1
|
Martín-Sánchez R, Sancho-Knapik D, Ferrio JP, Alonso-Forn D, Losada JM, Peguero-Pina JJ, Mencuccini M, Gil-Pelegrín E. Xylem and Phloem in Petioles Are Coordinated With Leaf Gas Exchange in Oaks With Contrasting Anatomical Strategies Depending on Leaf Habit. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39484964 DOI: 10.1111/pce.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024]
Abstract
As the single link between leaves and the rest of the plant, petioles must develop conductive tissues according to the water influx and sugar outflow of the leaf lamina. A scaling relationship between leaf area and anatomical traits of xylem and phloem is expected to improve the efficiency of these tissues. However, the different constraints compromising the functionality of both tissues (e.g., risk of cavitation) must not be disregarded. Additionally, deciduous and evergreen plants may have different strategies to produce and package their petiole conduits to cope with environmental restrictions. We explored in 33 oak species the relationships between petiole anatomical traits, leaf area, stomatal conductance, and photosynthesis rate. Results showed allometric scaling between anatomical structure of xylem and phloem with leaf area. We also found correlations between photosynthesis rate, stomatal conductance, and anatomical traits in the petiole. The main novelty is how oaks present a different strategy depending on the leaf habit. Deciduous species tend to increase their diameters to achieve greater leaf-specific conductivity. By contrast, evergreen oaks develop larger xylem conductive areas for a given leaf area than deciduous ones. This trade-off between safety-efficiency in petioles has never been attributed to the leaf habit of the species.
Collapse
Affiliation(s)
- Rubén Martín-Sánchez
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2- (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan Pedro Ferrio
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - David Alonso-Forn
- Department of Biology, Research Group on Plant Biology Under Mediterranean Conditions, University of Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Juan Manuel Losada
- Institute for Mediterranean and Subtropical Horticulture-La Mayora- (IHSM La Mayora-CSIC-UMA), Malaga, Spain
| | - José Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2- (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | | | - Eustaquio Gil-Pelegrín
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
2
|
Mai MH, Gao C, Bork PAR, Holbrook NM, Schulz A, Bohr T. Relieving the transfusion tissue traffic jam: a network model of radial transport in conifer needles. THE NEW PHYTOLOGIST 2024. [PMID: 39425496 DOI: 10.1111/nph.20189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Characteristic of all conifer needles, the transfusion tissue mediates the radial transport of water and sugar between the endodermis and axial vasculature. Physical constraints imposed by the needle's linear geometry introduce two potential extravascular bottlenecks where the opposition of sugar and water flows may frustrate sugar export: one at the vascular access point and the other at the endodermis. We developed a network model of the transfusion tissue to explore how its structure and composition affect the delivery of sugars to the axial phloem. To describe extravascular transport with cellular resolution, we construct networks from images of Pinus pinea needles obtained through tomographic microscopy, as well as fluorescence and electron microscopy. The transfusion tissue provides physically distinct pathways for sugar and water, reducing resistance between the vasculature and endodermis and mitigating flow constriction at the vascular flank. Dissipation of flow velocities through the transfusion tissue's branched structure allows for bidirectional transport of an inbound diffusive sugar flux against an outbound advective water flux across the endodermis. Our results clarify the structure-function relationships of the transfusion tissue under conditions free of physiological stress. The presented model framework is also applicable to different transfusion tissue morphologies in other gymnosperms.
