1
|
Lee HK, Canales Sanchez LE, Bordeleau SJ, Goring DR. Arabidopsis leucine-rich repeat malectin receptor-like kinases regulate pollen-stigma interactions. PLANT PHYSIOLOGY 2024; 195:343-355. [PMID: 38270530 DOI: 10.1093/plphys/kiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Flowering plants contain tightly controlled pollen-pistil interactions required for promoting intraspecific fertilization and preventing interspecific hybridizations. In Arabidopsis (Arabidopsis thaliana), several receptor kinases (RKs) are known to regulate the later stages of intraspecific pollen tube growth and ovular reception in the pistil, but less is known about RK regulation of the earlier stages. The Arabidopsis RECEPTOR-LIKE KINASE IN FLOWERS1 (RKF1)/RKF1-LIKE (RKFL) 1-3 cluster of 4 leucine-rich repeat malectin (LRR-MAL) RKs was previously found to function in the stigma to promote intraspecific pollen hydration. In this study, we tested additional combinations of up to 7 Arabidopsis LRR-MAL RK knockout mutants, including RKF1, RKFL1-3, LysM RLK1-INTERACTING KINASE1, REMORIN-INTERACTING RECEPTOR1, and NEMATODE-INDUCED LRR-RLK2. These LRR-MAL RKs were discovered to function in the female stigma to support intraspecific Arabidopsis pollen tube growth and to establish a prezygotic interspecific barrier against Capsella rubella pollen. Thus, this study uncovered additional biological functions for this poorly understood group of RKs in regulating the early stages of Arabidopsis sexual reproduction.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | | | - Stephen J Bordeleau
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
2
|
Scott MF, Mackintosh C, Immler S. Gametic selection favours polyandry and selfing. PLoS Genet 2024; 20:e1010660. [PMID: 38363804 PMCID: PMC10903963 DOI: 10.1371/journal.pgen.1010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/29/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
Competition among pollen or sperm (gametic selection) can cause evolution. Mating systems shape the intensity of gametic selection by determining the competitors involved, which can in turn cause the mating system itself to evolve. We model the bidirectional relationship between gametic selection and mating systems, focusing on variation in female mating frequency (monandry-polyandry) and self-fertilisation (selfing-outcrossing). First, we find that monandry and selfing both reduce the efficiency of gametic selection in removing deleterious alleles. This means that selfing can increase mutation load, in contrast to cases without gametic selection where selfing purges deleterious mutations and decreases mutation load. Second, we explore how mating systems evolve via their effect on gametic selection. By manipulating gametic selection, polyandry can evolve to increase the fitness of the offspring produced. However, this indirect advantage of post-copulatory sexual selection is weak and is likely to be overwhelmed by any direct fitness effects of mating systems. Nevertheless, gametic selection can be potentially decisive for selfing evolution because it significantly reduces inbreeding depression, which favours selfing. Thus, the presence of gametic selection could be a key factor driving selfing evolution.
Collapse
Affiliation(s)
- Michael Francis Scott
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Carl Mackintosh
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff, France
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
3
|
Haghighatnia M, Machac A, Schmickl R, Lafon Placette C. Darwin's 'mystery of mysteries': the role of sexual selection in plant speciation. Biol Rev Camb Philos Soc 2023; 98:1928-1944. [PMID: 37337476 DOI: 10.1111/brv.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.
Collapse
Affiliation(s)
- Mohammadjavad Haghighatnia
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Antonin Machac
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Benatska 2, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
4
|
Kolba TN, Bruno A. Estimation of population parameters using sample extremes from nonconstant sample sizes. PLoS One 2023; 18:e0280561. [PMID: 36662707 PMCID: PMC9858484 DOI: 10.1371/journal.pone.0280561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
We examine the accuracy and precision of parameter estimates for both the exponential and normal distributions when using only a collection of sample extremes. That is, we consider a collection of random variables, where each of the random variables is either the minimum or maximum of a sample of nj independent, identically distributed random variables drawn from a normal or exponential distribution with unknown parameters. Previous work derived estimators for the population parameters assuming the nj sample sizes are constant. Since sample sizes are often not constant in applications, we derive new unbiased estimators that take into account the varying sample sizes. We also perform simulations to assess how the previously derived estimators perform when the constant sample size is simply replaced with the average sample size. We explore how varying the mean, standard deviation, and probability distribution of the sample sizes affects the estimation error. Overall, our results demonstrate that using the average sample size in place of the constant sample size still results in reliable estimates for the population parameters, especially when the average sample size is large. Our estimation framework is applied to a biological example involving plant pollination.
