1
|
Yang M, Song X, Li J, Wang S, Zhang M, Deng X, Wang H. Genome-wide identification and analysis of the EIN3/EIL gene family in broomcorn millet ( Panicum miliaceum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1440872. [PMID: 39170780 PMCID: PMC11335613 DOI: 10.3389/fpls.2024.1440872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
The EIN3/EIL gene family holds a pivotal role as it encodes a crucial transcription factor in plants. During the process of polyploidization in broomcorn millet (Panicum miliaceum L.), there is an intriguing above-average amplification observed within the EIN3/EIL gene family. Nonetheless, our current knowledge of this gene family in broomcorn millet remains limited. Hence, in this study, we conducted a comprehensive analysis of the EIN3/EIL gene family in broomcorn millet, aiming to provide a deeper understanding of the potential evolutionary changes. Additionally, we analyzed the EIN3/EIL gene family of Panicum hallii L., a close relative of broomcorn millet, to enhance our characterization efforts. Within this study, we identified a total of 15 EIN3/EIL genes specific to broomcorn millet. Through covariance analysis, it was revealed that all PmEIL genes, except PmEIL1 and PmEIL15, had duplicate copies generated through genome-wide duplication events. Importantly, the Ka/Ks values of all duplicated genes were found to be less than 1, indicating strong purifying selection. Phylogenetic analysis showed that these genes could be categorized into four distinct evolutionary branches, showcasing similar characteristics among members within the same branch. However, there appeared to be an uneven distribution of cis-acting elements amid the EIN3/EIL genes. Further examination of transcriptomic data shed light on the diverse spatiotemporal and stress-related expression patterns exhibited by the EIN3/EIL genes in broomcorn millet. Notably, under cold stress, the expression of PmEIL3/4/8/14 was significantly up-regulated, while under drought stress, PmEIL4/5/6 displayed significant up-regulation. Intriguingly, the expression pattern of PmEIL15 showed an opposite pattern in resistant and sensitive cultivars. The findings of this study augment our understanding of the EIN3/EIL gene family in broomcorn millet and offer a valuable reference for future investigations into polyploid studies. Moreover, this study establishes a theoretical foundation for further exploration of the ethylene signaling pathway in broomcorn millet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
2
|
Liu Y, Cheng Z, Chen W, Wu C, Chen J, Sui Y. Establishment of genome-editing system and assembly of a near-complete genome in broomcorn millet. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1688-1702. [PMID: 38695644 DOI: 10.1111/jipb.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 08/17/2024]
Abstract
The ancient crop broomcorn millet (Panicum miliaceum L.) is an indispensable orphan crop in semi-arid regions due to its short life cycle and excellent abiotic stress tolerance. These advantages make it an important alternative crop to increase food security and achieve the goal of zero hunger, particularly in light of the uncertainty of global climate change. However, functional genomic and biotechnological research in broomcorn millet has been hampered due to a lack of genetic tools such as transformation and genome-editing techniques. Here, we successfully performed genome editing of broomcorn millet. We identified an elite variety, Hongmi, that produces embryogenic callus and has high shoot regeneration ability in in vitro culture. We established an Agrobacterium tumefaciens-mediated genetic transformation protocol and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system for Hongmi. Using these techniques, we produced herbicide-resistant transgenic plants and edited phytoene desaturase (PmPDS), which is involved in chlorophyll biosynthesis. To facilitate the rapid adoption of Hongmi as a model line for broomcorn millet research, we assembled a near-complete genome sequence of Hongmi and comprehensively annotated its genome. Together, our results open the door to improving broomcorn millet using biotechnology.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiyao Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Sui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Masters LE, Tomaszewska P, Schwarzacher T, Hackel J, Zuntini AR, Heslop-Harrison P, Vorontsova MS. Phylogenomic analysis reveals five independently evolved African forage grass clades in the genus Urochloa. ANNALS OF BOTANY 2024; 133:725-742. [PMID: 38365451 PMCID: PMC11082517 DOI: 10.1093/aob/mcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Collapse
Affiliation(s)
- Lizo E Masters
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Department of Genetics and Cell Physiology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jan Hackel
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexandre R Zuntini
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester LE17RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Maria S Vorontsova
- Accelerated Taxonomy/Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
4
|
Jiang Y, Dong L, Li H, Liu Y, Wang X, Liu G. Genetic linkage map construction and QTL analysis for plant height in proso millet (Panicum miliaceum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:78. [PMID: 38466414 DOI: 10.1007/s00122-024-04576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE A genetic linkage map representing proso millet genome was constructed with SSR markers, and a major QTL corresponding to plant height was mapped on chromosome 14 of this map. Proso millet (Panicum miliaceum L.) has the lowest water requirements of all cultivated cereal crops. However, the lack of a genetic map and the paucity of genomic resources for this species have limited the utility of proso millet for detailed genetic studies and hampered genetic improvement programs. In this study, 97,317 simple sequence repeat (SSR) markers were developed based on the genome sequence of the proso millet landrace Longmi 4. Using some of these markers in conjunction with previously identified SSRs, an SSR-based linkage map for proso millet was successfully constructed using a large mapping population (316 F2 offspring). In total, 186 SSR markers were assigned to 18 linkage groups corresponding to the haploid chromosomes. The constructed map had a total length of 3033.42 centimorgan (cM) covering 78.17% of the assembled reference genome. The length of the 18 linkage groups ranged from 88.89 cM (Chr. 15) to 274.82 cM (Chr. 16), with an average size of 168.17 cM. To our knowledge, this is the first genetic linkage map for proso millet based on SSR markers. Plant height is one of the most important traits in crop improvement. A major QTL was repeatedly detected in different environments, explaining 8.70-24.50% of the plant height variations. A candidate gene affecting auxin biosynthesis and transport, and ROS homeostasis regulation was predicted. Thus, the linkage map and QTL analysis provided herein will promote the development of gene mining and molecular breeding in proso millet.
Collapse
Affiliation(s)
- Yanmiao Jiang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Li Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Haiquan Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Yanan Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China
| | - Xindong Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Guoqing Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, Hebei, China.
- Key Laboratory of Minor Crops in Hebei, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
5
|
DiMario RJ, Kophs AN, Apalla AJA, Schnable JN, Cousins AB. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. ANNALS OF BOTANY 2023; 132:413-428. [PMID: 37675505 PMCID: PMC10667006 DOI: 10.1093/aob/mcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J A Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James N Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Sun Y, Liu Y, Shi J, Wang L, Liang C, Yang J, Chen J, Chen M. Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:787-801. [PMID: 36575912 DOI: 10.1111/tpj.16085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated crops, and is a valuable resource to secure food diversity and combat drought stresses under the global warming scenario. However, due to the absence of extant diploid progenitors, the polyploidy genome of broomcorn millet remains poorly understood. Here, we report the chromosome-scale genome assembly of broomcorn millet. We divided the broomcorn millet genome into two subgenomes using the genome sequence of Panicum hallii, a diploid relative of broomcorn millet. Our analyses revealed that the two subgenomes diverged at ~4.8 million years ago (Mya), while the allotetraploidization of broomcorn millet may have occurred about ~0.48 Mya, suggesting that broomcorn millet is a relatively recent allotetraploid. Comparative analyses showed that subgenome B was larger than subgenome A in size, which was caused by the biased accumulation of long terminal repeat retrotransposons in the progenitor of subgenome B before polyploidization. Notably, the accumulation of biased mutations in the transposable element-rich subgenome B led to more gene losses. Although no significant dominance of either subgenome was observed in the expression profiles of broomcorn millet, we found the minimally expressed genes in P. hallii tended to be lost during diploidization of broomcorn millet. These results suggest that broomcorn millet is at the early stage of diploidization and that mutations likely occurred more on genes that were marked with lower expression levels.