Collapse
Affiliation(s)
- Melissa H Mai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Peter A R Bork
- Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Ma L, Hu Z, Shen W, Zhang Y, Wang G, Chang B, Lu J, Cui Y, Xu H, Feng Y, Jin B, Zhang X, Wang L, Lin J. Three-dimensional reconstruction and multiomics analysis reveal a unique pattern of embryogenesis in Ginkgo biloba. PLANT PHYSIOLOGY 2024; 196:95-111. [PMID: 38630866 DOI: 10.1093/plphys/kiae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the earliest extant species in seed plant phylogeny. Embryo development patterns can provide fundamental evidence for the origin, evolution, and adaptation of seeds. However, the architectural and morphological dynamics during embryogenesis in G. biloba remain elusive. Herein, we obtained over 2,200 visual slices from 3 stages of embryo development using micro-computed tomography imaging with improved staining methods. Based on 3-dimensional (3D) spatiotemporal pattern analysis, we found that a shoot apical meristem with 7 highly differentiated leaf primordia, including apical and axillary leaf buds, is present in mature Ginkgo embryos. 3D rendering from the front, top, and side views showed 2 separate transport systems of tracheids located in the hypocotyl and cotyledon, representing a unique pattern of embryogenesis. Furthermore, the morphological dynamic analysis of secretory cavities indicated their strong association with cotyledons during development. In addition, we identified genes GbLBD25a (lateral organ boundaries domain 25a), GbCESA2a (cellulose synthase 2a), GbMYB74c (myeloblastosis 74c), GbPIN2 (PIN-FORMED 2) associated with vascular development regulation, and GbWRKY1 (WRKYGOK 1), GbbHLH12a (basic helix-loop-helix 12a), and GbJAZ4 (jasmonate zim-domain 4) potentially involved in the formation of secretory cavities. Moreover, we found that flavonoid accumulation in mature embryos could enhance postgerminative growth and seedling establishment in harsh environments. Our 3D spatial reconstruction technique combined with multiomics analysis opens avenues for investigating developmental architecture and molecular mechanisms during embryogenesis and lays the foundation for evolutionary studies of embryo development and maturation.
Collapse
Affiliation(s)
- Lingyu Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
- Research Institute of Wood Industry, Chinese Academy of Sciences, Beijing 100091, China
| | - Zijian Hu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Shen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yingying Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Guangchao Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Bang Chang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jinkai Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yaning Cui
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Feng
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Zhang Y, Zhang N, Chai X, Sun T. Machine learning for image-based multi-omics analysis of leaf veins. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4928-4941. [PMID: 37410807 DOI: 10.1093/jxb/erad251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Veins are a critical component of the plant growth and development system, playing an integral role in supporting and protecting leaves, as well as transporting water, nutrients, and photosynthetic products. A comprehensive understanding of the form and function of veins requires a dual approach that combines plant physiology with cutting-edge image recognition technology. The latest advancements in computer vision and machine learning have facilitated the creation of algorithms that can identify vein networks and explore their developmental progression. Here, we review the functional, environmental, and genetic factors associated with vein networks, along with the current status of research on image analysis. In addition, we discuss the methods of venous phenotype extraction and multi-omics association analysis using machine learning technology, which could provide a theoretical basis for improving crop productivity by optimizing the vein network architecture.
Collapse
Affiliation(s)
- Yubin Zhang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| | - Ning Zhang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| | - Xiujuan Chai
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| | - Tan Sun
- Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing, China
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing 100081, China
| |
Collapse
|
5
|
Losada JM, He Z, Holbrook NM. Sieve tube structural variation in Austrobaileya scandens and its significance for lianescence. PLANT, CELL & ENVIRONMENT 2022; 45:2460-2475. [PMID: 35606891 PMCID: PMC9540405 DOI: 10.1111/pce.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Lianas combine large leaf areas with slender stems, features that require an efficient vascular system. The only extant member of the Austrobaileyaceae is an endemic twining liana of the tropical Australian forests with well-known xylem hydraulics, but the vascular phloem continuum aboveground remains understudied. Microscopy analysis across leaf vein orders and stems of Austrobaileya scandens revealed a low foliar xylem:phloem ratio, with isodiametric vascular elements along the midrib, but tapered across vein orders. Sieve plate pore radii increased from 0.08 µm in minor veins to 0.12 µm in the petiole, but only to 0.20 µm at the stem base, tens of metres away. In easily bent searcher branches, phloem conduits have pectin-rich walls and simple plates, whereas in twining stems, conduits were connected through highly angled and densely porated sieve plates. The hydraulic resistance of phloem conduits in the twisted and elongated stems of A. scandens is large compared with trees of similar stature; phloem hydraulic resistance decreases from leaves to stems, consistent with the efficient delivery of photoassimilates from sources under Münch predictions. Sink strength of a continuously growing canopy might be stronger than in self-supporting understory plants, favoring resource allocation to aerial organs and the attainment of vertical stature.