Collapse
Affiliation(s)
- Tiffany N. Kolba
- Department of Mathematics and Statistics, Valparaiso University, Valparaiso, IN, United States of America
| | - Alexander Bruno
- Department of Mathematics and Statistics, Valparaiso University, Valparaiso, IN, United States of America
| |
Collapse
|
5
|
Kwok A, Dorken ME. Sexual selection on male but not female function in monoecious and dioecious populations of broadleaf arrowhead ( Sagittaria latifolia). Proc Biol Sci 2022; 289:20220919. [PMID: 36350202 PMCID: PMC9653219 DOI: 10.1098/rspb.2022.0919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/12/2022] [Indexed: 09/30/2023] Open
Abstract
Direct measures of sexual selection in plants are rare and complicated by immobility and modular growth. For plants, instantaneous measures of fitness typically scale with size, but covariances between size and mating success could obscure the detection of sexual selection. We measured the magnitude of sexual selection in a monoecious and a dioecious population of the clonal plant Sagittaria latifolia using Bateman gradients (ßss). These gradients were calculated using parentage analysis and residual regression to account for the effects of shoot and clone size on mating and reproductive success. In both populations, (i) there was greater promiscuity via male function than via female function and (ii) ßss were positive, with significant associations between mating and reproductive success for male but not female function. Moreover, estimated βss were similar for the monoecious and dioecious populations, possibly because non-overlapping female and male sex phases in hermaphroditic S. latifolia reduced the scope for interference between sex functions during mating. This study builds on previous studies of selection on plant mating traits, and of sexual selection under experimental conditions, by showing that sexual selection can operate in natural populations of plants, including populations of hermaphrodites.
Collapse
Affiliation(s)
- Allison Kwok
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada K9J 0G2
| | - Marcel E. Dorken
- Department of Biology, Trent University, Peterborough, ON, Canada K9J 0G2
| |
Collapse
|
6
|
Jalali T, Rosinger HS, Hodgins KA, Fournier‐Level AJ. Pollen competition in hybridizing Cakile species: How does a latecomer win the race? AMERICAN JOURNAL OF BOTANY 2022; 109:1290-1304. [PMID: 35844035 PMCID: PMC9544311 DOI: 10.1002/ajb2.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Hybridization between cross-compatible species depends on the extent of competition between alternative mates. Even if stigmatic compatibility allows for hybridization, hybridization requires the heterospecific pollen to be competitive. Here, we determined whether conspecific pollen has an advantage in the race to fertilize ovules and the potential handicap to be overcome by heterospecific pollen in invasive Cakile species. METHODS We used fluorescence microscopy to measure pollen tube growth after conspecific and heterospecific hand-pollination treatments. We then determined siring success in the progeny relative to the timing of heterospecific pollen arrival on the stigma using CAPS markers. RESULTS In the absence of pollen competition, pollination time and pollen recipient species had a significant effect on the ratio of pollen tube growth. In long-styled C. maritima (outcrosser), pollen tubes grew similarly in both directions. In short-styled C. edentula (selfer), conspecific and heterospecific pollen tubes grew differently. Cakile edentula pollen produced more pollen tubes, revealing the potential for a mating asymmetry whereby C. edentula pollen had an advantage relative to C. maritima. In the presence of pollen competition, siring success was equivalent when pollen deposition was synchronous. However, a moderate 1-h advantage in the timing of conspecific pollination resulted in almost complete assortative mating, while an equivalent delay in conspecific pollination resulted in substantial hybrid formation. CONCLUSIONS Hybridization can aid the establishment of invasive species through the transfer of adaptive alleles from cross-compatible species, but also lead to extinction through demographic or genetic swamping. Time of pollen arrival on the stigma substantially affected hybridization rate, pointing to the importance of pollination timing in driving introgression and genetic swamping.
