1
|
Grünig S, Patsiou T, Parisod C. Ice age-driven range shifts of diploids and expanding autotetraploids of Biscutella laevigata within a conserved niche. THE NEW PHYTOLOGIST 2024; 244:1616-1628. [PMID: 39253771 DOI: 10.1111/nph.20103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Early studies of the textbook mixed-ploidy system Biscutella laevigata highlighted diploids restricted to never-glaciated lowlands and tetraploids at high elevations across the European Alps, promoting the hypothesis that whole-genome duplication (WGD) is advantageous under environmental changes. Here we addressed long-held hypotheses on the role of hybridisation at the origin of the tetraploids, their single vs multiple origins, and whether a shift in climatic niche accompanied WGD. Climatic niche modelling together with spatial genetics and coalescent modelling based on ddRAD-seq genotyping of 17 diploid and 19 tetraploid populations was used to revisit the evolution of this species complex in space and time. Diploids differentiated into four genetic lineages corresponding to allopatric glacial refugia at the onset of the last ice age, whereas tetraploids displaying tetrasomic inheritance formed a uniform group that originated from southern diploids before the last glacial maximum. Derived from diploids occurring at high elevation, autotetraploids likely inherited their adaptation to high elevation rather than having evolved it through or after WGD. They further presented considerable postglacial expansion across the Alps and underwent admixture with diploids. Although the underpinnings of the successful expansion of autotetraploids remain elusive, differentiation in B. laevigata was chiefly driven by the glacial history of the Alps.
Collapse
Affiliation(s)
- Sandra Grünig
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Theofania Patsiou
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Christian Parisod
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| |
Collapse
|
2
|
Tseng YH, Kuo LY, Borokini I, Fawcett S. The role of deep hybridization in fern speciation: Examples from the Thelypteridaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16388. [PMID: 39135339 DOI: 10.1002/ajb2.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, no. 145 Xingda Rd., South District, 40227, Taichung, Taiwan
| | - Li-Yaung Kuo
- College of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu, 30044, Taiwan
| | - Israel Borokini
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, 59717, MT, USA
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
- National Tropical Botanical Garden, 3530 Papālina Road, Kalāheo, 96741, HI, USA
| |
Collapse
|
3
|
Barker MS, Jiao Y, Glennon KL. Doubling down on polyploid discoveries: Global advances in genomics and ecological impacts of polyploidy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16395. [PMID: 39164922 DOI: 10.1002/ajb2.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
All flowering plants are now recognized as diploidized paleopolyploids (Jiao et al., 2011; One Thousand Plant Transcriptomes Initiative, 2019), and polyploid species comprise approximately 30% of contemporary plant species (Wood et al., 2009; Barker et al., 2016a). A major implication of these discoveries is that, to appreciate the evolution of plant diversity, we need to understand the fundamental biology of polyploids and diploidization. This need is broadly recognized by our community as there is a continued, growing interest in polyploidy as a research topic. Over the past 25 years, the sequencing and analysis of plant genomes has revolutionized our understanding of the importance of polyploid speciation to the evolution of land plants.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, 85721, AZ, USA
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kelsey L Glennon
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Marinček P, Léveillé-Bourret É, Heiduk F, Leong J, Bailleul SM, Volf M, Wagner ND. Challenge accepted: Evolutionary lineages versus taxonomic classification of North American shrub willows (Salix). AMERICAN JOURNAL OF BOTANY 2024; 111:e16361. [PMID: 38924532 DOI: 10.1002/ajb2.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024]
Abstract
PREMISE The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.
Collapse
Affiliation(s)
- Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Étienne Léveillé-Bourret
- Institut de recherche en biologie végétale (IRBV), Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Ferris Heiduk
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Jing Leong
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Stéphane M Bailleul
- Division recherche et développement scientifique, Jardin botanique de Montréal, 4101 Sherbrooke est, Montréal, H1X 2B2, QC, Canada
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| |
Collapse
|
5
|
Wang J, Song B, Yang M, Hu F, Qi H, Zhang H, Jia Y, Li Y, Wang Z, Wang X. Deciphering recursive polyploidization in Lamiales and reconstructing their chromosome evolutionary trajectories. PLANT PHYSIOLOGY 2024; 195:2143-2157. [PMID: 38482951 DOI: 10.1093/plphys/kiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/20/2024] [Indexed: 06/30/2024]
Abstract
Lamiales is an order of core eudicots with abundant diversity, and many Lamiales plants have important medicinal and ornamental values. Here, we comparatively reanalyzed 11 Lamiales species with well-assembled genome sequences and found evidence that Lamiales plants, in addition to a hexaploidization or whole-genome triplication (WGT) shared by core eudicots, experienced further polyploidization events, establishing new groups in the order. Notably, we identified a whole-genome duplication (WGD) occurred just before the split of Scrophulariaceae from the other Lamiales families, such as Acanthaceae, Bignoniaceae, and Lamiaceae, suggesting its likely being the causal reason for the establishment and fast divergence of these families. We also found that a WGT occurred ∼68 to 78 million years ago (Mya), near the split of Oleaceae from the other Lamiales families, implying that it may have caused their fast divergence and the establishment of the Oleaceae family. Then, by exploring and distinguishing intra- and intergenomic chromosomal homology due to recursive polyploidization and speciation, respectively, we inferred that the Lamiales ancestral cell karyotype had 11 proto-chromosomes. We reconstructed the evolutionary trajectories from these proto-chromosomes to form the extant chromosomes in each Lamiales plant under study. We must note that most of the inferred 11 proto-chromosomes, duplicated during a WGD thereafter, have been well preserved in jacaranda (Jacaranda mimosifolia) genome, showing the credibility of the present inference implementing a telomere-centric chromosome repatterning model. These efforts are important to understand genome repatterning after recursive polyploidization, especially shedding light on the origin of new plant groups and angiosperm cell karyotype evolution.
Collapse
Affiliation(s)
- Jiangli Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Bowen Song
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Minran Yang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Fubo Hu
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huilong Qi
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huizhe Zhang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuelong Jia
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yingjie Li
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zhenyi Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiyin Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
6
|
Booker WW, Schrider DR. The genetic consequences of range expansion and its influence on diploidization in polyploids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562992. [PMID: 37905020 PMCID: PMC10614938 DOI: 10.1101/2023.10.18.562992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Despite newly formed polyploids being subjected to myriad fitness consequences, the relative prevalence of polyploidy both contemporarily and in ancestral branches of the tree of life suggests alternative advantages that outweigh these consequences. One proposed advantage is that polyploids may more easily colonize novel habitats such as deglaciated areas. However, previous research conducted in diploids suggests that range expansion comes with a fitness cost as deleterious mutations may fix rapidly on the expansion front. Here, we interrogate the potential consequences of expansion in polyploids by conducting spatially explicit forward-in-time simulations to investigate how ploidy and inheritance patterns impact the relative ability of polyploids to expand their range. We show that under realistic dominance models, autopolyploids suffer greater fitness reductions than diploids as a result of range expansion due to the fixation of increased mutational load that is masked in the range core. Alternatively, the disomic inheritance of allopolyploids provides a shield to this fixation resulting in minimal fitness consequences. In light of this advantage provided by disomy, we investigate how range expansion may influence cytogenetic diploidization through the reversion to disomy in autotetraploids. We show that under a wide range of parameters investigated for two models of diploidization, disomy frequently evolves more rapidly on the expansion front than in the range core, and that this dynamic inheritance model has additional effects on fitness. Together our results point to a complex interaction between dominance, ploidy, inheritance, and recombination on fitness as a population spreads across a geographic range.
