the seed surface, while the epidermal oi2 layer accumulates mucilage. These properties are influenced by polar deposition of distinct pectin polysaccharides in the cell wall. Although the ridged seed surface formed by oi1 cell walls is associated with ballistic dispersal in C. hirsuta, it is not restricted to explosively dispersed seeds in the Brassicaceae.
Collapse
Affiliation(s)
- Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
7
|
ELLIOTT L, KIRCHHELLE C. The importance of being edgy: cell geometric edges as an emerging polar domain in plant cells. J Microsc 2020; 278:123-131. [PMID: 31755561 PMCID: PMC7318577 DOI: 10.1111/jmi.12847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023]
Abstract
Polarity is an essential feature of multicellular organisms and underpins growth and development as well as physiological functions. In polyhedral plant cells, polar domains at different faces have been studied in detail. In recent years, cell edges (where two faces meet) have emerged as discrete spatial domains with distinct biochemical identities. Here, we review and discuss recent advances in our understanding of cell edges as functional polar domains in plant cells and other organisms, highlighting conceptual parallels and open questions regarding edge polarity.
Collapse
Affiliation(s)
- L. ELLIOTT
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordUK
| | - C. KIRCHHELLE
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordUK
| |
Collapse
|
8
|
Poppinga S, Böse AS, Seidel R, Hesse L, Leupold J, Caliaro S, Speck T. A seed flying like a bullet: ballistic seed dispersal in Chinese witch-hazel (Hamamelis mollis OLIV., Hamamelidaceae). J R Soc Interface 2019; 16:20190327. [PMID: 31387485 PMCID: PMC6731504 DOI: 10.1098/rsif.2019.0327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
The fruits of Chinese witch-hazel (Hamamelis mollis, Hamamelidaceae) act as 'drying squeeze catapults', shooting their seeds several metres away. During desiccation, the exocarp shrinks and splits open, and subsequent endocarp deformation is a complex three-dimensional shape change, including formation of dehiscence lines, opening of the apical part and formation of a constriction at the middle part. Owing to the constriction forming, mechanical pressure is increasingly applied on the seed until ejection. We describe a structural latch system consisting of connective cellular structures between endocarp and seed, which break with a distinct cracking sound upon ejection. A maximum seed velocity of 12.3 m s-1, maximum launch acceleration of 19 853 m s-2 (approx. 2000g) and maximum seed rotational velocity of 25 714 min-1 were measured. We argue that miniscule morphological differences between the inner endocarp surface and seed, which features a notable ridge, are responsible for putting spin on the seed. This hypothesis is further corroborated by the observation that there is no preferential seed rotation direction among fruits. Our findings show that H. mollis has evolved similar mechanisms for stabilizing a 'shot out' seed as humans use for stabilizing rifle bullets and are discussed in an ecological (dispersal biology), biomechanical (seed ballistics) and functional-morphological (fine-tuning and morphospace of functional endocarps) contexts, and promising additional aspects for future studies are proposed.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Anne-Sophie Böse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Robin Seidel
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sandra Caliaro
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Chen S, Pahlevani AH, Malíková L, Riina R, Thomson FJ, Giladi I. Trade‐off or coordination? Correlations between ballochorous and myrmecochorous phases of diplochory. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Si‐Chong Chen
- Royal Botanic Gardens, Kew Wakehurst Place UK
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research Ben‐Gurion University of the Negev Midreshet Ben‐Gurion Israel
| | - Amir H. Pahlevani
- Department of Botany, Iranian Research Institute of Plant Protection Agricultural Research, Education and Extension Organization Tehran Iran
| | - Lenka Malíková
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research Ben‐Gurion University of the Negev Midreshet Ben‐Gurion Israel
- Department of Biological Disciplines, Faculty of Agriculture University of South Bohemia České Budějovice Czech Republic
| | | | | | - Itamar Giladi
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research Ben‐Gurion University of the Negev Midreshet Ben‐Gurion Israel
| |
Collapse
|
10
|
Cooper ES, Mosher MA, Cross CM, Whitaker DL. Gyroscopic stabilization minimizes drag on Ruellia ciliatiflora seeds. J R Soc Interface 2018. [PMID: 29514987 DOI: 10.1098/rsif.2017.0901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fruits of Ruellia ciliatiflora (Acanthaceae) explosively launch small (2.5 mm diameter × 0.46 mm thick), disc-shaped seeds at velocities over 15 m s-1, reaching distances of up to 7 m. Through high-speed video analysis, we observe that seeds fly with extraordinary backspin of up to 1660 Hz. By modelling the seeds as spinning discs, we show that flying with backspin is stable against gyroscopic precession. This stable backspin orientation minimizes the frontal area during flight, decreasing drag force on the seeds and thus increasing dispersal distance. From high-speed video of the seeds' flight, we experimentally determine drag forces that are 40% less than those calculated for a sphere of the same volume and density. This reduces the energy costs for seed dispersal by up to a factor of five.