Collapse
Affiliation(s)
- Tara Jalali
- School of BiosciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Hanna S. Rosinger
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | - Kathryn A. Hodgins
- School of Biological SciencesMonash UniversityClaytonVictoria3800Australia
| | | |
Collapse
|
7
|
Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M. The Scope for Postmating Sexual Selection in Plants. Trends Ecol Evol 2021; 36:556-567. [PMID: 33775429 DOI: 10.1016/j.tree.2021.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
Sexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models. We review aspects of the molecular and cellular biology of pollen-pistil interactions on which sexual selection could act and point to research that is needed to investigate them.
Collapse
Affiliation(s)
- Jeanne Tonnabel
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.
| | - Patrice David
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Tim Janicke
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France; Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Arnaud Lehner
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathilde Dufay
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
8
|
Lee HK, Goring DR. Two subgroups of receptor-like kinases promote early compatible pollen responses in the Arabidopsis thaliana pistil. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1198-1211. [PMID: 33097927 DOI: 10.1093/jxb/eraa496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, cell-cell communication between the compatible pollen grain/growing pollen tube and the pistil is an essential component for successful sexual reproduction. In Arabidopsis thaliana, the later stages of this dialogue are mediated by several peptide ligands and receptors that guide pollen tubes to the ovules for the release of sperm cells. Despite a detailed understanding of these processes, a key gap remains regarding the nature of the regulators that function at the earlier stages which are essential steps leading to fertilization. Here, we report on new functions for A. thaliana Receptor-Like Kinase (RLK) genes belonging to the LRR-II and LRR-VIII-2 RLK subgroups in the female reproductive tract to regulate compatible pollen hydration and the early stages of pollen tube growth. Mutant pistils for the A. thaliana RKF1 gene cluster were observed to support reduced wild-type pollen hydration and, when combined with the SERK1 and SERK3/BAK1 mutations, reduced pollen tube travel distances occurred. As these mutant pistils displayed a wild-type morphology, we propose that the observed altered compatible pollen responses result from an impaired pollen-pistil dialogue at these early stages.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Harder LD, Richards SA, Ågren J, Johnson SD. Mechanisms of Male-Male Interference during Dispersal of Orchid Pollen. Am Nat 2021; 197:250-265. [PMID: 33523780 DOI: 10.1086/712378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSiring success of flowering plants depends on the fates of male gametophytes, which compete for access to stigmas, stylar resources, and ovules. Although rarely considered, pollen may often compete during dispersal, affecting the processes required for export to stigmas: pollen pickup, transport, and deposition. We quantified dispersal interference by tracking bee-mediated dispersal of stained Anacamptis morio (Orchidaceae) pollen from individual donor flowers and inferred the affected dispersal mechanisms on the basis of the fit of a process-based model. During individual trials, all recipient flowers were either emasculated, precluding interference with donor pollen, or intact, adding potentially interfering pollen to the pollinator. The presence of competing pollinaria on bees reduced pickup of additional pollinaria, doubled the overall proportion of lost donor pollen, and reduced total pollen export by 27%. Interference specifically increased loss of donor pollen between successive flower visits and variation in deposition among trials, and it likely also reduced pollen contact with stigmas and pollen deposition when contact occurred. Thus, by altering pollen removal, transport, and deposition, male-male interference during pollen dispersal can significantly-and perhaps commonly-limit plant-siring success.
Collapse
|
10
|
Beaudry FE, Rifkin JL, Barrett SC, Wright SI. Evolutionary Genomics of Plant Gametophytic Selection. PLANT COMMUNICATIONS 2020; 1:100115. [PMID: 33367268 PMCID: PMC7748008 DOI: 10.1016/j.xplc.2020.100115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 05/26/2023]
Abstract
It has long been recognized that natural selection during the haploid gametophytic phase of the plant life cycle may have widespread importance for rates of evolution and the maintenance of genetic variation. Recent theoretical advances have further highlighted the significance of gametophytic selection for diverse evolutionary processes. Genomic approaches offer exciting opportunities to address key questions about the extent and effects of gametophytic selection on plant evolution and adaptation. Here, we review the progress and prospects for integrating functional and evolutionary genomics to test theoretical predictions, and to examine the importance of gametophytic selection on genetic diversity and rates of evolution. There is growing evidence that selection during the gametophyte phase of the plant life cycle has important effects on both gene and genome evolution and is likely to have important pleiotropic effects on the sporophyte. We discuss the opportunities to integrate comparative population genomics, genome-wide association studies, and experimental approaches to further distinguish how differential selection in the two phases of the plant life cycle contributes to genetic diversity and adaptive evolution.