Collapse
Affiliation(s)
- William W. Booker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514-2916, United States of America
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514-2916, United States of America
| |
Collapse
|
7
|
Xu Y, Yao Z, Cheng Y, Ruan M, Ye Q, Wang R, Zhou G, Liu J, Liu C, Wan H. Divergent Retention of Sucrose Metabolism Genes after Whole Genome Triplication in the Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:4145. [PMID: 38140472 PMCID: PMC10747743 DOI: 10.3390/plants12244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Sucrose, the primary carbon transport mode and vital carbohydrate for higher plants, significantly impacts plant growth, development, yield, and quality formation. Its metabolism involves three key steps: synthesis, transport, and degradation. Two genome triplication events have occurred in Solanaceae, which have resulted in massive gene loss. In this study, a total of 48 and 65 genes from seven sucrose metabolism gene families in Vitis vinifera and Solanum lycopersicum were identified, respectively. The number of members comprising the different gene families varied widely. And there were significant variations in the pattern of gene duplication and loss in the tomato following two WGD events. Tandem duplication is a major factor in the expansion of the SWEET and Acid INV gene families. All the genes are irregularly distributed on the chromosomes, with the majority of the genes showing collinearity with the grape, particularly the CIN family. And the seven gene families were subjected to a purifying selection. The expression patterns of the different gene families exhibited notable variations. This study presents basic information about the sucrose metabolism genes in the tomato and grape, and paves the way for further investigations into the impact of SCT events on the phylogeny, gene retention duplication, and function of sucrose metabolism gene families in the tomato or Solanaceae, and the adaptive evolution of the tomato.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Jia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China
| | - Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| |
Collapse
|
8
|
Booker WW, Lemmon EM, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Gerhardt HC. Biogeography and the evolution of acoustic communication in the polyploid North American grey treefrog complex. Mol Ecol 2023; 32:4863-4879. [PMID: 37401503 DOI: 10.1111/mec.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
After polyploid species are formed, interactions between diploid and polyploid lineages may generate additional diversity in novel cytotypes and phenotypes. In anurans, mate choice by acoustic communication is the primary method by which individuals identify their own species and assess suitable mates. As such, the evolution of acoustic signals is an important mechanism for contributing to reproductive isolation and diversification in this group. Here, we estimate the biogeographical history of the North American grey treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid Hyla versicolor, focusing specifically on the geographical origin of whole genome duplication and the expansion of lineages out of glacial refugia. We then test for lineage-specific differences in mating signals by applying comparative methods to a large acoustic data set collected over 52 years that includes >1500 individual frogs. Along with describing the overall biogeographical history and call diversity, we found evidence that the geographical origin of H. versicolor and the formation of the midwestern polyploid lineage are both associated with glacial limits, and that the southwestern polyploid lineage is associated with a shift in acoustic phenotype relative to the diploid lineage with which they share a mitochondrial lineage. In H. chrysoscelis, we see that acoustic signals are largely split by Eastern and Western lineages, but that northward expansion along either side of the Appalachian Mountains is associated with further acoustic diversification. Overall, results of this study provide substantial clarity on the evolution of grey treefrogs as it relates to their biogeography and acoustic communication.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Moriarty Lemmon
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
9
|
Šingliarová B, Hojsgaard D, Müller-Schärer H, Mráz P. The novel expression of clonality following whole-genome multiplication compensates for reduced fertility in natural autopolyploids. Proc Biol Sci 2023; 290:20230389. [PMID: 37357859 PMCID: PMC10291721 DOI: 10.1098/rspb.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Exploring the fitness consequences of whole-genome multiplication (WGM) is essential for understanding the establishment of autopolyploids in diploid parental populations, but suitable model systems are rare. We examined the impact of WGM on reproductive traits in three major cytotypes (2x, 3x, 4x) of Pilosella rhodopea, a species with recurrent formation of neo-autopolyploids in mixed-ploidy populations. We found that diploids had normal female sporogenesis and gametogenesis, high fertility, and produced predominantly euploid seed progeny. By contrast, autopolyploids had highly disturbed developmental programs that resulted in significantly lower seed set and a high frequency of aneuploid progeny. All cytotypes, but particularly triploids, produced gametes of varying ploidy, including unreduced ones, that participated in frequent intercytotype mating. Noteworthy, the reduced investment in sexual reproduction in autopolyploids was compensated by increased production of axillary rosettes and the novel expression of two clonal traits: adventitious rosettes on roots (root-sprouting), and aposporous initial cells in ovules which, however, do not result in functional apomixis. The combination of increased vegetative clonal growth in autopolyploids and frequent intercytotype mating are key mechanisms involved in the formation and maintenance of the largest diploid-autopolyploid primary contact zone ever recorded in angiosperms.
Collapse
Affiliation(s)
- Barbora Šingliarová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Diego Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Patrik Mráz
- Herbarium Collections and Department of Botany, Charles University, Prague, Czechia
| |
Collapse
|
10
|
Losada JM, Blanco-Moure N, Fonollá A, Martínez-Ferrí E, Hormaza JI. Hydraulic trade-offs underlie enhanced performance of polyploid trees under soil water deficit. PLANT PHYSIOLOGY 2023:kiad204. [PMID: 37002827 DOI: 10.1093/plphys/kiad204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
The relationships between aerial organ morpho-anatomy of woody polyploid plants with their functional hydraulics under water stress remain largely understudied. We evaluated growth-associated traits, aerial organ xylem anatomy, and physiological parameters of diploid, triploid, and tetraploid genotypes of atemoyas (Annona cherimola x Annona squamosa), which belong to the woody perennial genus Annona (Annonaceae), testing their performance under long-term soil water reduction. The contrasting phenotypes of vigorous triploids and dwarf tetraploids consistently showed stomatal size-density trade-off. The vessel elements in aerial organs were ∼1.5 times wider in polyploids compared with diploids, and triploids displayed the lowest vessel density. Plant hydraulic conductance was higher in well-irrigated diploids while their tolerance to drought was lower. The phenotypic disparity of atemoya polyploids associated with contrasting leaf and stem xylem porosity traits that coordinate to regulate water balances between the trees and the belowground and aboveground environments. Polyploid trees displayed better performance under soil water scarcity, presenting as more sustainable agricultural and forestry genotypes to cope with water stress.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Nuria Blanco-Moure
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Andrés Fonollá
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| | - Elsa Martínez-Ferrí
- Fruticultura Subtropical y Mediterránea, IFAPA, JA, Associated Unit to CSIC by IHSM and IAS. Department of Natural and Forest Resources (IFAPA). Cortijo de la Cruz, 29140, Málaga, Spain
| | - José I Hormaza
- Department of Subtropical Fruit Crops. Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM La Mayora - CSIC - UMA. Av. Dr. Wienberg s/n. Algarrobo-Costa, 29750, Málaga, Spain
| |
Collapse
|
11
|
Zhang Y, Zhang L, Xiao Q, Wu C, Zhang J, Xu Q, Yu Z, Bao S, Wang J, Li Y, Wang L, Wang J. Two independent allohexaploidizations and genomic fractionation in Solanales. FRONTIERS IN PLANT SCIENCE 2022; 13:1001402. [PMID: 36212355 PMCID: PMC9538396 DOI: 10.3389/fpls.2022.1001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Solanales, an order of flowering plants, contains the most economically important vegetables among all plant orders. To date, many Solanales genomes have been sequenced. However, the evolutionary processes of polyploidization events in Solanales and the impact of polyploidy on species diversity remain poorly understood. We compared two representative Solanales genomes (Solanum lycopersicum L. and Ipomoea triloba L.) and the Vitis vinifera L. genome and confirmed two independent polyploidization events. Solanaceae common hexaploidization (SCH) and Convolvulaceae common hexaploidization (CCH) occurred ∼43-49 and ∼40-46 million years ago (Mya), respectively. Moreover, we identified homologous genes related to polyploidization and speciation and constructed multiple genomic alignments with V. vinifera genome, providing a genomic homology framework for future Solanales research. Notably, the three polyploidization-produced subgenomes in both S. lycopersicum and I. triloba showed significant genomic fractionation bias, suggesting the allohexaploid nature of the SCH and CCH events. However, we found that the higher genomic fractionation bias of polyploidization-produced subgenomes in Solanaceae was likely responsible for their more abundant species diversity than that in Convolvulaceae. Furthermore, through genomic fractionation and chromosomal structural variation comparisons, we revealed the allohexaploid natures of SCH and CCH, both of which were formed by two-step duplications. In addition, we found that the second step of two paleohexaploidization events promoted the expansion and diversity of β-amylase (BMY) genes in Solanales. These current efforts provide a solid foundation for future genomic and functional exploration of Solanales.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunyang Wu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jiaqi Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiang Xu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zijian Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Dogan M, Mandáková T, Guo X, Lysak MA. Idahoa and Subularia: Hidden polyploid origins of two enigmatic genera of crucifers. AMERICAN JOURNAL OF BOTANY 2022; 109:1273-1289. [PMID: 35912547 DOI: 10.1002/ajb2.16042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The monotypic Idahoa (I. scapigera) and the bispecific Subularia (S. aquatica and S. monticola) belong to Brassicaceae with unclear phylogenetic relationships and no tribal assignment. To fill this knowledge gap, we investigated these species and their closest relatives by combining cytogenomic and phylogenomic methods. METHODS We used whole plastome sequences in maximum likelihood and Bayesian inference analyses. We tested the phylogenetic informativeness of shared genomic repeats. We combined nuclear gene tree reconciliation and comparative chromosome painting (CCP) to examine the occurrence of past whole-genome duplications (WGDs). RESULTS The plastid data set corroborated the sister relationship between Idahoa and Subularia within the crucifer Lineage V but failed to resolve consistent topologies using both inference methods. The shared repetitive sequences provided conflicting pwhylogenetic signals. CCP analysis unexpectedly revealed that Idahoa (2n = 16) has a diploidized mesotetraploid genome, whereas two Subularia species (2n = 28 and 30) have diploidized mesoctoploid genomes. Several ancient allopolyploidy events have also been detected in closely related taxa (Chamira circaeoides, Cremolobeae, Eudemeae, and Notothlaspideae). CONCLUSIONS Our results suggest that the contentious phylogenetic placement of Idahoa and Subularia is best explained by two WGDs involving one or more shared parental genomes. The newly identified mesopolyploid genomes highlight the challenges of studying plant clades with complex polyploidy histories and provide a better framework for understanding genome evolution in the crucifer family.