Collapse
Affiliation(s)
- Yanling Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfeng Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lun Wang
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, 030031, Taiyuan, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 201602, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| |
Collapse
|
7
|
Pre-invasion assessment on African invasive grasses revealed five new species of ergot fungi, Claviceps section Pusillae. Fungal Biol 2022; 126:752-763. [PMID: 36517143 DOI: 10.1016/j.funbio.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023]
Abstract
Ergot, the genus Claviceps comprises several deeply diverged lineages, recently classified as sections. Among them, the section Pusillae, is the most speciose, with a centre of distribution in Africa but occurring worldwide, often as a consequence of its invasive potential. This section includes the most severe plant pathogens such as Claviceps africana and C. gigantea, responsible for toxicoses and a significant reduction in the seed yields of Sorghum and Zea. In this study we surveyed ergot diversity in South Africa, focusing on grasses native to this region, but known for their high potential of invasiveness. The revision based on molecular and phenotypic markers revealed 16 species, with a high proportion of undescribed diversity, confirming Africa as a hot spot for this section. Five new species, Claviceps tulasnei, Claviceps eulaliae, Claviceps hypertheliae, Claviceps fredericksoniae and Claviceps arundinellae were described from Setaria, Eulalia, Hyperthelia, Miscanthus and Arundinella respectively. Claviceps texensis infecting Cenchrus, previously only identified from the same host in Texas, USA, was confirmed to be present in Africa, which is assumed to be its primary area of distribution. In addition, the host grass genus Anthephora is newly reported as a host of Claviceps digitariae. The most of the taxa were negligible concerning alkaloid production, with the exception of C. fredericksoniae, which is a sister of potent alkaloid producer C. africana, and produces mainly DH-ergosine, together with traces of DH-ergocornine. The host/parasite associations within Pusillae section is very narrow, suggesting that co-speciation is the major speciation driver in this group. Host grasses of the described species are already recognised invasive species and their ovarial parasites need to be monitored. This is highlighted by the fact that all Pusillae produced air-borne secondary conidia, which is autapomorphy of this section and considered to be important for their invasive abilities.
Collapse
|
8
|
Huang W, Zhang L, Columbus JT, Hu Y, Zhao Y, Tang L, Guo Z, Chen W, McKain M, Bartlett M, Huang CH, Li DZ, Ge S, Ma H. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C 4 photosynthesis. MOLECULAR PLANT 2022; 15:755-777. [PMID: 35093593 DOI: 10.1016/j.molp.2022.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/09/2021] [Accepted: 01/24/2022] [Indexed: 05/11/2023]
Abstract
Poaceae (the grasses) includes rice, maize, wheat, and other crops, and is the most economically important angiosperm family. Poaceae is also one of the largest plant families, consisting of over 11 000 species with a global distribution that contributes to diverse ecosystems. Poaceae species are classified into 12 subfamilies, with generally strong phylogenetic support for their monophyly. However, many relationships within subfamilies, among tribes and/or subtribes, remain uncertain. To better resolve the Poaceae phylogeny, we generated 342 transcriptomic and seven genomic datasets; these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera, representing 45 tribes and all 12 subfamilies. Over 1200 low-copy nuclear genes were retrieved from these datasets, with several subsets obtained using additional criteria, and used for coalescent analyses to reconstruct a Poaceae phylogeny. Our results strongly support the monophyly of 11 subfamilies; however, the subfamily Puelioideae was separated into two non-sister clades, one for each of the two previously defined tribes, supporting a hypothesis that places each tribe in a separate subfamily. Molecular clock analyses estimated the crown age of Poaceae to be ∼101 million years old. Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis. These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase, which suggests that members of three paralogous subclades (ppc-aL1a, ppc-aL1b, and ppc-B2) were recruited as functional C4ppc genes. This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.
Collapse
Affiliation(s)
- Weichen Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Lin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - J Travis Columbus
- Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, CA 91711, USA
| | - Yi Hu
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yiyong Zhao
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lin Tang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenhua Guo
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Wenli Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Michael McKain
- Department of Biological Sciences, University of Alabama, 411 Mary Harmon Bryant Hall, Tuscaloosa, AL 35487, USA
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 3, Amherst, MA 01003 USA
| | - Chien-Hsun Huang
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| |
Collapse
|
9
|
Ferreira RCU, da Costa Lima Moraes A, Chiari L, Simeão RM, Vigna BBZ, de Souza AP. An Overview of the Genetics and Genomics of the Urochloa Species Most Commonly Used in Pastures. FRONTIERS IN PLANT SCIENCE 2021; 12:770461. [PMID: 34966402 PMCID: PMC8710810 DOI: 10.3389/fpls.2021.770461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Pastures based on perennial monocotyledonous plants are the principal source of nutrition for ruminant livestock in tropical and subtropical areas across the globe. The Urochloa genus comprises important species used in pastures, and these mainly include Urochloa brizantha, Urochloa decumbens, Urochloa humidicola, and Urochloa ruziziensis. Despite their economic relevance, there is an absence of genomic-level information for these species, and this lack is mainly due to genomic complexity, including polyploidy, high heterozygosity, and genomes with a high repeat content, which hinders advances in molecular approaches to genetic improvement. Next-generation sequencing techniques have enabled the recent release of reference genomes, genetic linkage maps, and transcriptome sequences, and this information helps improve our understanding of the genetic architecture and molecular mechanisms involved in relevant traits, such as the apomictic reproductive mode. However, more concerted research efforts are still needed to characterize germplasm resources and identify molecular markers and genes associated with target traits. In addition, the implementation of genomic selection and gene editing is needed to reduce the breeding time and expenditure. In this review, we highlight the importance and characteristics of the four main species of Urochloa used in pastures and discuss the current findings from genetic and genomic studies and research gaps that should be addressed in future research.
Collapse
Affiliation(s)
| | - Aline da Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
10
|
Washburn JD, Strable J, Dickinson P, Kothapalli SS, Brose JM, Covshoff S, Conant GC, Hibberd JM, Pires JC. Distinct C 4 sub-types and C 3 bundle sheath isolation in the Paniceae grasses. PLANT DIRECT 2021; 5:e373. [PMID: 34988355 PMCID: PMC8711749 DOI: 10.1002/pld3.373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution.