Collapse
Affiliation(s)
- Eric S Cooper
- Department of Physics and Astronomy, Pomona College, Claremont, CA, USA
| | - Molly A Mosher
- Department of Physics and Astronomy, Pomona College, Claremont, CA, USA
| | - Carolyn M Cross
- Department of Physics and Astronomy, Pomona College, Claremont, CA, USA
| | - Dwight L Whitaker
- Department of Physics and Astronomy, Pomona College, Claremont, CA, USA .,Rancho Santa Ana Botanic Garden, Claremont, CA, USA
| |
Collapse
|
11
|
Leins P, Fligge K, Erbar C. Silique valves as sails in anemochory of Lunaria (Brassicaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:238-243. [PMID: 29105935 DOI: 10.1111/plb.12659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/30/2017] [Indexed: 05/25/2023]
Abstract
The generally held opinion that seeds of Lunaria remain at the replum after detachment of the two valves and then wind causes a shaking or rattling of the replum with its diaphragm, thus launching the seeds, is challenged. In a sparse forest in the Swabian Alb, the first author noticed flying valves of Lunaria rediviva to which the narrow-winged flat seeds are attached. Investigations with SEM and histology have shown that the valves secrete a glue only at those sites where the seeds rest on the valves before valve tissues die. Further analysis has shown (using the periodic acid-Schiff reaction) that the glue consists of polysaccharides. After detachment and dispersal of the valves, the adhesive strength continuously decreases. This is the first report for a sticky valve exudate in the Brassicaceae. Because of the adhesion of Lunaria seeds to their valves for some time, the 1st order diaspore is a mericarp, in a broad sense, and can be interpreted as an adaptation to long-distance dispersal by stronger winds. In this context, the 'flying carpets' of Lunaria are more effective and transport more than one seed. Molecular studies assigned Lunaria to the tribe Biscutelleae, which now contains the angustiseptate genera Biscutella and Megadenia as well as the latiseptate genera Lunaria and Ricotia. The valves in Ricotia can easily be detached (studied in herbarium material and a living plant), but, in contrast to Lunaria, the ripe seeds remain at the replum and its diaphragm, respectively.