Collapse
Affiliation(s)
- Mert Dogan
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Xinyi Guo
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
13
|
Shen S, Li Y, Wang J, Wei C, Wang Z, Ge W, Yuan M, Zhang L, Wang L, Sun S, Teng J, Xiao Q, Bao S, Feng Y, Zhang Y, Wang J, Hao Y, Lei T, Wang J. Illegitimate Recombination between Duplicated Genes Generated from Recursive Polyploidizations Accelerated the Divergence of the Genus Arachis. Genes (Basel) 2021; 12:genes12121944. [PMID: 34946893 PMCID: PMC8701993 DOI: 10.3390/genes12121944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023] Open
Abstract
The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8–13.1% of LCT-related and 11.3–16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates’ conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.
Collapse
Affiliation(s)
- Shaoqi Shen
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Weina Ge
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Min Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Sangrong Sun
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jia Teng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yishan Feng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jiaqi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yanan Hao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- Correspondence: (T.L.); (J.W.)
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondence: (T.L.); (J.W.)
| |
Collapse
|
14
|
Palmqvist B, Brazeau HA, Parachnowitsch AL. Differences in Floral Scent and Petal Reflectance Between Diploid and Tetraploid Chamerion angustifolium. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome duplication in plants is thought to be a route to speciation due to cytotype incompatibility. However, to reduce cross-pollination between cytotypes in animal-pollinated species, distinctive floral phenotypes, which would allow pollinator-mediated assortative mating between flowers, are also expected. Chamerion angustifolium is a Holarctic species that forms a hybrid zone between diploid and tetraploid populations in the North American Rocky Mountains. Extensive research has shown that these cytotypes differ in many ways, including some floral traits, and that pollinators can discriminate between cytotypes, leading to assortative mating. However, two signals commonly used by insect pollinators have not been measured for this species, namely petal colour and floral scent. Using greenhouse-grown diploids and tetraploids of C. angustifolium from the ploidy hybrid-zone in the North American Rocky Mountains, we show that both floral scent signals and petal reflectance differ between cytotypes. These differences, along with differences in flower size shown previously, could help explain pollinator-mediated assortative mating observed in previous studies. However, these differences in floral phenotypes may vary in importance to pollinators. While the differences in scent included common floral volatiles readily detected by bumblebees, the differences in petal reflectance may not be perceived by bees based on their visual sensitivity across the spectra. Thus, our results suggest that differences in floral volatile emissions are more likely to contribute to pollinator discrimination between cytotypes and highlight the importance of understanding the sensory systems of pollinators when examining floral signals.
Collapse
|
15
|
Kiedrzyński M, Zielińska KM, Jedrzejczyk I, Kiedrzyńska E, Tomczyk PP, Rewicz A, Rewers M, Indreica A, Bednarska I, Stupar V, Roleček J, Šmarda P. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci Rep 2021; 11:18735. [PMID: 34548532 PMCID: PMC8455632 DOI: 10.1038/s41598-021-97767-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
One promising area in understanding the responses of plants to ongoing global climate change is the adaptative effect of polyploidy. This work examines whether there is a coupling between the distribution of cytotypes and their biogeographical niche, and how different niches will affect their potential range. The study uses a range of techniques including flow cytometry, gradient and niche analysis, as well as distribution modelling. In addition, climatic, edaphic and habitat data was used to analyse environmental patterns and potential ranges of cytotypes in the first wide-range study of Festuca amethystina-a mixed-ploidy mountain grass. The populations were found to be ploidy homogeneous and demonstrate a parapatric pattern of cytotype distribution. Potential contact zones have been identified. The tetraploids have a geographically broader distribution than diploids; they also tend to occur at lower altitudes and grow in more diverse climates, geological units and habitats. Moreover, tetraploids have a more extensive potential range, being six-fold larger than diploids. Montane pine forests were found to be a focal environment suitable for both cytotypes, which has a central place in the environmental space of the whole species. Our findings present polyploidy as a visible driver of geographical, ecological and adaptive variation within the species.
Collapse
Affiliation(s)
- Marcin Kiedrzyński
- grid.10789.370000 0000 9730 2769Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna M. Zielińska
- grid.10789.370000 0000 9730 2769Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Iwona Jedrzejczyk
- grid.466210.70000 0004 4673 5993Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Edyta Kiedrzyńska
- grid.460361.60000 0004 4673 0316European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland ,grid.10789.370000 0000 9730 2769UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Przemysław P. Tomczyk
- grid.10789.370000 0000 9730 2769Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland ,grid.460361.60000 0004 4673 0316European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland
| | - Agnieszka Rewicz
- grid.10789.370000 0000 9730 2769Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Rewers
- grid.466210.70000 0004 4673 5993Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Adrian Indreica
- grid.5120.60000 0001 2159 8361Department of Silviculture, Transilvania University of Brasov
, Brasov, Romania
| | - Iryna Bednarska
- Department of Nature Ecosystems Protection, Institute of Ecology of the Carpathians NASU, Lviv, Ukraine
| | - Vladimir Stupar
- grid.35306.330000 0000 9971 9023Faculty of Forestry, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Jan Roleček
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic ,grid.418095.10000 0001 1015 3316Department of Paleoecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Šmarda
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Qin L, Hu Y, Wang J, Wang X, Zhao R, Shan H, Li K, Xu P, Wu H, Yan X, Liu L, Yi X, Wanke S, Bowers JE, Leebens-Mack JH, dePamphilis CW, Soltis PS, Soltis DE, Kong H, Jiao Y. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. NATURE PLANTS 2021; 7:1239-1253. [PMID: 34475528 PMCID: PMC8445822 DOI: 10.1038/s41477-021-00990-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/22/2021] [Indexed: 05/04/2023]
Abstract
Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.
Collapse
Affiliation(s)
- Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinpeng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanying Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lumei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Yi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Stefan Wanke
- Institute of Botany, Dresden University of Technology, Dresden, Germany
| | - John E Bowers
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | | | - Claude W dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Yin L, Zhu Z, Huang L, Luo X, Li Y, Xiao C, Yang J, Wang J, Zou Q, Tao L, Kang Z, Tang R, Wang M, Fu S. DNA repair- and nucleotide metabolism-related genes exhibit differential CHG methylation patterns in natural and synthetic polyploids (Brassica napus L.). HORTICULTURE RESEARCH 2021; 8:142. [PMID: 34193846 PMCID: PMC8245426 DOI: 10.1038/s41438-021-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Polyploidization plays a crucial role in the evolution of angiosperm species. Almost all newly formed polyploids encounter genetic or epigenetic instabilities. However, the molecular mechanisms contributing to genomic instability in synthetic polyploids have not been clearly elucidated. Here, we performed a comprehensive transcriptomic and methylomic analysis of natural and synthetic polyploid rapeseeds (Brassica napus). Our results showed that the CHG methylation levels of synthetic rapeseed in different genomic contexts (genes, transposon regions, and repeat regions) were significantly lower than those of natural rapeseed. The total number and length of CHG-DMRs between natural and synthetic polyploids were much greater than those of CG-DMRs and CHH-DMRs, and the genes overlapping with these CHG-DMRs were significantly enriched in DNA damage repair and nucleotide metabolism pathways. These results indicated that CHG methylation may be more sensitive than CG and CHH methylation in regulating the stability of the polyploid genome of B. napus. In addition, many genes involved in DNA damage repair, nucleotide metabolism, and cell cycle control were significantly differentially expressed between natural and synthetic rapeseeds. Our results highlight that the genes related to DNA repair and nucleotide metabolism display differential CHG methylation patterns between natural and synthetic polyploids and reveal the potential connection between the genomic instability of polyploid plants with DNA methylation defects and dysregulation of the DNA repair system. In addition, it was found that the maintenance of CHG methylation in B. napus might be partially regulated by MET1. Our study provides novel insights into the establishment and evolution of polyploid plants and offers a potential idea for improving the genomic stability of newly formed Brassica polyploids.
Collapse
Affiliation(s)
- Liqin Yin
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Zhendong Zhu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Liangjun Huang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Xuan Luo
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
- Agricultural College, Sichuan Agricultural University, 211 Huimin Road, Chengdu, China
| | - Yun Li
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Jin Yang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Jisheng Wang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Qiong Zou
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Lanrong Tao
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Zeming Kang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Rong Tang
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China
| | - Maolin Wang
- College of Life Sciences, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Shaohong Fu
- Institute of Crop Research, Chengdu Academy of Agricultural and Forestry Sciences, 200 Nongke Road, Chengdu, China.
| |
Collapse
|
18
|
Román-Palacios C, Medina CA, Zhan SH, Barker MS. Animal chromosome counts reveal a similar range of chromosome numbers but with less polyploidy in animals compared to flowering plants. J Evol Biol 2021; 34:1333-1339. [PMID: 34101952 DOI: 10.1111/jeb.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Understanding the mechanisms that underlie chromosome evolution could provide insights into the processes underpinning the origin, persistence and evolutionary tempo of lineages. Here, we present the first database of chromosome counts for animals (the Animal Chromosome Count database, ACC) summarizing chromosome numbers for ~15,000 species. We found remarkable a similarity in the distribution of chromosome counts between animals and flowering plants. Nevertheless, the similarity in the distribution of chromosome numbers between animals and plants is likely to be explained by different drivers. For instance, we found that while animals and flowering plants exhibit similar frequencies of speciation-related changes in chromosome number, plant speciation is more often related to changes in ploidy. By leveraging the largest data set of chromosome counts for animals, we describe a previously undocumented pattern across the Tree of Life-animals and flowering plants show remarkably similar distributions of haploid chromosome numbers.