Collapse
Affiliation(s)
- Juan M. Losada
- Institute for Mediterranean and Subtropical Horticulture ‘La Mayora’—CSIC—UMAAvda. Dr. Wienberg s/nAlgarrobo‐CostaMálaga29750Spain
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Arnold Arboretum of Harvard UniversityBostonMassachusettsUSA
| | - Zhe He
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Arnold Arboretum of Harvard UniversityBostonMassachusettsUSA
| | - N. Michele Holbrook
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Arnold Arboretum of Harvard UniversityBostonMassachusettsUSA
| |
Collapse
|
6
|
Hang H, Bauer M, Mio W, Mander L. Geometric and topological approaches to shape variation in Ginkgo leaves. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210978. [PMID: 34849242 PMCID: PMC8611351 DOI: 10.1098/rsos.210978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
Leaf shape is a key plant trait that varies enormously. The range of applications for data on this trait requires frequent methodological development so that researchers have an up-to-date toolkit with which to quantify leaf shape. We generated a dataset of 468 leaves produced by Ginkgo biloba, and 24 fossil leaves produced by evolutionary relatives of extant Ginkgo. We quantified the shape of each leaf by developing a geometric method based on elastic curves and a topological method based on persistent homology. Our geometric method indicates that shape variation in modern leaves is dominated by leaf size, furrow depth and the angle of the two lobes at the leaf base that is also related to leaf width. Our topological method indicates that shape variation in modern leaves is dominated by leaf size and furrow depth. We have applied both methods to modern and fossil material: the methods are complementary, identifying similar primary patterns of variation, but also revealing different aspects of morphological variation. Our topological approach distinguishes long-shoot leaves from short-shoot leaves, both methods indicate that leaf shape influences or is at least related to leaf area, and both could be applied in palaeoclimatic and evolutionary studies of leaf shape.
Collapse
Affiliation(s)
- Haibin Hang
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
| | - Martin Bauer
- Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
7
|
Schachat SR, Boyce CK, Payne JL, Lentink D. Lepidoptera demonstrate the relevance of Murray's Law to circulatory systems with tidal flow. BMC Biol 2021; 19:204. [PMID: 34526028 PMCID: PMC8444497 DOI: 10.1186/s12915-021-01130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Murray's Law, which describes the branching architecture of bifurcating tubes, predicts the morphology of vessels in many amniotes and plants. Here, we use insects to explore the universality of Murray's Law and to evaluate its predictive power for the wing venation of Lepidoptera, one of the most diverse insect orders. Lepidoptera are particularly relevant to the universality of Murray's Law because their wing veins have tidal, or oscillatory, flow of air and hemolymph. We examined over one thousand wings representing 667 species of Lepidoptera. RESULTS We found that veins with a diameter above approximately 50 microns conform to Murray's Law, with veins below 50 microns in diameter becoming less and less likely to conform to Murray's Law as they narrow. The minute veins that are most likely to deviate from Murray's Law are also the most likely to have atrophied, which prevents efficient fluid transport regardless of branching architecture. However, the veins of many taxa continue to branch distally to the areas where they atrophied, and these too conform to Murray's Law at larger diameters (e.g., Sesiidae). CONCLUSIONS This finding suggests that conformity to Murray's Law in larger taxa may reflect requirements for structural support as much as fluid transport, or may indicate that selective pressures for fluid transport are stronger during the pupal stage-during wing development prior to vein atrophy-than the adult stage. Our results increase the taxonomic scope of Murray's Law and provide greater clarity about the relevance of body size.