Collapse
Affiliation(s)
- P Leins
- Centre for Organismal Studies Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - K Fligge
- Centre for Organismal Studies Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - C Erbar
- Centre for Organismal Studies Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Monniaux M, Hay A. Cells, walls, and endless forms. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:114-121. [PMID: 27825067 DOI: 10.1016/j.pbi.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 05/26/2023]
Abstract
A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
13
|
Sakes A, van der Wiel M, Henselmans PWJ, van Leeuwen JL, Dodou D, Breedveld P. Shooting Mechanisms in Nature: A Systematic Review. PLoS One 2016; 11:e0158277. [PMID: 27454125 PMCID: PMC4959704 DOI: 10.1371/journal.pone.0158277] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill. METHODS We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting. RESULTS Shooting mechanisms were identified with projectile masses ranging from 1·10-9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi), or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals), or water evaporation from the system (reaching up to -197 atmospheres; observed in plants and fungi). The generated energy is stored as elastic (potential) energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1) in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum) by compression of the spore and droplets and (2) in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5,413,000g in cnidarians, the launch velocities from 0.1 m/s in the fungal phylum Basidiomycota to 237 m/s in the mulberry Morus alba, and the launch distances from a few thousands of a millimeter in Basidiomycota to 60 m in the rainforest tree Tetraberlinia moreliana. The mass-specific power outputs range from 0.28 W/kg in the water evaporation mechanism in Basidiomycota to 1.97·109 W/kg in cnidarians using water absorption as energy source. DISCUSSION AND CONCLUSIONS The magnitude of accelerations involved in shooting is generally scale-dependent with the smaller the systems, discharging the microscale projectiles, generating the highest accelerations. The mass-specific power output is also scale dependent, with smaller mechanisms being able to release the energy for shooting faster than larger mechanisms, whereas the mass-specific work delivered by the shooting mechanism is mostly independent of the scale of the shooting mechanism. Higher mass-specific work-values are observed in osmosis-powered shooting mechanisms (≤ 4,137 J/kg) when compared to muscle-powered mechanisms (≤ 1,269 J/kg). The achieved launch parameters acceleration, velocity, and distance, as well as the associated delivered power output and work, thus depend on the working principle and scale of the shooting mechanism.
Collapse
Affiliation(s)
- Aimée Sakes
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Marleen van der Wiel
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Paul W. J. Henselmans
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dimitra Dodou
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Paul Breedveld
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
14
|
Hofhuis H, Moulton D, Lessinnes T, Routier-Kierzkowska AL, Bomphrey RJ, Mosca G, Reinhardt H, Sarchet P, Gan X, Tsiantis M, Ventikos Y, Walker S, Goriely A, Smith R, Hay A. Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell 2016; 166:222-33. [PMID: 27264605 PMCID: PMC4930488 DOI: 10.1016/j.cell.2016.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 11/27/2022]
Abstract
How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells-a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hugo Hofhuis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Derek Moulton
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Thomas Lessinnes
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | | | - Richard J Bomphrey
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Gabriella Mosca
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany; Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Hagen Reinhardt
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Penny Sarchet
- Plant Sciences Department, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Xiangchao Gan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Yiannis Ventikos
- Mechanical Engineering Department, University College London, Torrington Place, London WC1E 7JE, UK
| | - Simon Walker
- Zoology Department, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Richard Smith
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
15
|
Abstract
Plants use rapid movements to disperse seed, spores, or pollen and catch animal prey. Most rapid-release mechanisms only work once and, if repeatable, regaining the prerelease state is a slow and costly process. We present an encompassing mechanism for a rapid, repeatable, passive-dynamic motion used by a carnivorous pitcher plant to catch prey. Nepenthes gracilis uses the impact of rain drops to catapult insects from the underside of the canopy-like pitcher lid into the fluid-filled trap below. High-speed video and laser vibrometry revealed that the lid acts as a torsional spring system, driven by rain drops. During the initial downstroke, the tip of the lid reached peak velocities similar to fast animal motions and an order of magnitude faster than the snap traps of Venus flytraps and catapulting tentacles of the sundew Drosera glanduligera. In contrast to these active movements, the N. gracilis lid oscillation requires neither mechanical preloading nor metabolic energy, and its repeatability is only limited by the intensity and duration of rainfall. The underside of the lid is coated with friction-reducing wax crystals, making insects more vulnerable to perturbations. We show that the trapping success of N. gracilis relies on the combination of material stiffness adapted for momentum transfer and the antiadhesive properties of the wax crystal surface. The impact-driven oscillation of the N. gracilis lid represents a new kind of rapid plant movement with adaptive function. Our findings establish the existence of a continuum between active and passive trapping mechanisms in carnivorous plants.