Collapse
Affiliation(s)
| | - Cesar A Medina
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Shing H Zhan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Wei C, Wang Z, Wang J, Teng J, Shen S, Xiao Q, Bao S, Feng Y, Zhang Y, Li Y, Sun S, Yue Y, Wu C, Wang Y, Zhou T, Xu W, Yu J, Wang L, Wang J. Conversion between 100-million-year-old duplicated genes contributes to rice subspecies divergence. BMC Genomics 2021; 22:460. [PMID: 34147070 PMCID: PMC8214281 DOI: 10.1186/s12864-021-07776-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. RESULTS Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19-5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77-9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangements after polyploidization are associated with ongoing gene conversion events, and they directly restrict recombination and inhibit duplicated gene conversion between homeologous regions. Furthermore, we found that the converted genes tended to have more similar expression patterns than nonconverted duplicates. Gene conversion affects biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, contributing to the occurrence of the gene conversion. CONCLUSION Duplicated genes in rice subspecies generated by grass polyploidization ~ 100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.
Collapse
Affiliation(s)
- Chendan Wei
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Zhenyi Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jianyu Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jia Teng
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Shaoqi Shen
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Qimeng Xiao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Shoutong Bao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yishan Feng
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yan Zhang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yuxian Li
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Sangrong Sun
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yuanshuai Yue
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Chunyang Wu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanli Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Tianning Zhou
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Wenbo Xu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jigao Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Li Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China.
| | - Jinpeng Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
| |
Collapse
|
20
|
Li Z, McKibben MTW, Finch GS, Blischak PD, Sutherland BL, Barker MS. Patterns and Processes of Diploidization in Land Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:387-410. [PMID: 33684297 DOI: 10.1146/annurev-arplant-050718-100344] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior. We also provide an overview of two major and largely independent processes of diploidization: cytological diploidization and genic diploidization/fractionation. Finally, we compare variation in gene fractionation across land plants and highlight the differences in diploidization between plants and animals. Altogether, we demonstrate recent advancements in our understanding of variation in the patterns and processes of diploidization in land plants and provide a road map for future research to unlock the mysteries of diploidization and eukaryotic genome evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Geoffrey S Finch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Brittany L Sutherland
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA; , , , , ,
| |
Collapse
|
21
|
Fajkus P, Peška V, Fajkus J, Sýkorová E. Origin and Fates of TERT Gene Copies in Polyploid Plants. Int J Mol Sci 2021; 22:1783. [PMID: 33670111 PMCID: PMC7916837 DOI: 10.3390/ijms22041783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.
Collapse
Affiliation(s)
- Petr Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| | - Jiří Fajkus
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; (P.F.); (V.P.)
| |
Collapse
|
22
|
Marx HE, Scheidt S, Barker MS, Dlugosch KM. TagSeq for gene expression in non-model plants: A pilot study at the Santa Rita Experimental Range NEON core site. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11398. [PMID: 33304661 PMCID: PMC7705334 DOI: 10.1002/aps3.11398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/20/2020] [Indexed: 05/12/2023]
Abstract
PREMISE TagSeq is a cost-effective approach for gene expression studies requiring a large number of samples. To date, TagSeq studies in plants have been limited to those with a high-quality reference genome. We tested the suitability of reference transcriptomes for TagSeq in non-model plants, as part of a study of natural gene expression variation at the Santa Rita Experimental Range National Ecological Observatory Network (NEON) core site. METHODS Tissue for TagSeq was sampled from multiple individuals of four species (Bouteloua aristidoides and Eragrostis lehmanniana [Poaceae], Tidestromia lanuginosa [Amaranthaceae], and Parkinsonia florida [Fabaceae]) at two locations on three dates (56 samples total). One sample per species was used to create a reference transcriptome via standard RNA-seq. TagSeq performance was assessed by recovery of reference loci, specificity of tag alignments, and variation among samples. RESULTS A high fraction of tags aligned to each reference and mapped uniquely. Expression patterns were quantifiable for tens of thousands of loci, which revealed consistent spatial differentiation in expression for all species. DISCUSSION TagSeq using de novo reference transcriptomes was an effective approach to quantifying gene expression in this study. Tags were highly locus specific and generated biologically informative profiles for four non-model plant species.
Collapse
Affiliation(s)
- Hannah E. Marx
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109‐1048USA
| | - Stephen Scheidt
- Howard University2400 6th Street NWWashingtonD.C.20059USA
- Solar System Exploration DivisionNASA Goddard Space Flight CenterGreenbeltMaryland20771USA
- Center for Research and Exploration in Space Science and TechnologyNASA Goddard Space Flight CenterGreenbeltMaryland20771USA
| | - Michael S. Barker
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
| |
Collapse
|
23
|
Zadesenets KS, Rubtsov NB. Regions enriched for DNA repeats in chromosomes of Macrostomum mirumnovem, a species with a recent Whole Genome Duplication. Vavilovskii Zhurnal Genet Selektsii 2020; 24:636-642. [PMID: 33659849 PMCID: PMC7716556 DOI: 10.18699/vj20.657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The free-living flatworm Macrostomum mirumnovem is a neopolyploid species whose genome underwent
a recent Whole Genome Duplication (WGD). In the result of chromosome fusions of the ancient haploid
chromosome set, large metacentric chromosomes were formed. In addition to three pairs of small metacentrics,
the current karyotype of M. mirumnovem contains two pairs of large metacentric chromosomes, MMI1 and MMI2.
The generation of microdissected DNA libraries enriched for DNA repeats followed by DNA probe preparation and
fluorescent in situ hybridization (FISH) were performed. The DNA probes obtained marked chromosome regions
enriched for different DNA repeats in the M. mirumnovem chromosomes. The size and localization of these regions
varied in different copies of large chromosomes. They varied even in homologous chromosomes, suggesting their
divergence due to genome re-diploidization after a WGD. Besides the newly formed chromosome regions enriched
for DNA repeats, B chromosomes were found in the karyotypes of the studied specimens of M. mirumnovem. These
B chromosomes varied in size and morphology. FISH with microdissected DNA probes revealed that some Bs had
a distinct DNA content. FISH could paint differently B chromosomes in different worms and even in the same sample.
B chromosomes could carry a bright specific fluorescent signal or could show no fluorescent signal at all. In latter
cases, the specific FISH signal could be absent even in the pericentromeric region of the B chromosome. Possible
mechanisms of B chromosome formation and their further evolution are discussed. The results obtained indicate
an important role that repetitive DNAs play in genome re-diploidization initiating a rapid differentiation of large
chromosome copies. Taking together, karyotype peculiarities (a high level of intraspecific karyotypic diversity associated
with chromosome number variation, structural chromosomal rearrangements, and the formation of new
regions enriched for DNA repeats) and some phenotypic features of M. mirumnovem (small body size, short lifecycle,
easy maintenance in the laboratory) make this species a perspective model in the studies of genomic and
karyotypic evolution in species passed through a recent WGD event.
Collapse
Affiliation(s)
- K S Zadesenets
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N B Rubtsov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Wong GKS, Soltis DE, Leebens-Mack J, Wickett NJ, Barker MS, Van de Peer Y, Graham SW, Melkonian M. Sequencing and Analyzing the Transcriptomes of a Thousand Species Across the Tree of Life for Green Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:741-765. [PMID: 31851546 DOI: 10.1146/annurev-arplant-042916-041040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.