Collapse
Affiliation(s)
- Felix E.G. Beaudry
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Joanna L. Rifkin
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
11
|
Madjidian JA, Smith HG, Andersson S, Lankinen Å. Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses. J Evol Biol 2020; 33:1452-1467. [PMID: 33463845 PMCID: PMC7589368 DOI: 10.1111/jeb.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herb Collinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects in C. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants.
Collapse
Affiliation(s)
- Josefin A. Madjidian
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | - Henrik G. Smith
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | | | - Åsa Lankinen
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
12
|
Morgan EJ, Čertner M, Lučanová M, Kubíková K, Marhold K, Kolář F. Niche similarity in diploid-autotetraploid contact zones of Arabidopsis arenosa across spatial scales. AMERICAN JOURNAL OF BOTANY 2020; 107:1375-1388. [PMID: 32974906 DOI: 10.1002/ajb2.1534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Whole genome duplication is a major evolutionary event, but its role in ecological divergence remains equivocal. When populations of different ploidy (cytotypes) overlap in space, "contact zones" are formed, allowing the study of evolutionary mechanisms contributing toward ploidy divergence. Multiple contact zones per species' range are often described but rarely leveraged as natural replicates. We explored whether the strength of niche differentiation of diploid and autotetraploid Arabidopsis arenosa varies over distinct contact zones and if the frequency of triploids decreases from seedling to adult stage. METHODS We characterized ploidy composition and habitat preferences in 264 populations across three contact zones using climatic niche modeling. Ecological differences of cytotypes were also assessed using local vegetation surveys at 110 populations within two contact zones, and at the finer scale within five mixed-ploidy sites. This was complemented by flow cytometry of seedlings. RESULTS We found no niche differences between diploid and tetraploid populations within contact zones for either climatic or local environmental variables. Comparisons of cytotypes within mixed-ploidy sites found weak niche differences that were inconsistent in direction. Triploid individuals were virtually absent (0.14%) in the field, and they were at a similarly low frequency (0.2%) in ex situ germinated seedlings. CONCLUSIONS This study demonstrates the strength in investigating different spatial scales across several contact zones when addressing ecological niche differentiation between ploidies. The lack of consistent habitat differentiation of ploidies across the scales and locations supports the recently emerging picture that processes other than ecological differentiation may underlie ploidy coexistence in diploid-autopolyploid systems.
Collapse
Affiliation(s)
- Emma J Morgan
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic
| | - Kateřina Kubíková
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Karol Marhold
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23, Bratislava, Slovak Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, AT-6020, Innsbruck, Austria
| |
Collapse
|
13
|
Christopher DA, Mitchell RJ, Karron JD. Pollination intensity and paternity in flowering plants. ANNALS OF BOTANY 2020; 125:1-9. [PMID: 31586397 PMCID: PMC6948204 DOI: 10.1093/aob/mcz159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Siring success plays a key role in plant evolution and reproductive ecology, and variation among individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially provision some developing seeds or fruits to further alter variation in siring success. SCOPE In this review, we describe studies that advance our understanding of the dynamics of the pollination and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation. We then explore the interplay between pollination and post-pollination success, and how these processes respond to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollination and paternity and describe novel experimental approaches to elucidate the relative importance of pollination and post-pollination factors in determining male reproductive success. CONCLUSIONS The relative contribution of pollination and post-pollination processes to variation in male reproductive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the effects of pollination and post-pollination phases in concert will be especially valuable as they will enable researchers to more fully understand the ecological conditions influencing male reproductive success.