Collapse
|
16
|
Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M, Komatsu K, Katayama T, Sayama T, Ishimoto M, Fujino K. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci U S A 2014; 111:17797-802. [PMID: 25468966 PMCID: PMC4273335 DOI: 10.1073/pnas.1417282111] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pod dehiscence (shattering) is essential for the propagation of wild plant species bearing seeds in pods but is a major cause of yield loss in legume and crucifer crops. Although natural genetic variation in pod dehiscence has been, and will be, useful for plant breeding, little is known about the molecular genetic basis of shattering resistance in crops. Therefore, we performed map-based cloning to unveil a major quantitative trait locus (QTL) controlling pod dehiscence in soybean. Fine mapping and complementation testing revealed that the QTL encodes a dirigent-like protein, designated as Pdh1. The gene for the shattering-resistant genotype, pdh1, was defective, having a premature stop codon. The functional gene, Pdh1, was highly expressed in the lignin-rich inner sclerenchyma of pod walls, especially at the stage of initiation in lignin deposition. Comparisons of near-isogenic lines indicated that Pdh1 promotes pod dehiscence by increasing the torsion of dried pod walls, which serves as a driving force for pod dehiscence under low humidity. A survey of soybean germplasm revealed that pdh1 was frequently detected in landraces from semiarid regions and has been extensively used for breeding in North America, the world's leading soybean producer. These findings point to a new mechanism for pod dehiscence involving the dirigent protein family and suggest that pdh1 has played a crucial role in the global expansion of soybean cultivation. Furthermore, the orthologs of pdh1, or genes with the same role, will possibly be useful for crop improvement.
Collapse
Affiliation(s)
- Hideyuki Funatsuki
- Crop Cold Tolerance Research Team, NARO (National Agricultural Research Organization) Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Department of Planning and General Administration, NARO Western Region Agricultural Research Center, 6-12-1, Nishifukatsu-cho, Fukuyama 721-8514, Japan;
| | - Masaya Suzuki
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Aya Hirose
- Crop Cold Tolerance Research Team, NARO (National Agricultural Research Organization) Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Hiroki Inaba
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Tetsuya Yamada
- Field Crop Research Division, NARO Institute of Crop Science, 2-1-18, Kannondai, Tsukuba 305-8518, Japan
| | - Makita Hajika
- Field Crop Research Division, NARO Institute of Crop Science, 2-1-18, Kannondai, Tsukuba 305-8518, Japan
| | - Kunihiko Komatsu
- Crop Cold Tolerance Research Team, NARO (National Agricultural Research Organization) Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Takeshi Katayama
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kagawa 761-0795, Japan; and
| | - Takashi Sayama
- Crop Cold Tolerance Research Team, NARO (National Agricultural Research Organization) Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba 305-0856, Japan
| | - Masao Ishimoto
- Crop Cold Tolerance Research Team, NARO (National Agricultural Research Organization) Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba 305-0856, Japan
| | - Kaien Fujino
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| |
Collapse
|
17
|
Elbaum R, Abraham Y. Insights into the microstructures of hygroscopic movement in plant seed dispersal. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:124-33. [PMID: 24767122 DOI: 10.1016/j.plantsci.2014.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/12/2014] [Accepted: 03/16/2014] [Indexed: 05/08/2023]
Abstract
As non-motile organisms, plants develop means to spread their progenies. Hygroscopic movement is a very common mechanism employed in seed dispersal. This type of movement is created when the tissue desiccates and the cell walls dry and shrink. A contraction force develops, the direction and strength of which depends on the architecture of the tissue. This force may be utilized for a simple release of seeds, their catapultion, and for pushing seeds along the soil to a germination locus. We review the formation of a bend, a twist and a coil within various dispersal apparatuses as a reaction to the dehydration of the tissue. We compare the microscopic structures of hygroscopic devices supporting slow or fast movement, adaptations to dry or wet climates, and single use versus repeated movement. We discuss the development of the disconnecting tissues in relation to the development of a hygroscopic mechanism. As plant cultivation is dependent on seed dispersal control, we demonstrate that during the domestication of sesame and wheat, seed dispersal is avoided not due to a defective hygroscopic tissue, but rather a missing dehiscence tissue. Seed dispersal is a crucial stage in the life cycle of plants. Thus, hygroscopic movement plays a central part in plant ecology and agriculture.