Collapse
Affiliation(s)
- Gane Ka-Shu Wong
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E9, Canada;
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Douglas E Soltis
- Florida Museum of Natural History, Gainesville, Florida 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, VIB Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michael Melkonian
- Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
25
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
26
|
Zhao R, Wang Y, Zou L, Luo Y, Tan H, Yao J, Zhang M, Liu S. Hox genes reveal variations in the genomic DNA of allotetraploid hybrids derived from Carassius auratus red var. (female) × Cyprinus carpio L. (male). BMC Genet 2020; 21:24. [PMID: 32131722 PMCID: PMC7057633 DOI: 10.1186/s12863-020-0823-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Hox transcription factors are master regulators of animal development. Although highly conserved, they can contribute to the formation of novel biological characteristics when modified, such as during the generation of hybrid species, thus potentially serving as species-specific molecular markers. Here, we systematically studied the evolution of genomic sequences of Hox loci in an artificial allotetraploid lineage (4nAT, 4n = 200) derived from a red crucian carp (♀, RCC, 2n = 100) × common carp (♂, CC, 2n = 100) cross and its parents (RCC and CC). Results PCR amplification yielded 23 distinct Hox gene fragments from 160 clones in 4nAT, 22 fragments from 90 clones in RCC, and 19 fragments from 90 clones in CC. Sequence alignment of the HoxA3a and HoxC10a genes indicated both the inheritance and loss of paternal genomic DNA in 4nAT. The HoxA5a gene from 4nAT consisted of two subtypes from RCC and two subtypes from CC, indicating that homologous recombination occurred in the 4nAT hybrid genome. Moreover, 4nAT carried genomic pseudogenization in the HoxA10b and HoxC13a loci. Interestingly, a new type of HoxC9a gene was found in 4nAT as a hybrid sequence of CC and RCC by recombination in the intronic region. Conclusion The results revealed the influence of Hox genes during polyploidization in hybrid fish. The data provided insight into the evolution of vertebrate genomes and might be benefit for artificial breeding programs.
Collapse
Affiliation(s)
- Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Zou
- Fisheries Research Institute of Hunan Province, Changsha, 410153, People's Republic of China
| | - Yaxin Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huifang Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jiajun Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Li Z, Barker MS. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. Gigascience 2020; 9:giaa004. [PMID: 32043527 PMCID: PMC7011446 DOI: 10.1093/gigascience/giaa004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Polyploidy, or whole-genome duplications (WGDs), repeatedly occurred during green plant evolution. To examine the evolutionary history of green plants in a phylogenomic framework, the 1KP project sequenced >1,000 transcriptomes across the Viridiplantae. The 1KP project provided a unique opportunity to study the distribution and occurrence of WGDs across the green plants. As an accompaniment to the capstone publication, this article provides expanded methodological details, results validation, and descriptions of newly released datasets that will aid researchers who wish to use the extended data generated by the 1KP project. RESULTS In the 1KP capstone analyses, we used a total evidence approach that combined inferences of WGDs from Ks and phylogenomic methods to infer and place 244 putative ancient WGDs across the Viridiplantae. Here, we provide an expanded explanation of our approach by describing our methodology and walk-through examples. We also evaluated the consistency of our WGD inferences by comparing them to evidence from published syntenic analyses of plant genome assemblies. We find that our inferences are consistent with whole-genome synteny analyses and our total evidence approach may minimize the false-positive rate throughout the dataset. CONCLUSIONS We release 383,679 nuclear gene family phylogenies and 2,306 gene age distributions with Ks plots from the 1KP capstone paper. These resources will be useful for many future analyses on gene and genome evolution in green plants.
Collapse
Affiliation(s)
- Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
28
|
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol Lett 2019; 23:68-78. [PMID: 31637845 DOI: 10.1111/ele.13402] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.
Collapse
Affiliation(s)
- Anthony E Baniaga
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nils Arrigo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
29
|
Wang J, Qin J, Sun P, Ma X, Yu J, Li Y, Sun S, Lei T, Meng F, Wei C, Li X, Guo H, Liu X, Xia R, Wang L, Ge W, Song X, Zhang L, Guo D, Wang J, Bao S, Jiang S, Feng Y, Li X, Paterson AH, Wang X. Polyploidy Index and Its Implications for the Evolution of Polyploids. Front Genet 2019; 10:807. [PMID: 31552101 PMCID: PMC6746930 DOI: 10.3389/fgene.2019.00807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Polyploidy has contributed to the divergence and domestication of plants; however, estimation of the relative roles that different types of polyploidy have played during evolution has been difficult. Unbalanced and balanced gene removal was previously related to allopolyploidies and autopolyploidies, respectively. Here, to infer the types of polyploidies and evaluate their evolutionary effects, we devised a statistic, the Polyploidy-index or P-index, to characterize the degree of divergence between subgenomes of a polyploidy, to find whether there has been a balanced or unbalanced gene removal from the homoeologous regions. Based on a P-index threshold of 0.3 that distinguishes between known or previously inferred allo- or autopolyploidies, we found that 87.5% of 24 angiosperm paleo-polyploidies were likely produced by allopolyploidizations, responsible for establishment of major tribes such as Poaceae and Fabaceae, and large groups such as monocots and eudicots. These findings suggest that >99.7% of plant genomes likely derived directly from allopolyploidies, with autopolyploidies responsible for the establishment of only a few small genera, including Glycine, Malus, and Populus, each containing tens of species. Overall, these findings show that polyploids with high divergence between subgenomes (presumably allopolyploids) established the major plant groups, possibly through secondary contact between previously isolated populations and hybrid vigor associated with their re-joining.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Qin
- Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Pengchuan Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xuelian Ma
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jigao Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Yuxian Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Sangrong Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Tianyu Lei
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Fanbo Meng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Chendan Wei
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xinyu Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - He Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaojian Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Ruiyan Xia
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Li Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Weina Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Di Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Jinyu Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shoutong Bao
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shan Jiang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yishan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xueping Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, United States
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
30
|
Kumari V, Kumar R, Singhal VK. Cytomorphological Evaluation of Three Cytotypes (2<i>x</i>, 4<i>x</i>, 6<i>x</i>) of <i>Phacelurus speciosus</i> from Western Himalaya, India. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
O’Connor TK, Laport RG, Whiteman NK. Polyploidy in creosote bush ( Larrea tridentata) shapes the biogeography of specialist herbivores. JOURNAL OF BIOGEOGRAPHY 2019; 46:597-610. [PMID: 31534296 PMCID: PMC6749999 DOI: 10.1111/jbi.13490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 06/10/2023]
Abstract
AIM Whole-genome duplication (polyploidy) can influence the biogeography and ecology of plants that differ in ploidy level (cytotype). Here, we address how two consequences of plant polyploidy (parapatry of cytotypes and altered species interactions) shape the biogeography of herbivorous insects. LOCATION Warm deserts of North America. TAXA Gall midges (Asphondylia auripila group, Diptera: Cecidomyiidae) that attack three parapatric cytotypes of creosote bush (Larrea tridentata, Zygophyllaceae). METHODS We surveyed Asphondylia species diversity at 177 sites across a 2300-km extent. After noting a correspondence between the distributions of eight Asphondylia species and L. tridentata cytotypes, we fine-mapped Asphondylia species range limits with transects spanning cytotype contact zones. We then tested whether plant-insect interactions and/or abiotic factors explain this coincidence by (1) comparing attack rates and gall midge communities on alternative cytotypes in a narrow zone of sympatry and (2) using species distribution models (SDMs) to determine if climatically suitable habitat for each midge species extended beyond cytotype contact zones. RESULTS The range limits of 6/17 Asphondylia species (including two novel putative species confirmed with COI sequencing) perfectly coincided with the contact zone of diploid and tetraploid L. tridentata. One midge species was restricted to diploid host plants while five were restricted to tetraploid and hexaploid host plants. Where diploid and tetraploid L. tridentata are sympatric, cytotype-restricted midge species more frequently attacked their typical host and Asphondylia community structure differed markedly between cytotypes. SDMs predicted that distributions of cytotype-restricted midge species were not constrained by climatic conditions near cytotype contact zones. MAIN CONCLUSIONS Contact zones between plant cytotypes are dispersal barriers for many Asphondylia species due to plant-insect interactions. The distribution of L. tridentata cytotypes therefore shapes herbivore species ranges and herbivore community structure across North American deserts. Our results demonstrate that polyploidy in plants can affect the biogeography of ecological communities.
Collapse
Affiliation(s)
- Timothy K. O’Connor
- Department of Integrative Biology, University of California, Berkeley CA 94720
| | | | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley CA 94720
| |
Collapse
|
32
|
Visger CJ, Wong GKS, Zhang Y, Soltis PS, Soltis DE. Divergent gene expression levels between diploid and autotetraploid Tolmiea relative to the total transcriptome, the cell, and biomass. AMERICAN JOURNAL OF BOTANY 2019; 106:280-291. [PMID: 30779448 DOI: 10.1002/ajb2.1239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 05/28/2023]
Abstract
PREMISE OF THE STUDY Studies of gene expression and polyploidy are typically restricted to characterizing differences in transcript concentration. Using diploid and autotetraploid Tolmiea, we present an integrated approach for cross-ploidy comparisons that account for differences in transcriptome size and cell density and make multiple comparisons of transcript abundance. METHODS We use RNA spike-in standards in concert with cell size and density to identify and correct for differences in transcriptome size and compare levels of gene expression across multiple scales: per transcriptome, per cell, and per biomass. KEY RESULTS In total, ~17% of all loci were identified as differentially expressed (DEGs) between the diploid and autopolyploid species. The per-transcriptome normalization, the method researchers typically use, captured the fewest DEGs (58% of total DEGs) and failed to detect any DEGs not found by the alternative normalizations. When transcript abundance was normalized per biomass and per cell, ~66% and ~82% of the total DEGs were recovered, respectively. The discrepancy between per-transcriptome and per-cell recovery of DEGs occurs because per-transcriptome normalizations are concentration-based and therefore blind to differences in transcriptome size. CONCLUSIONS While each normalization enables valid comparisons at biologically relevant scales, a holistic comparison of multiple normalizations provides additional explanatory power not available from any single approach. Notably, autotetraploid loci tend to conserve diploid-like transcript abundance per biomass through increased gene expression per cell, and these loci are enriched for photosynthesis-related functions.