Collapse
Affiliation(s)
- Dorothy A Christopher
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Jeffrey D Karron
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
14
|
Lee HK, Macgregor S, Goring DR. A Toolkit for Teasing Apart the Early Stages of Pollen-Stigma Interactions in Arabidopsis thaliana. Methods Mol Biol 2020; 2160:13-28. [PMID: 32529426 DOI: 10.1007/978-1-0716-0672-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In hermaphroditic flowering plants, the female pistil serves as the main gatekeeper of mate acceptance as several mechanisms are present to prevent fertilization by unsuitable pollen. The characteristic Brassicaceae dry stigma at the top of pistil represents the first layer that requires pollen recognition to elicit appropriate physiological responses from the pistil. Successful pollen-stigma interactions then lead to pollen hydration, pollen germination, and pollen tube entry into the stigmatic surface. To assess these early stages in detail, our lab has used three experimental procedures to quantitatively and qualitatively characterize the outcome of compatible pollen-stigma interactions that would ultimately lead to the successful fertilization. These assays are also useful for assessing self-incompatible pollinations and mutations that affect these pathways. The model organism, Arabidopsis thaliana, offers an excellent platform for these investigations as loss-of-function or gain-of-function mutants can be easily generated using CRISPR/Cas9 technology, existing T-DNA insertion mutant collections, and heterologous expression constructs, respectively. Here, we provide a detailed description of the methods for these inexpensive assays that can be reliably used to assess pollen-stigma interactions and used to identify new players regulating these processes.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Stuart Macgregor
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Ismail SA, Kokko H. An analysis of mating biases in trees. Mol Ecol 2019; 29:184-198. [PMID: 31755136 PMCID: PMC7003921 DOI: 10.1111/mec.15312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
Abstract
Assortative mating is a deviation from random mating based on phenotypic similarity. As it is much better studied in animals than in plants, we investigate for trees whether kinship of realized mating pairs deviates from what is expected from the set of potential mates and use this information to infer mating biases that may result from kin recognition and/or assortative mating. Our analysis covers 20 species of trees for which microsatellite data is available for adult populations (potential mates) as well as seed arrays. We test whether mean relatedness of observed mating pairs deviates from null expectations that only take pollen dispersal distances into account (estimated from the same data set). This allows the identification of elevated as well as reduced kinship among realized mating pairs, indicative of positive and negative assortative mating, respectively. The test is also able to distinguish elevated biparental inbreeding that occurs solely as a result of related pairs growing closer to each other from further assortativeness. Assortative mating in trees appears potentially common but not ubiquitous: nine data sets show mating bias with elevated inbreeding, nine do not deviate significantly from the null expectation, and two show mating bias with reduced inbreeding. While our data sets lack direct information on phenology, our investigation of the phenological literature for each species identifies flowering phenology as a potential driver of positive assortative mating (leading to elevated inbreeding) in trees. Since active kin recognition provides an alternative hypothesis for these patterns, we encourage further investigations on the processes and traits that influence mating patterns in trees.
Collapse
Affiliation(s)
- Sascha A Ismail
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Ayre BM, Roberts DG, Phillips RD, Hopper SD, Krauss SL. Near-neighbour optimal outcrossing in the bird-pollinated Anigozanthos manglesii. ANNALS OF BOTANY 2019; 124:423-436. [PMID: 31115446 PMCID: PMC6798840 DOI: 10.1093/aob/mcz091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/20/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS In plants, the spatial and genetic distance between mates can influence reproductive success and offspring fitness. Negative fitness consequences associated with the extremes of inbreeding and outbreeding suggest that there will be an intermediate optimal outcrossing distance (OOD), the scale and drivers of which remain poorly understood. In the bird-pollinated Anigozanthos manglesii (Haemodoraceae) we tested (1) for the presence of within-population OOD, (2) over what scale it occurs, and (3) for OOD under biologically realistic scenarios of multi-donor deposition associated with pollination by nectar-feeding birds. METHODS We measured the impact of mate distance (spatial and genetic) on seed set, fruit size, seed mass, seed viability and germination success following hand pollination from (1) single donors across 0 m (self), <1 m, 1-3 m, 7-15 m and 50 m, and (2) a mix of eight donors. Microsatellite loci were used to quantify spatial genetic structure and test for the presence of an OOD by paternity assignment after multi-donor deposition. KEY RESULTS Inter-mate distance had a significant impact on single-donor reproductive success, with selfed and nearest-neighbour (<1 m) pollination resulting in only ~50 seeds per fruit, lower overall germination success and slower germination. Seed set was greatest for inter-mate distance of 1-3 m (148 seeds per fruit), thereafter plateauing at ~100 seeds per fruit. Lower seed set following nearest-neighbour mating was associated with significant spatial genetic autocorrelation at this scale. Paternal success following pollination with multiple sires showed a significantly negative association with increasing distance between mates. CONCLUSIONS Collectively, single- and multi-donor pollinations indicated evidence for a near-neighbour OOD within A. manglesii. A survey of the literature suggests that within-population OOD may be more characteristic of plants pollinated by birds than those pollinated by insects.