Collapse
Affiliation(s)
- Jacob D. Washburn
- Plant Genetics Research Unit, USDA‐ARSUniversity of MissouriColumbiaMOUSA
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Josh Strable
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Julia M. Brose
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Sarah Covshoff
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gavin C. Conant
- Program in Genetics, Bioinformatics Research Center, Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | |
Collapse
|
11
|
Xu W, Liang M, Yang X, Wang H, Luo M. Genomic resources of broomcorn millet: demonstration and application of a high-throughput BAC mapping pipeline. BMC Genom Data 2021; 22:46. [PMID: 34724898 PMCID: PMC8561967 DOI: 10.1186/s12863-021-01003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background With high-efficient water-use and drought tolerance, broomcorn millet has emerged as a candidate for food security. To promote its research process for molecular breeding and functional research, a comprehensive genome resource is of great importance. Results Herein, we constructed a BAC library for broomcorn millet, generated BAC end sequences based on the clone-array pooled shotgun sequencing strategy and Illumina sequencing technology, and integrated BAC clones into genome by a novel pipeline for BAC end profiling. The BAC library consisted of 76,023 clones with an average insert length of 123.48 Kb, covering about 9.9-fold of the 850 Mb genome. Of 9216 clones tested using our pipeline, 8262 clones were mapped on the broomcorn millet cultivar longmi4 genome. These mapped clones covered 308 of the 829 gaps left by the genome. To our knowledge, this is the only BAC resource for broomcorn millet. Conclusions We constructed a high-quality BAC libraray for broomcorn millet and designed a novel pipeline for BAC end profiling. BAC clones can be browsed and obtained from our website (http://eightstarsbio.com/gresource/JBrowse-1.16.5/index.html). The high-quality BAC clones mapped on genome in this study will provide a powerful genomic resource for genome gap filling, complex segment sequencing, FISH, functional research and genetic engineering of broomcorn millet. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01003-z.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjie Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xue Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
do Nascimento CD, de Paula ACCFF, de Oliveira Júnior AH, Mendonça HDOP, Reina LDCB, Augusti R, Figueiredo-Ribeiro RDCL, Melo JOF. Paper Spray Mass Spectrometry on the Analysis of Phenolic Compounds in Rhynchelytrum repens: A Tropical Grass with Hypoglycemic Activity. PLANTS (BASEL, SWITZERLAND) 2021; 10:1617. [PMID: 34451661 PMCID: PMC8398573 DOI: 10.3390/plants10081617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
The characterization of plant compounds with pharmacological activity is a field of great relevance in research and development. As such, identification techniques with the goal of developing new drugs or even validating the bioactive properties of extracts must be explored in order to further expand the knowledge of plant extract composition. Most works in this field employ HPLC, when exploring non-structural and cell wall carbohydrates from Rhynchelytrum repens. Phenolic compounds were studied by classical chromatography techniques and UV-vis spectrophotometry, with C-glycosylated flavonoids being detected but with no further details regarding the chemical structure of these compounds. In this work we employ paper spray ionization mass spectrometry (PS-MS) for the evaluation of the chemical profile of R. repens methanol extract. Positive ionization mode identified 15 compounds, belonging to flavonoids, fatty acids, and other classes of compounds; negative mode ionization was able to identify 20 compounds comprising the classes of quinic acids, stilbenes and flavonoids. PS-MS proved effective for the evaluation of R. repens extracts, making it possible to identify a total of thirty-five compounds. The bioactive properties attributed to R. repens were confirmed by the identification and characterization of compounds identified by PS-MS.
Collapse
Affiliation(s)
- Cezar D. do Nascimento
- Department of Agrarian Sciences (DCA), Federal Institute of Education, Science and Technology of Minas Gerais (IFMG), Campus Bambuí, Rodovia Bambuí/Medeiros, km 05, Bambuí 38900-000, Brazil;
| | - Ana C. C. F. F. de Paula
- Department of Agrarian Sciences (DCA), Federal Institute of Education, Science and Technology of Minas Gerais (IFMG), Campus Bambuí, Rodovia Bambuí/Medeiros, km 05, Bambuí 38900-000, Brazil;
| | - Afonso H. de Oliveira Júnior
- Department of Exact and Biological Sciences (DECEB), Federal University of São João del-Rei (UFSJ), MG 424, km 47, Sete Lagoas 35701-970, Brazil; (A.H.d.O.J.); (H.d.O.P.M.)
| | - Henrique de O. P. Mendonça
- Department of Exact and Biological Sciences (DECEB), Federal University of São João del-Rei (UFSJ), MG 424, km 47, Sete Lagoas 35701-970, Brazil; (A.H.d.O.J.); (H.d.O.P.M.)
| | - Luisa del C. B. Reina
- Campus Sinop, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1200—Res. Cidade Jardim, Sinop 78550-728, Brazil;
| | - Rodinei Augusti
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627—Pampulha, Belo Horizonte 31270-901, Brazil;
| | - Rita de C. L. Figueiredo-Ribeiro
- Physiology and Biochemistry Section of Plants, Botanic Institute of São Paulo, Av. Miguel Stéfano, 3687—Agua Funda, São Paulo CEP 04301-902, Brazil;
| | - Júlio O. F. Melo
- Department of Exact and Biological Sciences (DECEB), Federal University of São João del-Rei (UFSJ), MG 424, km 47, Sete Lagoas 35701-970, Brazil; (A.H.d.O.J.); (H.d.O.P.M.)
| |
Collapse
|
13
|
Weissmann S, Huang P, Wiechert MA, Furuyama K, Brutnell TP, Taniguchi M, Schnable JC, Mockler TC. DCT4-A New Member of the Dicarboxylate Transporter Family in C4 Grasses. Genome Biol Evol 2021; 13:6126432. [PMID: 33587128 PMCID: PMC7883667 DOI: 10.1093/gbe/evaa251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 11/15/2022] Open
Abstract
Malate transport shuttles atmospheric carbon into the Calvin–Benson cycle during NADP-ME C4 photosynthesis. Previous characterizations of several plant dicarboxylate transporters (DCT) showed that they efficiently exchange malate across membranes. Here, we identify and characterize a previously unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4 exchanges malate across membranes and its expression pattern is consistent with a role in malate transport during C4 photosynthesis. SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an ortholog is not detectable in the maize reference genome. We found that the expression patterns of DCT family genes in the leaves of Zea mays, and S. bicolor varied by cell type. Our results suggest that subfunctionalization, of members of the DCT family, for the transport of malate into the bundle sheath plastids, occurred during the process of independent recurrent evolution of C4 photosynthesis in grasses of the PACMAD clade. We also show that this subfunctionalization is lineage independent. Our results challenge the dogma that key C4 genes must be orthologues of one another among C4 species, and shed new light on the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Pu Huang
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | | | - Koki Furuyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Thomas P Brutnell
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing, China
| | - Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - James C Schnable
- Computational Sciences Initiative, Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Nebraska, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Bianconi ME, Hackel J, Vorontsova MS, Alberti A, Arthan W, Burke SV, Duvall MR, Kellogg EA, Lavergne S, McKain MR, Meunier A, Osborne CP, Traiperm P, Christin PA, Besnard G. Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Syst Biol 2020; 69:445-461. [PMID: 31589325 PMCID: PMC7672695 DOI: 10.1093/sysbio/syz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Abstract
C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} lineages is Andropogoneae, a group of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\sim $\end{document}1200 grass species that includes some of the world’s most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} evolution in the group have compared a few model C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} plants to distantly related C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} species so that changes directly responsible for the transition to C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} could not be distinguished from those that preceded or followed it. In this study, we analyze the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{3}$\end{document} sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} origin gave birth to a diversity of C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{4}$\end{document} phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state. [Adaptive evolution; complex traits; herbarium genomics; Jansenelleae; leaf anatomy; Poaceae; phylogenomics.]