Collapse
Affiliation(s)
- Clayton J Visger
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, 95819, USA
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Beijing Genomics Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Yong Zhang
- Beijing Genomics Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Shenzhen Hua Han Gene Co. Ltd., 7F Jian An Shan Hai Building, No. 8000, Shennan Road, Futian District, Shenzhen, 518040, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
33
|
Liu B, Mo WJ, Zhang D, De Storme N, Geelen D. Cold Influences Male Reproductive Development in Plants: A Hazard to Fertility, but a Window for Evolution. PLANT & CELL PHYSIOLOGY 2019; 60:7-18. [PMID: 30602022 DOI: 10.1093/pcp/pcy209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 05/16/2023]
Abstract
Being sessile organisms, plants suffer from various abiotic stresses including low temperature. In particular, male reproductive development of plants is extremely sensitive to cold which may dramatically reduce viable pollen shed and plant fertility. Cold stress disrupts stamen development and prominently interferes with the tapetum, with the stress-responsive hormones ABA and gibberellic acid being greatly involved. In particular, low temperature stress delays and/or inhibits programmed cell death of the tapetal cells which consequently damages pollen development and causes male sterility. On the other hand, studies in Arabidopsis and crops have revealed that ectopically decreased temperature has an impact on recombination and cytokinesis during meiotic cell division, implying a putative role for temperature in manipulating plant genomic diversity and architecture during the evolution of plants. Here, we review the current understanding of the physiological impact of cold stress on the main male reproductive development processes including tapetum development, male meiosis and gametogenesis. Moreover, we provide insights into the genetic factors and signaling pathways that are involved, with putative mechanisms being discussed.
Collapse
Affiliation(s)
- Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Wen-Juan Mo
- Experiment Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nico De Storme
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, unit HortiCell, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
34
|
Blischak PD, Mabry ME, Conant GC, Pires JC. Integrating Networks, Phylogenomics, and Population Genomics for the Study of Polyploidy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Duplication events are regarded as sources of evolutionary novelty, but our understanding of general trends for the long-term trajectory of additional genomic material is still lacking. Organisms with a history of whole genome duplication (WGD) offer a unique opportunity to study potential trends in the context of gene retention and/or loss, gene and network dosage, and changes in gene expression. In this review, we discuss the prevalence of polyploidy across the tree of life, followed by an overview of studies investigating genome evolution and gene expression. We then provide an overview of methods in network biology, phylogenomics, and population genomics that are critical for advancing our understanding of evolution post-WGD, highlighting the need for models that can accommodate polyploids. Finally, we close with a brief note on the importance of random processes in the evolution of polyploids with respect to neutral versus selective forces, ancestral polymorphisms, and the formation of autopolyploids versus allopolyploids.
Collapse
Affiliation(s)
- Paul D. Blischak
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Makenzie E. Mabry
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Gavin C. Conant
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Current affiliation: Bioinformatics Research Center, Program in Genetics and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - J. Chris Pires
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211-7310, USA
| |
Collapse
|
35
|
Wang JP, Yu JG, Li J, Sun PC, Wang L, Yuan JQ, Meng FB, Sun SR, Li YX, Lei TY, Pan YX, Ge WN, Wang ZY, Zhang L, Song XM, Liu C, Duan XQ, Shen SQ, Xie YQ, Hou Y, Zhang J, Wang JY, Wang X. Two Likely Auto-Tetraploidization Events Shaped Kiwifruit Genome and Contributed to Establishment of the Actinidiaceae Family. iScience 2018; 7:230-240. [PMID: 30267683 PMCID: PMC6161637 DOI: 10.1016/j.isci.2018.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023] Open
Abstract
The genome of kiwifruit (Actinidia chinensis) was sequenced previously, the first in the Actinidiaceae family. It was shown to have been affected by polyploidization events, the nature of which has been elusive. Here, we performed a reanalysis of the genome and found clear evidence of 2 tetraploidization events, with one occurring ∼50–57 million years ago (Mya) and the other ∼18–20 Mya. Two subgenomes produced by each event have been under balanced fractionation. Moreover, genes were revealed to express in a balanced way between duplicated copies of chromosomes. Besides, lowered evolutionary rates of kiwifruit genes were observed. These findings could be explained by the likely auto-tetraploidization nature of the polyploidization events. Besides, we found that polyploidy contributed to the expansion of key functional genes, e.g., vitamin C biosynthesis genes. The present work also provided an important comparative genomics resource in the Actinidiaceae and related families. Two independent paleo-tetraploidization events may have occurred in Actinidiaceae The tetraploidization events are likely autotetraploid in nature These events contribute to the expansion of key trait genes Hierarchical deconvolution allowed analysis of the kiwifruit genome interweaving homology
Collapse
Affiliation(s)
- Jin-Peng Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Ji-Gao Yu
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jing Li
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Peng-Chuan Sun
- Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Li Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jia-Qing Yuan
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Fan-Bo Meng
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Sang-Rong Sun
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yu-Xian Li
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Tian-Yu Lei
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yu-Xin Pan
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Wei-Na Ge
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Zhen-Yi Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Xiao-Ming Song
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Chao Liu
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Xue-Qian Duan
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Shao-Qi Shen
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yang-Qin Xie
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Yue Hou
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jin Zhang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Jian-Yu Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Center for Genomics and Computational Biology, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China.
| |
Collapse
|
36
|
Liu SH, Edwards CE, Hoch PC, Raven PH, Barber JC. Genome skimming provides new insight into the relationships in Ludwigia section Macrocarpon, a polyploid complex. AMERICAN JOURNAL OF BOTANY 2018; 105:875-887. [PMID: 29791715 DOI: 10.1002/ajb2.1086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/14/2018] [Indexed: 05/24/2023]
Abstract
PREMISE OF THE STUDY Interpreting relationships within groups containing polyploids, which are frequent in angiosperms, can be greatly assisted by genomic techniques. In this study, we used a genome-skimming approach to investigate the evolutionary relationships and origins of polyploids in the monophyletic group, Ludwigia section Macrocarpon (Onagraceae), which includes diploid, tetraploid, and hexaploid taxa. METHODS We sampled all known taxa and ploidy levels in the section and conducted shotgun sequencing. We assembled plastomes, mitochondrial sequences, and completed nuclear ribosomal regions, reconstructed phylogenies, and conducted comparative genomic analyses for plastomes to gain insights into the relationships among studied taxa. KEY RESULTS Within the section, results showed that the South American diploid taxa L. bonariensis and L. lagunae were closely related. We reported the first chromosome count (2n = 4× = 32) for L. neograndiflora, which is closely related to the two South American diploid taxa, although its exact origin remains unclear. The samples of the widespread, polyploid taxon L. octovalvis do not form a monophyletic group. Both tetraploid and hexaploid L. octovalvis lineages have originated more than once. At least one tetraploid in the L. octovalvis lineage may have been involved in the origins of hexaploids. One or more extinct/unsampled intermediate tetraploids in the L. octovalvis lineages had also likely been involved in the origins of hexaploids. CONCLUSIONS Genome skimming provided important insights into the complex evolutionary relationships within sect. Macrocarpon, but additional sampling and data from single-copy nuclear regions are necessary to further elucidate the origins of the polyploids in this section.
Collapse
Affiliation(s)
- Shih-Hui Liu
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri, 63103, USA
- Missouri Botanical Garden, P.O. Box 299, Saint Louis, Missouri, 63166, USA
- Herbarium (HAST), Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | | | - Peter C Hoch
- Missouri Botanical Garden, P.O. Box 299, Saint Louis, Missouri, 63166, USA
| | - Peter H Raven
- Missouri Botanical Garden, P.O. Box 299, Saint Louis, Missouri, 63166, USA
| | - Janet C Barber
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri, 63103, USA
| |
Collapse
|
37
|
Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X. Gene retention, fractionation and subgenome differences in polyploid plants. NATURE PLANTS 2018; 4:258-268. [PMID: 29725103 DOI: 10.1038/s41477-018-0136-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/20/2018] [Indexed: 05/22/2023]
Abstract
All natural plant species are evolved from ancient polyploids. Polyloidization plays an important role in plant genome evolution, species divergence and crop domestication. We review how the pattern of polyploidy within the plant phylogenetic tree has engendered hypotheses involving mass extinctions, lag-times following polyploidy, and epochs of asexuality. Polyploidization has happened repeatedly in plant evolution and, we conclude, is important for crop domestication. Once duplicated, the effect of purifying selection on any one duplicated gene is relaxed, permitting duplicate gene and regulatory element loss (fractionation). We review the general topic of fractionation, and how some gene categories are retained more than others. Several explanations, including neofunctionalization, subfunctionalization and gene product dosage balance, have been shown to influence gene content over time. For allopolyploids, genetic differences between parental lines immediately manifest as subgenome dominance in the wide-hybrid, and persist and propagate for tens of millions of years. While epigenetic modifications are certainly involved in genome dominance, it has been difficult to determine which came first, the chromatin marks being measured or gene expression. Data support the conclusion that genome dominance and heterosis are antagonistic and mechanically entangled; both happen immediately in the synthetic wide-cross hybrid. Also operating in this hybrid are mechanisms of 'paralogue interference'. We present a foundation model to explain gene expression and vigour in a wide hybrid/new allotetraploid. This Review concludes that some mechanisms operate immediately at the wide-hybrid, and other mechanisms begin their operations later. Direct interaction of new paralogous genes, as measured using high-resolution chromatin conformation capture, should inform future research and single cell transcriptome sequencing should help achieve specificity while studying gene sub- and neo-functionalization.