Collapse
Affiliation(s)
- Bronwyn M Ayre
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
| | - David G Roberts
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
- Centre for Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Ryan D Phillips
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC, Australia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Stephen D Hopper
- Centre for Excellence in Natural Resource Management, School of Agriculture and Environment, University of Western Australia, Albany, WA, Australia
| | - Siegfried L Krauss
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
| |
Collapse
|
17
|
Using the sample maximum to estimate the parameters of the underlying distribution. PLoS One 2019; 14:e0215529. [PMID: 31022209 PMCID: PMC6483189 DOI: 10.1371/journal.pone.0215529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022] Open
Abstract
We propose novel estimators for the parameters of an exponential distribution and a normal distribution when the only known information is a sample of sample maxima; i.e., the known information consists of a sample of m values, each of which is the maximum of a sample of n independent random variables drawn from the underlying exponential or normal distribution. We analyze the accuracy and precision of the estimators using extreme value theory, as well as through simulations of the sampling distributions. For the exponential distribution, the estimator of the mean is unbiased and its variance decreases as either m or n increases. Likewise, for the normal distribution, we show that the estimator of the mean has negligible bias and the estimator of the variance is unbiased. While the variance of the estimators for the normal distribution decreases as m, the number of sample maxima, increases, the variance increases as n, the sample size over which the maximum is computed, increases. We apply our method to estimate the mean length of pollen tubes in the flowering plant Arabidopsis thaliana, where the known biological information fits our context of a sample of sample maxima.
Collapse
|
18
|
Abstract
With the origin of pollination in ancient seed plants, the male gametophyte ("pollen") began to evolve a new and unique life history stage, the progamic phase, a post-pollination period in which pollen sexual maturation occurs in interaction with sporophyte-derived tissues. Pollen performance traits mediate the timing of the fertilization process, often in competition with other pollen, via the speed of pollen germination, sperm development, and pollen tube growth. Studies of pollen development rarely address the issue of performance or its evolution, which involves linking variation in developmental rates to relative fitness within populations or to adaptations on a macroevolutionary scale. Modifications to the pollen tube pathway and changes in the intensity of pollen competition affect the direction and strength of selection on pollen performance. Hence, pollen developmental evolution is always contextual-it involves both the population biology of pollen reaching stigmas and the co-evolution of sporophytic traits, such as the pollen tube pathway and mating system. For most species, performance evolution generally reflects a wandering history of periods of directional selection and relaxed selection, channeled by developmental limitations, a pattern that favors the accumulation of diversity and redundancy in developmental mechanisms and the genetic machinery. Developmental biologists are focused on finding universal mechanisms that underlie pollen function, and these are largely mechanisms that have evolved through their effects on performance. Here, we suggest ways in which studies of pollen performance or function could progress by cross-fertilization between the "evo" and "devo" fields.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
19
|
Wang XY, Quan QM, Wang B, Li YX, Huang SQ. Pollen competition between morphs in a pollen-color dimorphic herb and the loss of phenotypic polymorphism within populations. Evolution 2018; 72:785-797. [PMID: 29399790 DOI: 10.1111/evo.13445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Xiao-Yue Wang
- Institute of Evolution and Ecology, School of Life Sciences; Central China Normal University; Wuhan 430079 China
- School of Life Science; Guizhou Normal University; Guiyang 550001 China
| | - Qiu-Mei Quan
- College of Environmental Science and Engineering; China West Normal University; Nanchong 637002 China
| | - Bo Wang
- State Key Lab of Hybrid Rice, College of Life Sciences; Wuhan University; Wuhan 430072 China
| | - Yun-Xiang Li
- College of Environmental Science and Engineering; China West Normal University; Nanchong 637002 China
| | - Shuang-Quan Huang
- Institute of Evolution and Ecology, School of Life Sciences; Central China Normal University; Wuhan 430079 China
| |
Collapse
|
20
|
Mazer SJ, Hendrickson BT, Chellew JP, Kim LJ, Liu JW, Shu J, Sharma MV. Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution 2018; 72:453-472. [PMID: 29359333 DOI: 10.1111/evo.13429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022]