Collapse
Affiliation(s)
- Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jan Hackel
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Maria S Vorontsova
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Adriana Alberti
- CEA - Institut de Biologie Francois-Jacob, Genoscope, 2 Rue Gaston Cremieux 91057 Evry Cedex, France
| | - Watchara Arthan
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Sean V Burke
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Melvin R Duvall
- Department of Biological Sciences, Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MI 63132, USA
| | - Sébastien Lavergne
- Laboratoire d’Ecologie Alpine, CNRS – Université Grenoble Alpes, UMR 5553, Grenoble, France
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, 500 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Alexandre Meunier
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, King Rama VI Road, Bangkok 10400, Thailand
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
- Correspondence to be sent to: Laboratoire Evolution & Diversité Biologique (EDB, UMR 5174), CNRS/IRD/Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France; E-mail:
| |
Collapse
|
15
|
Yadav S, Mishra A. Ectopic expression of C 4 photosynthetic pathway genes improves carbon assimilation and alleviate stress tolerance for future climate change. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:195-209. [PMID: 32153323 PMCID: PMC7036372 DOI: 10.1007/s12298-019-00751-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 05/04/2023]
Abstract
Alteration in atmospheric carbon dioxide concentration and other environmental factors are the significant cues of global climate change. Environmental factors affect the most fundamental biological process including photosynthesis and different metabolic pathways. The feeding of the rapidly growing world population is another challenge which imposes pressure to improve productivity and quality of the existing crops. C4 plants are considered the most productive, containing lower photorespiration, and higher water-use & N-assimilation efficiencies, compared to C3 plants. Besides, the C4-photosynthetic genes not only play an important role in carbon assimilation but also modulate abiotic stresses. In this review, fundamental three metabolic processes (C4, C3, and CAM) of carbon dioxide assimilation, the evolution of C4-photosynthetic genes, effect of elevated CO2 on photosynthesis, and overexpression of C4-photosynthetic genes for higher photosynthesis were discussed. Kranz-anatomy is considered an essential prerequisite for the terrestrial C4 carbon assimilation, but single-celled C4 plant species changed this well-established paradigm. C4 plants are insensitive to an elevated CO2 stress condition but performed better under stress conditions. Overexpression of essential C4-photosynthetic genes such as PEPC, PPDK, and NADP-ME in C3 plants like Arabidopsis, tobacco, rice, wheat, and potato not only improved photosynthesis but also provided tolerance to various environmental stresses, especially drought. The review provides useful information for sustainable productivity and yield under elevated CO2 environment, which to be explored further for CO2 assimilation and also abiotic stress tolerance. Additionally, it provides a better understanding to explore C4-photosynthetic gene(s) to cope with global warming and prospective adverse climatic changes.
Collapse
Affiliation(s)
- Sonam Yadav
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat India
| |
Collapse
|
16
|
Carvalho DS, Nishimwe AV, Schnable JC. IsoSeq transcriptome assembly of C 3 panicoid grasses provides tools to study evolutionary change in the Panicoideae. PLANT DIRECT 2020; 4:e00203. [PMID: 32128472 PMCID: PMC7047018 DOI: 10.1002/pld3.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The number of plant species with genomic and transcriptomic data has been increasing rapidly. The grasses-Poaceae-have been well represented among species with published reference genomes. However, as a result the genomes of wild grasses are less frequently targeted by sequencing efforts. Sequence data from wild relatives of crop species in the grasses can aid the study of domestication, gene discovery for breeding and crop improvement, and improve our understanding of the evolution of C4 photosynthesis. Here, we used long-read sequencing technology to characterize the transcriptomes of three C3 panicoid grass species: Dichanthelium oligosanthes, Chasmanthium laxum, and Hymenachne amplexicaulis. Based on alignments to the sorghum genome, we estimate that assembled consensus transcripts from each species capture between 54.2% and 65.7% of the conserved syntenic gene space in grasses. Genes co-opted into C4 were also well represented in this dataset, despite concerns that because these genes might play roles unrelated to photosynthesis in the target species, they would be expressed at low levels and missed by transcript-based sequencing. A combined analysis using syntenic orthologous genes from grasses with published reference genomes and consensus long-read sequences from these wild species was consistent with previously published phylogenies. It is hoped that these data, targeting underrepresented classes of species within the PACMAD grasses-wild species and species utilizing C3 photosynthesis-will aid in future studies of domestication and C4 evolution by decreasing the evolutionary distance between C4 and C3 species within this clade, enabling more accurate comparisons associated with evolution of the C4 pathway.
Collapse
Affiliation(s)
- Daniel S. Carvalho
- Department of Agronomy and HorticultureCenter for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Aime V. Nishimwe
- Department of Agronomy and HorticultureCenter for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| | - James C. Schnable
- Department of Agronomy and HorticultureCenter for Plant Science InnovationUniversity of Nebraska‐LincolnLincolnNEUSA
| |
Collapse
|
17
|
Washburn JD, McElfresh MJ, Birchler JA. Progressive heterosis in genetically defined tetraploid maize. J Genet Genomics 2019; 46:389-396. [PMID: 31444136 DOI: 10.1016/j.jgg.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022]
Abstract
Progressive heterosis, i.e., the additional hybrid vigor in double-cross tetraploid hybrids not found in their single-cross tetraploid parents, has been documented in a number of species including alfalfa, potato, and maize. In this study, four artificially induced maize tetraploids, directly derived from standard inbred lines, were crossed in pairs to create two single-cross hybrids. These hybrids were then crossed to create double-cross hybrids containing genetic material from all four original lines. Replicated field-based phenotyping of the materials over four years indicated a strong progressive heterosis phenotype in tetraploids but not in their diploid counterparts. In particular, the above ground dry weight phenotype of double-cross tetraploid hybrids was on average 34% and 56% heavier than that of the single-cross tetraploid hybrids and the double-cross diploid counterparts, respectively. Additionally, whole-genome resequencing of the original inbred lines and further analysis of these data did not show the expected spectrum of alleles to explain tetraploid progressive heterosis under the complementation of complete recessive model. These results underscore the reality of the progressive heterosis phenotype, its potential utility for increasing crop biomass production, and the need for exploring alternative hypothesis to explain it at a molecular level.