Collapse
Affiliation(s)
| | - C. Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, USA
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. THE NEW PHYTOLOGIST 2021; 229:631-648. [PMID: 32964424 DOI: 10.1111/nph.16923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 05/21/2023]
Abstract
Leaf vein network geometry can predict levels of resource transport, defence and mechanical support that operate at different spatial scales. However, it is challenging to quantify network architecture across scales due to the difficulties both in segmenting networks from images and in extracting multiscale statistics from subsequent network graph representations. Here we developed deep learning algorithms using convolutional neural networks (CNNs) to automatically segment leaf vein networks. Thirty-eight CNNs were trained on subsets of manually defined ground-truth regions from >700 leaves representing 50 southeast Asian plant families. Ensembles of six independently trained CNNs were used to segment networks from larger leaf regions (c. 100 mm2 ). Segmented networks were analysed using hierarchical loop decomposition to extract a range of statistics describing scale transitions in vein and areole geometry. The CNN approach gave a precision-recall harmonic mean of 94.5% ± 6%, outperforming other current network extraction methods, and accurately described the widths, angles and connectivity of veins. Multiscale statistics then enabled the identification of previously undescribed variation in network architecture across species. We provide a LeafVeinCNN software package to enable multiscale quantification of leaf vein networks, facilitating the comparison across species and the exploration of the functional significance of different leaf vein architectures.
Collapse
Affiliation(s)
- Hao Xu
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Benjamin Blonder
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
- Department of Environmental Science, Policy, and Management, University of California, 120 Mulford Hall, Berkeley, CA, 94720, USA
| | - Miguel Jodra
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
9
|
Liu J, Ye W, Zhang Z, Yu Z, Ding H, Zhang C, Liu S. Vein Distribution on the Deformation Behavior and Fracture Mechanisms of Typical Plant Leaves by Quasi In Situ Tensile Test under a Digital Microscope. Appl Bionics Biomech 2020; 2020:8792143. [PMID: 32670404 PMCID: PMC7350170 DOI: 10.1155/2020/8792143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022] Open
Abstract
Angiosperm leaf venation is based on two major patterns, typically dicotyledonous branching and monocotyledonous parallel veins. The influence of these patterns on deformation and fracture properties is poorly understood. In this paper, three species of dicotyledons with netted venation and three species of monocots with parallel venation were selected, and the effect of vein distribution of leaves on their mechanical properties and deformation behavior was investigated. Whole images of leaves were captured using a digital camera, and their vein traits were measured using the image processing software Digimizer. A self-developed mechanical testing apparatus with high precision and low load was used to measure the tensile properties of leaves. The deformation behavior of the leaf was captured using a digital microscope during the tensile test. Results showed that the vein architecture of monocots and dicots is different, which had a remarkable effect on their mechanical properties, deformation behavior, and crack propagation behavior. The greater the diameter and the more the number of veins parallel to the tensile direction, the higher the tensile force, tensile strength, and elastic modulus of the leaves. The netted venation leaves evinced the elastic-plastic fracture type, and the hierarchy venation provided resistance to fracture propagation of cracks in the leaves by lengthening the crack path. The leaves with parallel venation behaved in a predominantly brittle manner or elastic fracture type, and the parallel venation inhibited the initiation of cracks in the leaves by increasing the load at complete fracture of the leaves. The investigation provides reference for a stiffened plate/shell structure and bionic anticrack design.