Abstract
Animal taxa that differ in the intensity of sperm competition often differ in sperm production or swimming speed, arguably due to sexual selection on postcopulatory male traits affecting siring success. In plants, closely related self- and cross-pollinated taxa similarly differ in the opportunity for sexual selection among male gametophytes after pollination, so traits such as the proportion of pollen on the stigma that rapidly enters the style and mean pollen tube growth rate (PTGR) are predicted to diverge between them. To date, no studies have tested this prediction in multiple plant populations under uniform conditions. We tested for differences in pollen performance in greenhouse-raised populations of two Clarkia sister species: the predominantly outcrossing C. unguiculata and the facultatively self-pollinating C. exilis. Within populations of each taxon, groups of individuals were reciprocally pollinated (n = 1153 pollinations) and their styles examined four hours later. We tested for the effects of species, population, pollen type (self vs. outcross), the number of competing pollen grains, and temperature on pollen performance. Clarkia unguiculata exhibited higher mean PTGR than C. exilis; pollen type had no effect on performance in either taxon. The difference between these species in PTGR is consistent with predictions of sexual selection theory.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Brandon T Hendrickson
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Joseph P Chellew
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Lynn J Kim
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Jasen W Liu
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Jasper Shu
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Manju V Sharma
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
21
|
Barrett SC, Harder LD. The Ecology of Mating and Its Evolutionary Consequences in Seed Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023021] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Lawrence D. Harder
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
22
|
Baek YS, Royer SM, Broz AK, Covey PA, López-Casado G, Nuñez R, Kear PJ, Bonierbale M, Orillo M, van der Knaap E, Stack SM, McClure B, Chetelat RT, Bedinger PA. Interspecific reproductive barriers between sympatric populations of wild tomato species (Solanum section Lycopersicon). AMERICAN JOURNAL OF BOTANY 2016; 103:1964-1978. [PMID: 27864262 DOI: 10.3732/ajb.1600356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Suzanne M Royer
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Paul A Covey
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Gloria López-Casado
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Reynaldo Nuñez
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
| | - Philip J Kear
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Merideth Bonierbale
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Matilde Orillo
- Quality and Nutrition Laboratory, Centro Internacional de la Papa, Perú Postal 1558, Lima, Peru
| | - Esther van der Knaap
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Stephen M Stack
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Roger T Chetelat
- Department of Plant Sciences, University of California Davis, Davis, California 95616, USA
| | - Patricia A Bedinger
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| |
Collapse
|
23
|
A hybridisation barrier between two evolutionary lineages of Barbarea vulgaris (Brassicaceae) that differ in biotic resistances. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9858-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Williams JH, Mazer SJ. Pollen--tiny and ephemeral but not forgotten: New ideas on their ecology and evolution. AMERICAN JOURNAL OF BOTANY 2016; 103:365-74. [PMID: 26980838 DOI: 10.3732/ajb.1600074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/29/2016] [Indexed: 05/08/2023]
Abstract
Ecologists and evolutionary biologists have been interested in the functional biology of pollen since the discovery in the 1800s that pollen grains encompass tiny plants (male gametophytes) that develop and produce sperm cells. After the discovery of double fertilization in flowering plants, botanists in the early 1900s were quick to explore the effects of temperature and maternal nutrients on pollen performance, while evolutionary biologists began studying the nature of haploid selection and pollen competition. A series of technical and theoretic developments have subsequently, but usually separately, expanded our knowledge of the nature of pollen performance and how it evolves. Today, there is a tremendous diversity of interests that touch on pollen performance, ranging from the ecological setting on the stigma, structural and physiological aspects of pollen germination and tube growth, the form of pollen competition and its role in sexual selection in plants, virus transmission, mating system evolution, and inbreeding depression. Given the explosion of technical knowledge of pollen cell biology, computer modeling, and new methods to deal with diversity in a phylogenetic context, we are now more than ever poised for a new era of research that includes complex functional traits that limit or enhance the evolution of these deceptively simple organisms.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93105 USA