Collapse
Affiliation(s)
- Jacob D Washburn
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211, USA
| | - Mitchell J McElfresh
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
18
|
Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, Deng P, Peng L, Jia W, Huang R, Zhang M, Sun Y, Hu J, Fu X, Schnable PS, Chang Y, Li F, Zhang H, Feng B, Zhu X, Liu R, Schnable JC, Zhu JK, Zhang H. The genome of broomcorn millet. Nat Commun 2019; 10:436. [PMID: 30683860 PMCID: PMC6347628 DOI: 10.1038/s41467-019-08409-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) is the most water-efficient cereal and one of the earliest domesticated plants. Here we report its high-quality, chromosome-scale genome assembly using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. Phylogenetic analyses reveal two sets of homologous chromosomes that may have merged ~5.6 million years ago, both of which exhibit strong synteny with other grass species. Broomcorn millet contains 55,930 protein-coding genes and 339 microRNA genes. We find Paniceae-specific expansion in several subfamilies of the BTB (broad complex/tramtrack/bric-a-brac) subunit of ubiquitin E3 ligases, suggesting enhanced regulation of protein dynamics may have contributed to the evolution of broomcorn millet. In addition, we identify the coexistence of all three C4 subtypes of carbon fixation candidate genes. The genome sequence is a valuable resource for breeders and will provide the foundation for studying the exceptional stress tolerance as well as C4 biology.
Collapse
Affiliation(s)
- Changsong Zou
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, 475001, Kaifeng, Henan, China
| | - Leiting Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Delin Li
- Data2Bio LLC, Ames, IA, 50011-3650, USA
- Dryland Genetics LLC, Ames, IA, 50010, USA
- China Agricultural University, 100193, Beijing, China
| | - Qiming Tang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Lihong Xiao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | | | - Ping Deng
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Wei Jia
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Ru Huang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Meiling Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Yidan Sun
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Jiamin Hu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Patrick S Schnable
- Data2Bio LLC, Ames, IA, 50011-3650, USA
- Dryland Genetics LLC, Ames, IA, 50010, USA
- China Agricultural University, 100193, Beijing, China
- Department of Agronomy, Iowa State University, Ames, IA, 50011-3650, USA
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Feng Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Hui Zhang
- Key Laboratory of Plant Stress Research, Shandong Normal University, No. 88 Wenhua East Rd, Jinan, 250014, Shandong, China
| | - Baili Feng
- School of Agronomy, Northwest Agriculture & Forestry University, 3 Weihui Rd, 712100, Yangling, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032, Shanghai, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - James C Schnable
- Data2Bio LLC, Ames, IA, 50011-3650, USA
- Dryland Genetics LLC, Ames, IA, 50010, USA
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China.
| |
Collapse
|
19
|
Complete Chloroplast Genome Sequence of Broomcorn Millet (Panicum miliaceum L.) and Comparative Analysis with Other Panicoideae Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8090159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated cereals worldwide, holding significant agricultural, historical, and evolutionary importance. However, our genomic knowledge of it is rather limited at present, hampering further genetic and evolutionary studies. Here, we sequenced and assembled the chloroplast genome (cp) of broomcorn millet and compared it with five other Panicoideae species. Results showed that the cp genome of broomcorn millet was 139,826 bp in size, with a typical quadripartite structure. In total, 108 genes were annotated and 18 genes were duplicated in the IR (inverted region) region, which was similar to other Panicoideae species. Comparative analysis showed a rather conserved genome structure between them, with three common regions. Furthermore, RNA editing, codon usage, and expansion of the IR, as well as simple sequence repeat (SSR) elements, were systematically investigated and 13 potential DNA markers were developed for Panicoideae species identification. Finally, phylogenetic analysis implied that broomcorn millet was a sister species to Panicum virgatum within the tribe Paniceae, and supported a monophyly of the Panicoideae. This study has reported for the first time the genome organization, gene content, and structural features of the chloroplast genome of broomcorn millet, which provides valuable information for genetic and evolutionary studies in the genus Panicum and beyond.
Collapse
|
20
|
Burke SV, Ungerer MC, Duvall MR. Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae). BMC PLANT BIOLOGY 2018; 18:152. [PMID: 30075756 PMCID: PMC6091044 DOI: 10.1186/s12870-018-1379-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/30/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The grass family (Poaceae), ca. 12,075 species, is a focal point of many recent studies that aim to use complete plastomes to reveal and strengthen relationships within the family. The use of Next Generation Sequencing technology has revealed intricate details in many Poaceae plastomes; specifically the trnI - trnL intergenic spacer region. This study investigates this region and the putative mitochondrial inserts within it in complete plastomes of Paspalum and other Poaceae. RESULTS Nine newly sequenced plastomes, seven of which contain an insert within the trnI - trnL intergenic spacer, were combined into plastome phylogenomic and divergence date analyses with 52 other species. A robust Paspalum topology was recovered, originating at 10.6 Ma, with the insert arising at 8.7 Ma. The alignment of the insert across Paspalum reveals 21 subregions with pairwise homology in 19. In an analysis of emergent self-organizing maps of tetranucleotide frequencies, the Paspalum insert grouped with mitochondrial DNA. CONCLUSIONS A hypothetical ancestral insert, 17,685 bp in size, was found in the trnI - trnL intergenic spacer for the Paspalum lineage. A different insert, 2808 bp, was found in the same region for Paraneurachne muelleri. Seven different intrastrand deletion events were found within the Paspalum lineage, suggesting selective pressures to remove large portions of noncoding DNA. Finally, a tetranucleotide frequency analysis was used to determine that the origin of the insert in the Paspalum lineage is mitochondrial DNA.
Collapse
Affiliation(s)
- Sean V. Burke
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861 USA
| | - Mark C. Ungerer
- Division of Biology, Kansas State University, 1717 Claflin Rd, Manhattan, KS 66506-4900 USA
| | - Melvin R. Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861 USA
| |
Collapse
|
21
|
Some like it hot: the physiological ecology of C 4 plant evolution. Oecologia 2018; 187:941-966. [PMID: 29955992 DOI: 10.1007/s00442-018-4191-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
The evolution of C4 photosynthesis requires an intermediate phase where photorespiratory glycine produced in the mesophyll cells must flow to the vascular sheath cells for metabolism by glycine decarboxylase. This glycine flux concentrates photorespired CO2 within the sheath cells, allowing it to be efficiently refixed by sheath Rubisco. A modest C4 biochemical cycle is then upregulated, possibly to support the refixation of photorespired ammonia in sheath cells, with subsequent increases in C4 metabolism providing incremental benefits until an optimized C4 pathway is established. 'Why' C4 photosynthesis evolved is largely explained by ancestral C3 species exploiting photorespiratory CO2 to improve carbon gain and thus enhance fitness. While photorespiration depresses C3 performance, it produces a resource (photorespired CO2) that can be exploited to build an evolutionary bridge to C4 photosynthesis. 'Where' C4 evolved is indicated by the habitat of species branching near C3-to-C4 transitions on phylogenetic trees. Consistent with the photorespiratory bridge hypothesis, transitional species show that the large majority of > 60 C4 lineages arose in hot, dry, and/or saline regions where photorespiratory potential is high. 'When' C4 evolved has been clarified by molecular clock analyses using phylogenetic data, coupled with isotopic signatures from fossils. Nearly all C4 lineages arose after 25 Ma when atmospheric CO2 levels had fallen to near current values. This reduction in CO2, coupled with persistent high temperature at low-to-mid-latitudes, met a precondition where photorespiration was elevated, thus facilitating the evolutionary selection pressure that led to C4 photosynthesis.