Collapse
Affiliation(s)
- Jingjing Liu
- Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wei Ye
- Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhihui Zhang
- The Key Laboratory of Engineering Bionic (Ministry of Education, China) and the College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zhenglei Yu
- The Key Laboratory of Engineering Bionic (Ministry of Education, China) and the College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Hongyan Ding
- Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chao Zhang
- Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Sen Liu
- Faculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
10
|
Clerx LE, Rockwell FE, Savage JA, Holbrook NM. Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra. AMERICAN JOURNAL OF BOTANY 2020; 107:852-863. [PMID: 32468597 DOI: 10.1002/ajb2.1481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The dimensions of phloem sieve elements have been shown to vary as a function of tree height, decreasing hydraulic resistance as the transport pathway lengthens. However, little is known about ontogenetic patterns of sieve element scaling. Here we examine within a single species (Quercus rubra) how decreases in hydraulic resistance with distance from the plant apex are mediated by overall plant size. METHODS We sampled and imaged phloem tissue at multiple heights along the main stem and in the live crown of four size classes of trees using fluorescence and scanning electron microscopy. Sieve element length and radius, the number of sieve areas per compound plate, pore number, and pore radius were used to calculate total hydraulic resistance at each sampling location. RESULTS Sieve element length varied with tree size, while sieve element radius, sieve pore radius, and the number of sieve areas per compound plate varied with sampling position. When data from all size classes were aggregated, all four variables followed a power-law trend with distance from the top of the tree. The net effect of these ontogenetic scalings was to make total hydraulic sieve tube resistance independent of tree height from 0.5 to over 20 m. CONCLUSIONS Sieve element development responded to two pieces of information, tree size and distance from the apex, in a manner that conserved total sieve tube resistance across size classes. A further differentiated response between the phloem in the live crown and in the main stem is also suggested.
Collapse
Affiliation(s)
- Laura E Clerx
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Fulton E Rockwell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jessica A Savage
- Department of Biology, University of Minnesota, Duluth, MN, 55812, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Losada JM, Holbrook NM. Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. AMERICAN JOURNAL OF BOTANY 2019; 106:244-259. [PMID: 30793276 DOI: 10.1002/ajb2.1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Recent studies in canopy-dominant trees revealed axial scaling of phloem structure. However, whether this pattern is found in woody plants of the understory, the environment of most angiosperms from the ANA grade (Amborellales-Nymphaeales-Austrobaileyales), is unknown. METHODS We used seedlings and adult plants of the understory tropical shrub Illicium parviflorum, a member of the lineage Austrobaileyales, to explore the anatomy and physiology of the phloem in their aerial parts, including changes through ontogeny. KEY RESULTS Adult plants maintain a similar proportion of phloem tissue across stem diameters, but larger conduit dimensions and number cause the hydraulic resistance of the phloem to decrease toward the base of the plant. Small sieve plate pores resulted in an overall higher sieve tube hydraulic resistance than has been reported in other woody angiosperms. Sieve elements increase in size from minor to major leaf veins, but were shorter and narrower in petioles. The low carbon assimilation rates of seedlings and mature plants contrasted with a 3-fold higher phloem sap velocity in seedlings, suggesting that phloem transport velocity is modulated through ontogeny. CONCLUSIONS The overall architecture of the phloem tissue in this understory angiosperm shrub scales in a manner consistent with taller trees that make up the forest canopy. Thus, the evolution of larger sieve plate pores in canopy-dominant trees may have played a key role in allowing woody angiosperms to extend beyond their understory origins.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02130, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02130, USA
| |
Collapse
|
12
|
Jensen KH. Modeling the Hydraulic Conductivity of Phloem Sieve Elements. Methods Mol Biol 2019; 2014:339-344. [PMID: 31197807 DOI: 10.1007/978-1-4939-9562-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phloem transport of photoassimilates affects nearly all aspects of plant life, from growth to reproduction. This chapter summarizes mathematical techniques to quantify the impact of sieve element anatomy on phloem transport processes.