Collapse
Affiliation(s)
- Rivka Elbaum
- RH Smith Institute for Plant Sciences and genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7010001, Israel.
| | - Yael Abraham
- RH Smith Institute for Plant Sciences and genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7010001, Israel
| |
Collapse
|
18
|
Hay AS, Pieper B, Cooke E, Mandáková T, Cartolano M, Tattersall AD, Ioio RD, McGowan SJ, Barkoulas M, Galinha C, Rast MI, Hofhuis H, Then C, Plieske J, Ganal M, Mott R, Martinez-Garcia JF, Carine MA, Scotland RW, Gan X, Filatov DA, Lysak MA, Tsiantis M. Cardamine hirsuta: a versatile genetic system for comparative studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1-15. [PMID: 24460550 DOI: 10.1111/tpj.12447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
A major goal in biology is to identify the genetic basis for phenotypic diversity. This goal underpins research in areas as diverse as evolutionary biology, plant breeding and human genetics. A limitation for this research is no longer the availability of sequence information but the development of functional genetic tools to understand the link between changes in sequence and phenotype. Here we describe Cardamine hirsuta, a close relative of the reference plant Arabidopsis thaliana, as an experimental system in which genetic and transgenic approaches can be deployed effectively for comparative studies. We present high-resolution genetic and cytogenetic maps for C. hirsuta and show that the genome structure of C. hirsuta closely resembles the eight chromosomes of the ancestral crucifer karyotype and provides a good reference point for comparative genome studies across the Brassicaceae. We compared morphological and physiological traits between C. hirsuta and A. thaliana and analysed natural variation in stamen number in which lateral stamen loss is a species characteristic of C. hirsuta. We constructed a set of recombinant inbred lines and detected eight quantitative trait loci that can explain stamen number variation in this population. We found clear phylogeographic structure to the genetic variation in C. hirsuta, thus providing a context within which to address questions about evolutionary changes that link genotype with phenotype and the environment.
Collapse
Affiliation(s)
- Angela S Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Forterre Y. Slow, fast and furious: understanding the physics of plant movements. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4745-60. [PMID: 23913956 DOI: 10.1093/jxb/ert230] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ability of plants to move is central to many physiological processes from development to tropisms, from nutrition to reproduction. The movement of plants or plant parts occurs over a wide range of sizes and time scales. This review summarizes the main physical mechanisms plants use to achieve motility, highlighting recent work at the frontier of biology and physics on rapid movements. Emphasis is given to presenting in a single framework pioneering biological studies of water transport and growth with more recent physics research on poroelasticity and mechanical instabilities. First, the basic osmotic and hydration/dehydration motors are described that contribute to movement by growth and reversible swelling/shrinking of cells and tissues. The speeds of these water-driven movements are shown to be ultimately limited by the transport of water through the plant body. Some plant structures overcome this hydraulic limit to achieve much faster movement by using a mechanical instability. The principle is to impose an 'energy barrier' to the system, which can originate from geometrical constraint or matter cohesion, allowing elastic potential energy to be stored until the barrier is overcome, then rapidly transformed into kinetic energy. Three of these rapid motion mechanisms have been elucidated recently and are described here: the snapping traps of two carnivorous plants, the Venus flytrap and Utricularia, and the catapult of fern sporangia. Finally, movement mechanisms are reconsidered in the context of the timescale of important physiological processes at the cellular and molecular level.
Collapse
Affiliation(s)
- Yoël Forterre
- IUSTI, CNRS UMR 7343, Université d'Aix-Marseille, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France
| |
Collapse
|