Collapse
|
22
|
Bianconi ME, Dunning LT, Moreno-Villena JJ, Osborne CP, Christin PA. Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1967-1980. [PMID: 29394370 PMCID: PMC6018922 DOI: 10.1093/jxb/ery029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/17/2018] [Indexed: 05/04/2023]
Abstract
The importance of gene duplication for evolutionary diversification has been mainly discussed in terms of genetic redundancy allowing neofunctionalization. In the case of C4 photosynthesis, which evolved via the co-option of multiple enzymes to boost carbon fixation in tropical conditions, the importance of genetic redundancy has not been consistently supported by genomic studies. Here, we test for a different role for gene duplication in the early evolution of C4 photosynthesis, via dosage effects creating rapid step changes in expression levels. Using genome-wide data for accessions of the grass genus Alloteropsis that recently diversified into different photosynthetic types, we estimate gene copy numbers and demonstrate that recurrent duplications in two important families of C4 genes coincided with increases in transcript abundance along the phylogeny, in some cases via a pure dosage effect. While increased gene copy number during the initial emergence of C4 photosynthesis probably offered a rapid route to enhanced expression, we also find losses of duplicates following the acquisition of genes encoding better-suited isoforms. The dosage effect of gene duplication might therefore act as a transient process during the evolution of a C4 biochemistry, rendered obsolete by the fixation of regulatory mutations increasing expression levels.
Collapse
Affiliation(s)
- Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
23
|
Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA. Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:385-403. [PMID: 29746719 DOI: 10.1002/ajb2.1016] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Phylogenetic support has been difficult to evaluate within the green plant tree of life partly due to a lack of specificity between conflicted versus poorly informed branches. As data sets continue to expand in both breadth and depth, new support measures are needed that are more efficient and informative. METHODS We describe the Quartet Sampling (QS) method, a quartet-based evaluation system that synthesizes several phylogenetic and genomic analytical approaches. QS characterizes discordance in large-sparse and genome-wide data sets, overcoming issues of alignment sparsity and distinguishing strong conflict from weak support. We tested QS with simulations and recent plant phylogenies inferred from variously sized data sets. KEY RESULTS QS scores demonstrated convergence with increasing replicates and were not strongly affected by branch depth. Patterns of QS support from different phylogenies led to a coherent understanding of ancestral branches defining key disagreements, including the relationships of Ginkgo to cycads, magnoliids to monocots and eudicots, and mosses to liverworts. The relationships of ANA-grade angiosperms (Amborella, Nymphaeales, Austrobaileyales), major monocot groups, bryophytes, and fern families are likely highly discordant in their evolutionary histories, rather than poorly informed. QS can also detect discordance due to introgression in phylogenomic data. CONCLUSIONS Quartet Sampling is an efficient synthesis of phylogenetic tests that offers more comprehensive and specific information on branch support than conventional measures. The QS method corroborates growing evidence that phylogenomic investigations that incorporate discordance testing are warranted when reconstructing complex evolutionary histories, in particular those surrounding ANA-grade, monocots, and nonvascular plants.
Collapse
Affiliation(s)
- James B Pease
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, North Carolina, 27101, USA
| | - Joseph W Brown
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| | - Cody E Hinchliff
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho, 83844, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
24
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
25
|
Küpper A, Manmathan HK, Giacomini D, Patterson EL, McCloskey WB, Gaines TA. Population Genetic Structure in Glyphosate-Resistant and -Susceptible Palmer Amaranth ( Amaranthus palmeri) Populations Using Genotyping-by-sequencing (GBS). FRONTIERS IN PLANT SCIENCE 2018; 9:29. [PMID: 29422910 PMCID: PMC5788914 DOI: 10.3389/fpls.2018.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 05/25/2023]
Abstract
Palmer amaranth (Amaranthus palmeri) is a major weed in United States cotton and soybean production systems. Originally native to the Southwest, the species has spread throughout the country. In 2004 a population of A. palmeri was identified with resistance to glyphosate, a herbicide heavily relied on in modern no-tillage and transgenic glyphosate-resistant (GR) crop systems. This project aims to determine the degree of genetic relatedness among eight different populations of GR and glyphosate-susceptible (GS) A. palmeri from various geographic regions in the United States by analyzing patterns of phylogeography and diversity to ascertain whether resistance evolved independently or spread from outside to an Arizona locality (AZ-R). Shikimic acid accumulation and EPSPS genomic copy assays confirmed resistance or susceptibility. With a set of 1,351 single nucleotide polymorphisms (SNPs), discovered by genotyping-by-sequencing (GBS), UPGMA phylogenetic analysis, principal component analysis, Bayesian model-based clustering, and pairwise comparisons of genetic distances were conducted. A GR population from Tennessee and two GS populations from Georgia and Arizona were identified as genetically distinct while the remaining GS populations from Kansas, Arizona, and Nebraska clustered together with two GR populations from Arizona and Georgia. Within the latter group, AZ-R was most closely related to the GS populations from Kansas and Arizona followed by the GR population from Georgia. GR populations from Georgia and Tennessee were genetically distinct from each other. No isolation by distance was detected and A. palmeri was revealed to be a species with high genetic diversity. The data suggest the following two possible scenarios: either glyphosate resistance was introduced to the Arizona locality from the east, or resistance evolved independently in Arizona. Glyphosate resistance in the Georgia and Tennessee localities most likely evolved separately. Thus, modern farmers need to continue to diversify weed management practices and prevent seed dispersal to mitigate herbicide resistance evolution in A. palmeri.
Collapse
Affiliation(s)
- Anita Küpper
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Harish K. Manmathan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Darci Giacomini
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Eric L. Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | | | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
26
|
Nani TF, Schnable JC, Washburn JD, Albert P, Pereira WA, Sobrinho FS, Birchler JA, Techio VH. Location of low copy genes in chromosomes of Brachiaria spp. Mol Biol Rep 2018; 45:109-118. [PMID: 29330722 DOI: 10.1007/s11033-018-4144-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/27/2017] [Indexed: 01/09/2023]
Abstract
Repetitive DNA sequences have been widely used in cytogenetic analyses. The use of gene sequences with a low-copy-number, however, is little explored especially in plants. To date, the karyotype details in Brachiaria spp. are limited to the location of rDNA sites. The challenge lies in developing new probes based on incomplete sequencing data for the genus or complete sequencing of related species, since there are no model species with a sequenced genome in Brachiaria spp. The present study aimed at the physical location of conserved genes in chromosomes of Brachiaria ruziziensis, Brachiaria brizantha, and Brachiaria decumbens using RNAseq data, as well as sequences of Setaria italica and Sorghum bicolor through the fluorescent in situ hybridization technique. Five out of approximately 90 selected sequences generated clusters in the chromosomes of the species of Brachiaria studied. We identified genes in synteny with 5S and 45S rDNA sites, which contributed to the identification of chromosome pairs carrying these genes. In some cases, the species of Brachiaria evaluated had syntenic segments conserved across the chromosomes. The use of genomic sequencing data is essential for the enhancement of cytogenetic analyses.