Collapse
Affiliation(s)
- Kaare H Jensen
- Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Baresch A, Crifò C, Boyce CK. Competition for epidermal space in the evolution of leaves with high physiological rates. THE NEW PHYTOLOGIST 2019; 221:628-639. [PMID: 30216453 DOI: 10.1111/nph.15476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Leaves with high photosynthetic capacity require high transpiration capacity. Consequently, hydraulic conductance, stomatal conductance, and assimilation capacities should be positively correlated. These traits make independent demands on anatomical space, particularly due to the propensity for veins to have bundle sheath extensions that exclude stomata from the local epidermis. We measured density and area occupation of bundle sheath extensions, density and size of stomata and subsidiary cells, and venation density for a sample of extant angiosperms and fossil and living nonangiosperm tracheophytes. For most nonangiosperms, even modest increases in vein density and stomatal conductance would require substantial reconfigurations of anatomy. One characteristic of the angiosperm syndrome (e.g. small cell sizes, etc.) is hierarchical vein networks that allow expression of bundle sheath extensions in some, but not all veins, contrasting with all-or-nothing alternatives available with the single-order vein networks in most nonangiosperms. Bundle sheath modulation is associated with higher vein densities in three independent groups with hierarchical venation: angiosperms, Gnetum (gymnosperm) and Dipteris (fern). Anatomical and developmental constraints likely contribute to the stability in leaf characteristics - and ecophysiology - seen through time in different lineages and contribute to the uniqueness of angiosperms in achieving the highest vein densities, stomatal densities, and physiological rates.
Collapse
Affiliation(s)
- Andrés Baresch
- Department of Geological Sciences, Stanford University, Stanford, CA, 94305, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá
| | - Camilla Crifò
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Jensen KH. Phloem physics: mechanisms, constraints, and perspectives. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:96-100. [PMID: 29660560 DOI: 10.1016/j.pbi.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 05/17/2023]
Abstract
Plants have evolved specialized vascular tissues for the distribution of energy, water, nutrients, and for communication. The phloem transports sugars from photosynthetic source regions (e.g. mature leaves) to sugar sinks (e.g. developing tissues such as buds, flowers, roots). Moreover, chemical signals such as hormones, RNAs and proteins also move in the phloem. Basic physical processes strongly limit phloem anatomy and function. This paper provides an overview of recent research and perspectives on phloem biomechanics and the physical constraints relevant to sugar transport in plants.
Collapse
Affiliation(s)
- Kaare H Jensen
- Department of Physics, Technical University of Denmark, Fysikvej, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Carvalho MR, Losada JM, Niklas KJ. Phloem networks in leaves. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:29-35. [PMID: 29306742 DOI: 10.1016/j.pbi.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
The survival of all vascular plants depends on phloem and xylem, which comprise a hydraulically coupled tissue system that transports photosynthates, water, and a variety of other molecules and ions. Although xylem hydraulics has been extensively studied, until recently, comparatively little is known quantitatively about the phloem hydraulic network and how it is functionally coupled to the xylem network, particularly in photosynthetic leaves. Here, we summarize recent advances in quantifying phloem hydraulics in fully expanded mature leaves with different vascular architectures and show that (1) the size of phloem conducting cells across phylogenetically different taxa scales isometrically with respect to xylem conducting cell size, (2) cell transport areas and lengths increase along phloem transport pathways in a manner that can be used to model Münch's pressure-flow hypothesis, and (3) report observations that invalidate da Vinci's and Murray's hydraulic models as plausible constructs for understanding photosynthate transport in the leaf lamina.