Collapse
Affiliation(s)
- Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China.
- Shandong Provincial Key Laboratory of Protected Vegetable Molecular Breeding, Shandong Shouguang Vegetable Seed Industry Group Co. Ltd., Shandong Province, China.
| |
Collapse
|
38
|
Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc Natl Acad Sci U S A 2018; 115:4713-4718. [PMID: 29674453 DOI: 10.1073/pnas.1710791115] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyploidy or whole genome duplication (WGD) is a major contributor to genome evolution and diversity. Although polyploidy is recognized as an important component of plant evolution, it is generally considered to play a relatively minor role in animal evolution. Ancient polyploidy is found in the ancestry of some animals, especially fishes, but there is little evidence for ancient WGDs in other metazoan lineages. Here we use recently published transcriptomes and genomes from more than 150 species across the insect phylogeny to investigate whether ancient WGDs occurred during the evolution of Hexapoda, the most diverse clade of animals. Using gene age distributions and phylogenomics, we found evidence for 18 ancient WGDs and six other large-scale bursts of gene duplication during insect evolution. These bursts of gene duplication occurred in the history of lineages such as the Lepidoptera, Trichoptera, and Odonata. To further corroborate the nature of these duplications, we evaluated the pattern of gene retention from putative WGDs observed in the gene age distributions. We found a relatively strong signal of convergent gene retention across many of the putative insect WGDs. Considering the phylogenetic breadth and depth of the insect phylogeny, this observation is consistent with polyploidy as we expect dosage balance to drive the parallel retention of genes. Together with recent research on plant evolution, our hexapod results suggest that genome duplications contributed to the evolution of two of the most diverse lineages of eukaryotes on Earth.
Collapse
|
39
|
Voyaging through chromosomal studies in hairy root cultures towards unravelling their relevance to medicinal plant research: An updated review. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
40
|
Levin DA, Soltis DE. Factors promoting polyploid persistence and diversification and limiting diploid speciation during the K-Pg interlude. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:1-7. [PMID: 29107221 DOI: 10.1016/j.pbi.2017.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 05/14/2023]
Abstract
The large wave of polyploidization following the Cretaceous-Paleogene (K-Pg) mass extinction has been explained by enhanced polyploid persistence arising from adaptive properties of the polyploids themselves, as well as an increase in unreduced gamete production and diploid hybridization. We propose that the demise of diploids afforded opportunities for polyploid establishment and expansion into novel habitats. Augmented polyploid gene pools from diploid and polyploid relatives, in association with their multiple and independent origins (of both autopolyploids and allopolyploids), facilitated their subsequent diversification. Their ability to recruit genetic variation from their diploid relatives or from products of recurrent origins sharing their genome(s) ostensibly contributed to polyploid persistence. Concomitantly, we propose that the number of congeneric diploid species dramatically contracted disproportionally to polyploids during the K-Pg interval (i.e. a diploid trough), resulting in a reduction in the rate of diploid speciation. Accordingly, the preponderance of neopolyploids was likely autopolyploids.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
41
|
Greer BT, Still C, Cullinan GL, Brooks JR, Meinzer FC. Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.). TREE PHYSIOLOGY 2018; 38:630-640. [PMID: 29036397 PMCID: PMC6527095 DOI: 10.1093/treephys/tpx120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 05/20/2023]
Abstract
Quaking aspen (Populus tremuloides Michx.), a widespread and keystone tree species in North America, experienced heat and drought stress in the years 2002 and 2003 in the southwestern United States. This led to widespread aspen mortality that has altered the composition of forests, and is expected to occur again if climate change continues. Understanding interactions between aspen and its environments is essential to understanding future mortality risk in forests. Polyploidy, which is common in aspen, can modify plant structure and function and therefore plant-environment interactions, but the influence of polyploidy on aspen physiology is still not well understood. Furthermore, the ploidy types of aspen have different biogeographies, with triploids being most frequent at lower latitudes in generally warmer and drier climates, while the northerly populations are virtually 100% diploid. This suggests that ploidy-environment interactions differ, and could mean that the ploidy types have different vulnerabilities to environmental stress. In this study, to understand aspen ploidy-environment interactions, we measured 38 different traits important to carbon uptake, water loss and water-use efficiency in diploid and triploid aspen in Colorado. We found that triploid aspen had lower stand density, and greater leaf area, leaf mass, leaf mass per area, percent nitrogen content, chlorophyll content and stomatal size. These differences corresponded to greater potential net carbon assimilation (A, measured using A/Ci curves, and chlorophyll fluorescence) and stomatal conductance (gs) in triploids than diploids. While triploid aspen had higher intrinsic water-use efficiency (iWUE, calculated from measurements of δ13C in leaf tissue), they also had greater potential water loss from higher measured gs and lower stomatal sensitivity to increasing vapor pressure deficit. Therefore, despite greater iWUE, triploids may have lower resilience to climate-induced stress. We conclude that ploidy type strongly influences physiological traits and function, and mediates drought stress responses in quaking aspen.
Collapse
Affiliation(s)
- Burke T Greer
- Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| | - Christopher Still
- Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| | - Grace L Cullinan
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
- Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005, USA
| | - J Renée Brooks
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| | - Frederick C Meinzer
- USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| |
Collapse
|
42
|
Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. Impact of whole-genome duplication events on diversification rates in angiosperms. AMERICAN JOURNAL OF BOTANY 2018; 105:348-363. [PMID: 29719043 DOI: 10.1002/ajb2.1060] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/12/2017] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Polyploidy or whole-genome duplication (WGD) pervades the evolutionary history of angiosperms. Despite extensive progress in our understanding of WGD, the role of these events in promoting diversification is still not well understood. We seek to clarify the possible association between WGD and diversification rates in flowering plants. METHODS Using a previously published phylogeny spanning all land plants (31,749 tips) and WGD events inferred from analyses of the 1000 Plants (1KP) transcriptome data, we analyzed the association of WGDs and diversification rates following numerous WGD events across the angiosperms. We used a stepwise AIC approach (MEDUSA), a Bayesian mixture model approach (BAMM), and state-dependent diversification analyses (MuSSE) to investigate patterns of diversification. Sister-clade comparisons were used to investigate species richness after WGDs. KEY RESULTS Based on the density of 1KP taxon sampling, 106 WGDs were unambiguously placed on the angiosperm phylogeny. We identified 334-530 shifts in diversification rates. We found that 61 WGD events were tightly linked to changes in diversification rates, and state-dependent diversification analyses indicated higher speciation rates for subsequent rounds of WGD. Additionally, 70 of 99 WGD events showed an increase in species richness compared to the sister clade. CONCLUSIONS Forty-six of the 106 WGDs analyzed appear to be closely associated with upshifts in the rate of diversification in angiosperms. Shifts in diversification do not appear more likely than random within a four-node lag phase following a WGD; however, younger WGD events are more likely to be followed by an upshift in diversification than older WGD events.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, 92521, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Zheng Li
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Hannah E Marx
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, 83844, USA
- Stillinger Herbarium, University of Idaho, Moscow, Idaho, 83844, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
43
|
Marques I, Loureiro J, Draper D, Castro M, Castro S. How much do we know about the frequency of hybridisation and polyploidy in the Mediterranean region? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:21-37. [PMID: 28963818 DOI: 10.1111/plb.12639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Natural hybridisation and polyploidy are currently recognised as drivers of biodiversity, despite early scepticism about their importance. The Mediterranean region is a biodiversity hotspot where geological and climatic events have created numerous opportunities for speciation through hybridisation and polyploidy. Still, our knowledge on the frequency of these mechanisms in the region is largely limited, despite both phenomena are frequently cited in studies of Mediterranean plants. We reviewed information available from biodiversity and cytogenetic databases to provide the first estimates of hybridisation and polyploidy frequency in the Mediterranean region. We also inspected the most comprehensive modern Mediterranean Flora (Flora iberica) to survey the frequency and taxonomic distribution of hybrids and polyploids in Iberian Peninsula. We found that <6% of Mediterranean plants were hybrids, although a higher frequency was estimated for the Iberian Peninsula (13%). Hybrids were concentrated in few families and in even fewer genera. The overall frequency of polyploidy (36.5%) was comparable with previous estimates in other regions; however our estimates increased when analysing the Iberian Peninsula (48.8%). A surprisingly high incidence of species harbouring two or more ploidy levels was also observed (21.7%). A review of the available literature also showed that the ecological factors driving emergence and establishment of new entities are still poorly studied in the Mediterranean flora, although geographic barriers seem to play a major role in polyploid complexes. Finally, this study reveals several gaps and limitations in our current knowledge about the frequency of hybridisation and polyploidy in the Mediterranean region. The obtained estimates might change in the future with the increasing number of studies; still, rather than setting the complete reality, we hope that this work triggers future studies on hybridisation and polyploidy in the Mediterranean region.