Collapse
Affiliation(s)
- Thaís Furtado Nani
- Department of Biology, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
| | | | - Jacob D Washburn
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Patrice Albert
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | | - Fausto Souza Sobrinho
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Embrapa Gado de Leite (CNPGL), Juiz de Fora, Minas Gerais State, Brazil
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Vânia Helena Techio
- Department of Biology, Federal University of Lavras, Lavras, Minas Gerais State, Brazil.
| |
Collapse
|
27
|
Piot A, Hackel J, Christin PA, Besnard G. One-third of the plastid genes evolved under positive selection in PACMAD grasses. PLANTA 2018; 247:255-266. [PMID: 28956160 DOI: 10.1007/s00425-017-2781-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/10/2023]
Abstract
We demonstrate that rbcL underwent strong positive selection during the C 3 -C 4 photosynthetic transitions in PACMAD grasses, in particular the 3' end of the gene. In contrast, selective pressures on other plastid genes vary widely and environmental drivers remain to be identified. Plastid genomes have been widely used to infer phylogenetic relationships among plants, but the selective pressures driving their evolution have not been systematically investigated. In our study, we analyse all protein-coding plastid genes from 113 species of PACMAD grasses (Poaceae) to evaluate the selective pressures driving their evolution. Our analyses confirm that the gene encoding the large subunit of RubisCO (rbcL) evolved under strong positive selection after C3-C4 photosynthetic transitions. We highlight new codons in rbcL that underwent parallel changes, in particular those encoding the C-terminal part of the protein. C3-C4 photosynthetic shifts did not significantly affect the evolutionary dynamics of other plastid genes. Instead, while two-third of the plastid genes evolved under purifying selection or neutrality, 25 evolved under positive selection across the PACMAD clade. This set of genes encode for proteins involved in diverse functions, including self-replication of plastids and photosynthesis. Our results suggest that plastid genes widely adapt to changing ecological conditions, but factors driving this evolution largely remain to be identified.
Collapse
Affiliation(s)
- Anthony Piot
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jan Hackel
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
28
|
Teisher JK, McKain MR, Schaal BA, Kellogg EA. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn. ANNALS OF BOTANY 2017; 120. [PMID: 28645142 PMCID: PMC5714200 DOI: 10.1093/aob/mcx058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Subfamily Arundinoideae represents one of the last unsolved taxonomic mysteries in the grass family (Poaceae) due to the narrow and remote distributions of many of its 19 morphologically and ecologically heterogeneous genera. Resolving the phylogenetic relationships of these genera could have substantial implications for understanding character evolution in the grasses, for example the twisted geniculate awn - a hygroscopic awn that has been shown to be important in seed germination for some grass species. In this study, the phylogenetic positions of most arundinoid genera were determined using DNA from herbarium specimens, and their placement affects interpretation of this ecologically important trait. METHODS A phylogenetic analysis was conducted on a matrix of full-plastome sequences from 123 species in 107 genera representing all grass subfamilies, with 15 of the 19 genera in subfamily Arundinoideae. Parsimony and maximum likelihood mapping approaches were used to estimate ancestral states for presence of a geniculate lemma awn with a twisted column across Poaceae. Lastly, anatomical characters were examined for former arundinoid taxa using light microscopy and scanning electron microscopy. KEY RESULTS Four genera traditionally included in Arundinoideae fell outside the subfamily in the plastome phylogeny, with the remaining 11 genera forming Arundinoideae sensu stricto . The twisted geniculate awn has originated independently at least five times in the PACMAD grasses, in the subfamilies Panicoideae, Danthonioideae/Chloridoideae and Arundinoideae. Morphological and anatomical characters support the new positions of the misplaced arundinoid genera in the phylogeny, but also highlight convergent and parallel evolution in the grasses. CONCLUSIONS In placing the majority of arundinoid genera in a phylogenetic framework, our study answers one of the last remaining big questions in grass taxonomy while highlighting examples of convergent evolution in an ecologically important trait, the hygroscopic, twisted geniculate awn.
Collapse
Affiliation(s)
- J K Teisher
- Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
- For correspondence. E-mail
| | - M R McKain
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - B A Schaal
- Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA
| | - E A Kellogg
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| |
Collapse
|
29
|
Genome-Guided Phylo-Transcriptomic Methods and the Nuclear Phylogentic Tree of the Paniceae Grasses. Sci Rep 2017; 7:13528. [PMID: 29051622 PMCID: PMC5648822 DOI: 10.1038/s41598-017-13236-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022] Open
Abstract
The past few years have witnessed a paradigm shift in molecular systematics from phylogenetic methods (using one or a few genes) to those that can be described as phylogenomics (phylogenetic inference with entire genomes). One approach that has recently emerged is phylo-transcriptomics (transcriptome-based phylogenetic inference). As in any phylogenetics experiment, accurate orthology inference is critical to phylo-transcriptomics. To date, most analyses have inferred orthology based either on pure sequence similarity or using gene-tree approaches. The use of conserved genome synteny in orthology detection has been relatively under-employed in phylogenetics, mainly due to the cost of sequencing genomes. While current trends focus on the quantity of genes included in an analysis, the use of synteny is likely to improve the quality of ortholog inference. In this study, we combine de novo transcriptome data and sequenced genomes from an economically important group of grass species, the tribe Paniceae, to make phylogenomic inferences. This method, which we call “genome-guided phylo-transcriptomics”, is compared to other recently published orthology inference pipelines, and benchmarked using a set of sequenced genomes from across the grasses. These comparisons provide a framework for future researchers to evaluate the costs and benefits of adding sequenced genomes to transcriptome data sets.
Collapse
|
30
|
Pessoa-Filho M, Martins AM, Ferreira ME. Molecular dating of phylogenetic divergence between Urochloa species based on complete chloroplast genomes. BMC Genomics 2017; 18:516. [PMID: 28683832 PMCID: PMC5499013 DOI: 10.1186/s12864-017-3904-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Forage species of Urochloa are planted in millions of hectares of tropical and subtropical pastures in South America. Most of the planted area is covered with four species (U. ruziziensis, U. brizantha, U. decumbens and U. humidicola). Breeding programs rely on interspecific hybridizations to increase genetic diversity and introgress traits of agronomic importance. Knowledge of phylogenetic relationships is important to optimize compatible hybridizations in Urochloa, where phylogeny has been subject of some controversy. We used next-generation sequencing to assemble the chloroplast genomes of four Urochloa species to investigate their phylogenetic relationships, compute their times of divergence and identify chloroplast DNA markers (microsatellites, SNPs and InDels). RESULTS Whole plastid genome sizes were 138,765 bp in U. ruziziensis, 138,945 bp in U. decumbens, 138,946 bp in U. brizantha and 138,976 bp in U. humidicola. Each Urochloa chloroplast genome contained 130 predicted coding regions and structural features that are typical of Panicoid grasses. U. brizantha and U. decumbens chloroplast sequences are highly similar and show reduced SNP, InDel and SSR polymorphism as compared to U. ruziziensis and U. humidicola. Most of the structural and sequence polymorphisms were located in intergenic regions, and reflected phylogenetic distances between species. Divergence of U. humidicola from a common ancestor with the three other Urochloa species was estimated at 9.46 mya. U. ruziziensis, U. decumbens, and U. brizantha formed a clade where the U. ruziziensis lineage would have diverged by 5.67 mya, followed by a recent divergence event between U. decumbens and U. brizantha around 1.6 mya. CONCLUSION Low-coverage Illumina sequencing allowed the successful sequence analysis of plastid genomes in four species of Urochloa used as forages in the tropics. Pairwise sequence comparisons detected multiple microsatellite, SNP and InDel sites prone to be used as molecular markers in genetic analysis of Urochloa. Our results placed the origin of U. humidicola and U. ruziziensis divergence in the Miocene-Pliocene boundary, and the split between U. brizantha and U. decumbens in the Pleistocene.