Collapse
Affiliation(s)
- Mónica R Carvalho
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Panama
| | - Juan M Losada
- Arnold Arboretum, Harvard University, 1300 Centre St., Boston, MA 02131, USA
| | - Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Lehnebach R, Beyer R, Letort V, Heuret P. The pipe model theory half a century on: a review. ANNALS OF BOTANY 2018; 121:773-795. [PMID: 29370362 PMCID: PMC5906905 DOI: 10.1093/aob/mcx194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 05/12/2023]
Abstract
Background More than a half century ago, Shinozaki et al. (Shinozaki K, Yoda K, Hozumi K, Kira T. 1964a. A quantitative analysis of plant form - the pipe model theory. I. Basic analyses. Japanese Journal of Ecology B: 97-105) proposed an elegant conceptual framework, the pipe model theory (PMT), to interpret the observed linear relationship between the amount of stem tissue and corresponding supported leaves. The PMT brought a satisfactory answer to two vividly debated problems that were unresolved at the moment of its publication: (1) What determines tree form and which rules drive biomass allocation to the foliar versus stem compartments in plants? (2) How can foliar area or mass in an individual plant, in a stand or at even larger scales be estimated? Since its initial formulation, the PMT has been reinterpreted and used in applications, and has undoubtedly become an important milestone in the mathematical interpretation of plant form and functioning. Scope This article aims to review the PMT by going back to its initial formulation, stating its explicit and implicit properties and discussing them in the light of current biological knowledge and experimental evidence in order to identify the validity and range of applicability of the theory. We also discuss the use of the theory in tree biomechanics and hydraulics as well as in functional-structural plant modelling. Conclusions Scrutinizing the PMT in the light of modern biological knowledge revealed that most of its properties are not valid as a general rule. The hydraulic framework derived from the PMT has attracted much more attention than its mechanical counterpart and implies that only the conductive portion of a stem cross-section should be proportional to the supported foliage amount rather than the whole of it. The facts that this conductive portion is experimentally difficult to measure and varies with environmental conditions and tree ontogeny might cause the commonly reported non-linear relationships between foliage and stem metrics. Nevertheless, the PMT can still be considered as a portfolio of properties providing a unified framework to integrate and analyse functional-structural relationships.
Collapse
Affiliation(s)
- Romain Lehnebach
- Centre de coopération Internationale de la Recherche Agronomique pour le Développement (CIRAD), UMR Amap, Kourou, France
- Botany and Modelling of Plant Architecture and Vegetation (Amap), Université Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
| | - Robert Beyer
- Laboratory of Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, France
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Véronique Letort
- Laboratory of Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, France
| | - Patrick Heuret
- Institut National de la Recherche Agronomique (INRA), UMR Ecofog, Kourou, France
| |
Collapse
|
17
|
Ray DM, Jones CS. Scaling relationships and vessel packing in petioles. AMERICAN JOURNAL OF BOTANY 2018; 105:667-676. [PMID: 29664993 DOI: 10.1002/ajb2.1054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY While tradeoffs among mechanical and conductive functions have been well investigated in woody stems, these tradeoffs are relatively unexplored in petioles, the structural link between stems and laminas. We investigated size-independent scaling relationships between cross-sectional areas of structural and vascular tissues, relationships between tissue areas of xylem and phloem, vessel packing within xylem, and scaling of vascular and structural tissues with lamina traits. METHODS We examined allometric relationships among petiole tissues and as a function of lamina and petiole size variation on eleven species of Pelargonium. From transverse sections of methacrylate-embedded tissue, we measured the cross-sectional areas of all tissues within the petiole and vessel lumen, and cell wall areas of each vessel. Allometric scaling relationships were analyzed using standardized major axis regressions. KEY RESULTS Pelargonium petiole vessels were packed as predicted by Sperry's packing rule for woody stems. In contrast to woody stems, there was no evidence of a tradeoff between vessel area and fiber area. Within cross-sections, more xylem was produced than phloem. Among bundles, xylem and phloem scaling relationships varied with bundle position. Except for lamina dry mass and petiole fiber cross-sectional area, petiole and lamina traits were independent. CONCLUSIONS Petioles share vascular tissue traits with stems despite derivation from leaf primordia. We did not find evidence for a tradeoff between structural and vascular tissues, in part because fibers occur outside the xylem. We propose this separation of conduction and support underlies observed developmental and evolutionary plasticity in petioles.
Collapse
Affiliation(s)
- Dustin M Ray
- University of Connecticut, Ecology and Evolutionary Biology Department, 75 N. Eagleville Road, Unit 3043, Storrs, ConnecticutT, 06269, U.S.A
| | - Cynthia S Jones
- University of Connecticut, Ecology and Evolutionary Biology Department, 75 N. Eagleville Road, Unit 3043, Storrs, ConnecticutT, 06269, U.S.A
| |
Collapse
|