Collapse
Affiliation(s)
- I Marques
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
| | - J Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - D Draper
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Universidade de Lisboa, Lisbon, Portugal
- UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, Vancouver, Canada
| | - M Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Botanic Garden of the University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Smith SA, Brown JW, Yang Y, Bruenn R, Drummond CP, Brockington SF, Walker JF, Last N, Douglas NA, Moore MJ. Disparity, diversity, and duplications in the Caryophyllales. THE NEW PHYTOLOGIST 2018; 217:836-854. [PMID: 28892163 DOI: 10.1111/nph.14772] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/28/2017] [Indexed: 05/27/2023]
Abstract
The role played by whole genome duplication (WGD) in plant evolution is actively debated. WGDs have been associated with advantages such as superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates. Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 5036 species of Caryophyllales, representing nearly half of the extant species. We phylogenetically mapped putative WGDs as identified from analyses on transcriptomic and genomic data and analyzed these in conjunction with shifts in climatic occupancy and lineage diversification rate. Thirteen putative WGDs and 27 diversification shifts could be mapped onto the phylogeny. Of these, four WGDs were concurrent with diversification shifts, with other diversification shifts occurring at more recent nodes than WGDs. Five WGDs were associated with shifts to colder climatic occupancy. While we find that many diversification shifts occur after WGDs, it is difficult to consider diversification and duplication to be tightly correlated. Our findings suggest that duplications may often occur along with shifts in either diversification rate, climatic occupancy, or rate of evolution.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Joseph W Brown
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Ya Yang
- Department of Plant Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St Paul, MN, 55108, USA
| | - Riva Bruenn
- Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH, 44074-1097, USA
| | - Chloe P Drummond
- Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH, 44074-1097, USA
| | | | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48103, USA
| | - Noah Last
- Department of Plant Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St Paul, MN, 55108, USA
| | - Norman A Douglas
- Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH, 44074-1097, USA
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH, 44074-1097, USA
| |
Collapse
|
45
|
Oxelman B, Brysting AK, Jones GR, Marcussen T, Oberprieler C, Pfeil BE. Phylogenetics of Allopolyploids. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Department of Biology and Environmental Sciences, University of Gothenburg, SE405 30 Göteborg, Sweden
| | - Anne Krag Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Graham R. Jones
- Gothenburg Global Biodiversity Centre, Department of Biology and Environmental Sciences, University of Gothenburg, SE405 30 Göteborg, Sweden
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, D-93053 Regensburg, Germany
| | - Bernard E. Pfeil
- Gothenburg Global Biodiversity Centre, Department of Biology and Environmental Sciences, University of Gothenburg, SE405 30 Göteborg, Sweden
| |
Collapse
|
46
|
Sharbrough J, Conover JL, Tate JA, Wendel JF, Sloan DB. Cytonuclear responses to genome doubling. AMERICAN JOURNAL OF BOTANY 2017; 104:1277-1280. [PMID: 29885242 DOI: 10.3732/ajb.1700293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/16/2017] [Indexed: 06/08/2023]
Affiliation(s)
- Joel Sharbrough
- Department of Biology, 440 Biology Building, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jennifer A Tate
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Daniel B Sloan
- Department of Biology, 440 Biology Building, Colorado State University, Fort Collins, Colorado 80523 USA
| |
Collapse
|
47
|
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS(P. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. ANNALS OF BOTANY 2017; 120:183-194. [PMID: 28854567 PMCID: PMC5737848 DOI: 10.1093/aob/mcx079] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Polyploidy or whole-genome duplication is now recognized as being present in almost all lineages of higher plants, with multiple rounds of polyploidy occurring in most extant species. The ancient evolutionary events have been identified through genome sequence analysis, while recent hybridization events are found in about half of the world's crops and wild species. Building from this new paradigm for understanding plant evolution, the papers in this Special Issue address questions about polyploidy in ecology, adaptation, reproduction and speciation of wild and cultivated plants from diverse ecosystems. Other papers, including this review, consider genomic aspects of polyploidy. APPROACHES Discovery of the evolutionary consequences of new, evolutionarily recent and ancient polyploidy requires a range of approaches. Large-scale studies of both single species and whole ecosystems, with hundreds to tens of thousands of individuals, sometimes involving 'garden' or transplant experiments, are important for studying adaptation. Molecular studies of genomes are needed to measure diversity in genotypes, showing ancestors, the nature and number of polyploidy and backcross events that have occurred, and allowing analysis of gene expression and transposable element activation. Speciation events and the impact of reticulate evolution require comprehensive phylogenetic analyses and can be assisted by resynthesis of hybrids. In this Special Issue, we include studies ranging in scope from experimental and genomic, through ecological to more theoretical. CONCLUSIONS The success of polyploidy, displacing the diploid ancestors of almost all plants, is well illustrated by the huge angiosperm diversity that is assumed to originate from recurrent polyploidization events. Strikingly, polyploidization often occurred prior to or simultaneously with major evolutionary transitions and adaptive radiation of species, supporting the concept that polyploidy plays a predominant role in bursts of adaptive speciation. Polyploidy results in immediate genetic redundancy and represents, with the emergence of new gene functions, an important source of novelty. Along with recombination, gene mutation, transposon activity and chromosomal rearrangement, polyploidy and whole-genome duplication act as drivers of evolution and divergence in plant behaviour and gene function, enabling diversification, speciation and hence plant evolution.
Collapse
Affiliation(s)
- Karine Alix
- GQE – Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- For correspondence. E-mail
| | - Pierre R. Gérard
- GQE – Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
48
|
Abstract
An interesting and possibly unique pattern of genome evolution following polyploidy can be observed among allopolyploids of the Triticum and Aegilops genera (wheat group). Most polyploids in this group are presumed to share a common unaltered (pivotal) subgenome (U, D, or A) together with one or two modified (differential) subgenomes, a status that has been referred to as 'pivotal-differential' genome evolution. In this review we discuss various mechanisms that could be responsible for this evolutionary pattern, as well as evidence for and against the putative evolutionary mechanisms involved. We suggest that, in light of recent advances in genome sequencing and related technologies in the wheat group, the time has come to reopen the investigation into pivotal-differential genome evolution.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, PO Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Research Center for Biosystems, Land Use, and Nutrition (IFZ), Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
49
|
McIntyre PJ, Strauss S. An experimental test of local adaptation among cytotypes within a polyploid complex. Evolution 2017; 71:1960-1969. [PMID: 28598499 DOI: 10.1111/evo.13288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
The geographic distributions of polyploids suggest they can have distinct and sometimes broader niches compared to diploids. However, relatively few field experiments have investigated whether range differences are associated with local adaptation or reflect other processes, such as dispersal limitation. In three years of transplants across the elevational ranges of five cytotypes in the Claytonia perfoliata complex, we found evidence for local adaptation. In at least one study year germination was higher within the natural range for each cytotype, and four of the five cytotypes attained larger biomass within their natural range. Fitness within and beyond range varied across years, with two instances of cytotypes showing higher fitness beyond the range, highlighting a potential role of temporal variability in cytotype differentiation. Polyploids as a group did not outperform diploids, but the cytotype with highest fitness across environments was a hexaploid reported to be invasive. Our results suggest that differences in geographic ranges within the C. perfoliata complex reflect local adaptation of cytotypes. Although we did not find a general polyploid advantage, our findings support the idea that occasional polyploid cytotypes exhibit high fitness relative to other cytotypes, and contribute to growing evidence supporting ecological differentiation of cytotypes within polyploid complexes.
Collapse
Affiliation(s)
- Patrick J McIntyre
- Section of Ecology and Evolution, University of California Davis, 2320 Storer Hall, One Shields Avenue, Davis, California, 95616.,Center for Population Biology, University of California Davis, 2320 Storer Hall, One Shields Avenue, Davis, California, 95616.,Current Address: Biogeographic Data Branch, California Department of Fish and Wildlife, 1416 9th Street, Suite 1266, Sacramento, California, 95814
| | - Sharon Strauss
- Section of Ecology and Evolution, University of California Davis, 2320 Storer Hall, One Shields Avenue, Davis, California, 95616.,Center for Population Biology, University of California Davis, 2320 Storer Hall, One Shields Avenue, Davis, California, 95616
| |
Collapse
|
50
|
Abstract
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity.
Collapse
|