Collapse
Affiliation(s)
- Marco Pessoa-Filho
- Embrapa Cerrados, BR 020, Km 18, Planaltina, Brasília, 73310-970 DF Brazil
| | - Alexandre Magalhães Martins
- Laboratório de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, CP 02372 Brasília, Parque Estação Biológica, 70770-900 DF, Brazil
| | - Márcio Elias Ferreira
- Laboratório de Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, CP 02372 Brasília, Parque Estação Biológica, 70770-900 DF, Brazil
- Embrapa Labex USA, Agricultural Research Service, United States Department of Agriculture, Beltsville Agricultural Research Center, Bldg 006 Rm 200, 10300 Ave, Belstville, Baltimore, MD 20705 USA
| |
Collapse
|
31
|
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA. Introgression and repeated co-option facilitated the recurrent emergence of C 4 photosynthesis among close relatives. Evolution 2017; 71:1541-1555. [PMID: 28395112 PMCID: PMC5488178 DOI: 10.1111/evo.13250] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023]
Abstract
The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origins of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.
Collapse
Affiliation(s)
- Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jose J Moreno-Villena
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
32
|
Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes. Genome Biol 2016; 17:223. [PMID: 27793170 PMCID: PMC5084476 DOI: 10.1186/s13059-016-1080-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Comparisons between C3 and C4 grasses often utilize C3 species from the subfamilies Ehrhartoideae or Pooideae and C4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C3 panicoid grass Dichanthelium oligosanthes from the independent C4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C3 and C4 grasses. RESULTS We report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C4 photosynthesis. CONCLUSIONS The phylogenetic location of D. oligosanthes makes it an ideal C3 plant for comparative analysis of C4 evolution in the panicoid grasses. This genome will not only provide a better C3 species for comparisons with C4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.
Collapse
Affiliation(s)
- Anthony J. Studer
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Present address: Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - James C. Schnable
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Present address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Allison R. Kolbe
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | | | - Ying Shao
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- St. Jude Children’s Research Hospital, Pediatric Cancer Genome Project, Memphis, TN USA
| | - Asaph B. Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | | | | |
Collapse
|
33
|
Rao X, Dixon RA. The Differences between NAD-ME and NADP-ME Subtypes of C 4 Photosynthesis: More than Decarboxylating Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:1525. [PMID: 27790235 PMCID: PMC5061750 DOI: 10.3389/fpls.2016.01525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 05/03/2023]
Abstract
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| |
Collapse
|
34
|
Vallejo-Marín M, Cooley AM, Lee MY, Folmer M, McKain MR, Puzey JR. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor. AMERICAN JOURNAL OF BOTANY 2016; 103:1272-88. [PMID: 27221281 DOI: 10.3732/ajb.1500471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Hybridization between diploids and tetraploids can lead to new allopolyploid species, often via a triploid intermediate. Viable triploids are often produced asymmetrically, with greater success observed for "maternal-excess" crosses where the mother has a higher ploidy than the father. Here we investigated the evolutionary origins of Mimulus peregrinus, an allohexaploid recently derived from the triploid M. ×robertsii, to determine whether reproductive asymmetry has shaped the formation of this new species. METHODS We used reciprocal crosses between the diploid (M. guttatus) and tetraploid (M. luteus) progenitors to determine the viability of triploid M. ×robertsii hybrids resulting from paternal- vs. maternal-excess crosses. To investigate whether experimental results predict patterns seen in the field, we performed parentage analyses comparing natural populations of M. peregrinus to its diploid, tetraploid, and triploid progenitors. Organellar sequences obtained from pre-existing genomic data, supplemented with additional genotyping was used to establish the maternal ancestry of multiple M. peregrinus and M. ×robertsii populations. KEY RESULTS We found strong evidence for asymmetric origins of M. peregrinus, but opposite to the common pattern, with paternal-excess crosses significantly more successful than maternal-excess crosses. These results successfully predicted hybrid formation in nature: 111 of 114 M. ×robertsii individuals, and 27 of 27 M. peregrinus, had an M. guttatus maternal haplotype. CONCLUSION This study, which includes the first Mimulus chloroplast genome assembly, demonstrates the utility of parentage analysis through genome skimming. We highlight the benefits of complementing genomic analyses with experimental approaches to understand asymmetry in allopolyploid speciation.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Science, School of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA UK
| | - Arielle M Cooley
- Biology Department, Whitman College, Walla Walla, Washington 99362 USA
| | - Michelle Yuequi Lee
- Biological and Environmental Science, School of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA UK
| | - Madison Folmer
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185 USA
| | - Michael R McKain
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23185 USA
| |
Collapse
|
35
|
Burke SV, Wysocki WP, Zuloaga FO, Craine JM, Pires JC, Edger PP, Mayfield-Jones D, Clark LG, Kelchner SA, Duvall MR. Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC PLANT BIOLOGY 2016; 16:140. [PMID: 27316745 PMCID: PMC4912804 DOI: 10.1186/s12870-016-0823-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/27/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Panicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage. RESULTS 35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage. CONCLUSIONS The phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.
Collapse
Affiliation(s)
- Sean V Burke
- Department of Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115-2861, USA.
| | - William P Wysocki
- Department of Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115-2861, USA
| | - Fernando O Zuloaga
- Instituto de Botánica Darwinion, Labardén 200, Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina
| | | | - J Chris Pires
- Biological Sciences, University of Missouri, 371b Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Dustin Mayfield-Jones
- Donald Danforth Plant Science Center, 975 North Warson Rd, St. Louis, MO, 63132, USA
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, 251 Bessey Hall, Iowa State University, Ames, IA, 50011-1020, USA
| | - Scot A Kelchner
- Biological Sciences, Idaho State University, 921 S. 8th Ave, Pocatello, ID, 83209-8007, USA
| | - Melvin R Duvall
- Department of Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL, 60115-2861, USA
| |
Collapse
|
36
|
Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1649-62. [PMID: 26896851 PMCID: PMC4783356 DOI: 10.1093/jxb/erv553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species.
Collapse
Affiliation(s)
- Xiaolan Rao
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
| | - Nan Lu
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Guifen Li
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jin Nakashima
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Richard A Dixon
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
| |
Collapse
|