| |
Collapse
|
25
|
Harder LD, Aizen MA, Richards SA, Joseph MA, Busch JW. Diverse ecological relations of male gametophyte populations in stylar environments. AMERICAN JOURNAL OF BOTANY 2016; 103:484-497. [PMID: 26933012 DOI: 10.3732/ajb.1500269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF STUDY Pollen on a stigma represents a local population of male gametophytes vying for access to female gametophytes in the associated ovary. As in most populations, density-independent and density-dependent survival depend on intrinsic characteristics of male gametophytes and environmental (pistil) conditions. These characteristics and conditions could differ among flowers, plants, populations, and species, creating diverse male-gametophyte population dynamics, which can influence seed siring and production. METHODS For nine species, we characterized the relations of both the mean and standard deviation of pollen-tube number at the style base to pollen receipt with nonlinear regression. Models represented asymptotic or peaked relations, providing information about the incidence and magnitude of facilitation and competition, the spatial and temporal characteristics of competition, and the intensity and relative timing of density-independent mortality. KEY RESULTS We infer that pollen tubes of most species competed sequentially, their tips ceasing growth if earlier tubes had depleted stylar space/resources; although two species experienced simultaneous competition. Tube success of three species revealed positive density dependence (facilitation) at low density. For at least four species, density-independent mortality preceded competition. Tube success varied mostly within plants, rather than among plants or conspecific populations. Pollen quality influenced tube success for two of three species; affecting density-independent survival in one and density-dependent performance in the other. CONCLUSIONS The diverse relations of pollen-tube success to pollen receipt evident among just nine species indicate significant contributions of the processes governing pollen germination and tube growth to the reproductive diversity of angiosperms.
Collapse
Affiliation(s)
- Lawrence D Harder
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA-CONICET and Centro Regional Bariloche, Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Río Negro, Argentina
| | | | - Michael A Joseph
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, Washington 99164-4236 USA
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, Washington 99164-4236 USA
| |
Collapse
|
26
|
Marshall DL, Evans AS. Can selection on a male mating character result in evolutionary change? A selection experiment on California wild radish, Raphanus sativus. AMERICAN JOURNAL OF BOTANY 2016; 103:553-567. [PMID: 26872491 DOI: 10.3732/ajb.1500171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Whenever more pollen grains arrive on stigmas than necessary to fertilize ovules, sexual selection is possible. However, the role of sexual selection remains controversial, in part because of lack of evidence on genetic bases of traits and the response of relevant characters to selection. METHODS In an experiment with Raphanus sativus, we selected on tendency to sire seeds in the stylar or basal regions of fruits. This character is likely related to pollen tube growth rate, and seed position affects rates of abortion and seed predation. We measured differences among families in seed siring and related characters and evaluated responses to selection. KEY RESULTS All replicates showed strong effects of pollen donor family on proportion of seeds sired per fruit in mixed pollinations. Most also showed effects of pollen donor family on number of pollen grains per flower and pollen diameter. Two of four replicates showed a response to selection on position of seeds sired. In responding replicates, we found trade-offs in pollen grain size and number; plants with larger pollen grains sired more seeds in the basal region. CONCLUSIONS Our data suggest a genetic basis for pollen donor ability to sire seeds in competition. The significant response to selection in two replicates shows that position of seeds sired can respond to selection. Thus, all components for sexual selection to occur and affect traits are present. Variation in results among replicates might be due to changes in greenhouse conditions. Environmental effects may contribute to the maintenance of variation in these fitness-related characters.
Collapse
Affiliation(s)
- Diane L Marshall
- Department of Biology, MSC03-2020, 1 University of New Mexico, Albuquerque, New Mexico 87131 USA
| | - Ann S Evans
- Department of Biology, 99 Thomas Nelson Drive, Thomas Nelson Community College, Hampton, Virginia 23666 USA
| |
Collapse
|