1
|
Dong X, Mkala EM, Mutinda ES, Yang JX, Wanga VO, Oulo MA, Onjolo VO, Hu GW, Wang QF. Taxonomy, comparative genomics of Mullein (Verbascum, Scrophulariaceae), with implications for the evolution of Verbascum and Lamiales. BMC Genomics 2022; 23:566. [PMID: 35941527 PMCID: PMC9358837 DOI: 10.1186/s12864-022-08799-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/28/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The genus Verbascum L. (Scrophulariaceae) is distributed in Africa, Europe, and parts of Asia, with the Mediterranean having the most species variety. Several researchers have already worked on the phylogenetic and taxonomic analysis of Verbascum by using ITS data and chloroplast genome fragments and have produced different conclusions. The taxonomy and phylogenetic relationships of this genus are unclear. RESULTS The complete plastomes (cp) lengths for V. chaixii, V. songaricum, V. phoeniceum, V. blattaria, V. sinaiticum, V. thapsus, and V. brevipedicellatum ranged from 153,014 to 153,481 bp. The cp coded 114 unique genes comprising of 80 protein-coding genes, four ribosomal RNA (rRNA), and 30 tRNA genes. We detected variations in the repeat structures, gene expansion on the inverted repeat, and single copy (IR/SC) boundary regions. The substitution rate analysis indicated that some genes were under purifying selection pressure. Phylogenetic analysis supported the sister relationship of (Lentibulariaceae + Acanthaceae + Bignoniaceae + Verbenaceae + Pedaliaceae) and (Lamiaceae + Phyrymaceae + Orobanchaceae + Paulowniaceae + Mazaceae) in Lamiales. Within Scrophulariaceae, Verbascum was sister to Scrophularia, while Buddleja formed a monophyletic clade from (Scrophularia + Verbascum) with high bootstrap support values. The relationship of the nine species within Verbascum was highly supported. CONCLUSION Based on the phylogenetic results, we proposed to reinstate the species status of V. brevipedicellatum (Engl.) Hub.-Mor. Additionally, three genera (Mazus, Lancea, and Dodartia) placed in the Phyrymaceae family formed a separate clade within Lamiaceae. The classification of the three genera was supported by previous studies. Thus, the current study also suggests the circumscription of these genera as documented previously to be reinstated. The divergence time of Lamiales was approximated to be 86.28 million years ago (Ma) (95% highest posterior density (HPD), 85.12-89.91 Ma). The complete plastomes sequence data of the Verbascum species will be important for understanding the Verbascum phylogenetic relationships and evolution in order Lamiales.
Collapse
Affiliation(s)
- Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China.,East African Herbarium, National Museums of Kenya, P.O Box 451660-0100, Nairobi, Kenya
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Victor Omondi Onjolo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.,University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China. .,University of Chinese Academy of Sciences, Beijing, CN-100049, China.
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| |
Collapse
|
2
|
Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. AMERICAN JOURNAL OF BOTANY 2020; 107:790-805. [PMID: 32406108 DOI: 10.1002/ajb2.1468] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
PREMISE Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.
Collapse
Affiliation(s)
- Gregory W Stull
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
- Department of Botany, Smithsonian Institution, Washington, D.C., 20013, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | | | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
3
|
Bi Y, Deng P, Liu L. The complete chloroplast genome sequence of purple mullein ( Verbascum phoeniceum L.). Mitochondrial DNA B Resour 2020; 5:819-820. [PMID: 33366766 PMCID: PMC7748468 DOI: 10.1080/23802359.2020.1715880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Verbascum phoeniceum, known as purple mullein or temptress purple, is a species native to Central Europe, Central Asia, and Western China. In the present study, the chloroplast (cp) genome of V. phoeniceum was assembled using genome skimming sequencing. The cp genome of V. phoeniceum is 153,348 bp in length comprising two copies of inverted regions (IR, 25,430 bp) separated by the large single-copy (LSC, 84,601 bp) and small single copy (SSC, 17,887 bp) regions. It encodes 114 unique genes, consisting of 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, with 20 duplicated genes in the IR regions. Phylogenetic analysis indicates that V. phoeniceum exhibits a closer relationship with Scrophularia rather than Buddleja.
Collapse
Affiliation(s)
- Yuqian Bi
- Key laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Pan Deng
- Key laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Luxian Liu
- Key laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Abstract
Resumo Este estudo fornece descrições, chave de identificação, mapas de distribuição, ilustrações e comentários sobre as espécies de Chrysobalanaceae ocorrentes no Nordeste Oriental do Brasil, região que compreende os estados de Alagoas, Ceará, Paraíba, Pernambuco e Rio Grande do Norte. Foram encontradas 26 espécies, distribuídas em oito gêneros: Hirtella (oito spp.), Couepia (seis spp.), Leptobalanus e Parinari (três spp. cada), Licania e Moquilea (duas spp. cada) e Chrysobalanus e Microdesmia (uma espécie cada). Hirtella sprucei e Moquilea silvatica são novos registros para a área e, embora a maior parte das espécies tenha ampla distribuição, Couepia impressa, C. pernambucensis, C. rufa, Parinari littoralis, Hirtella sprucei, H. insignis e H. santosii são restritas à Mata Atlântica, sendo as duas últimas consideradas “Em perigo” de extinção.
Collapse
|
5
|
Abstract
Insect pollination of flowering plants (angiosperms) is responsible for the majority of the world's flowering plant diversity and is key to the Cretaceous radiation of angiosperms. Although both insects and angiosperms were common by the mid-Cretaceous, direct fossil evidence of insect pollination is lacking. Direct evidence of Cretaceous insect pollination is associated with insect-gymnosperm pollination. Here, we report a specialized beetle-angiosperm pollination mode from mid-Cretaceous Burmese amber (99 mega-annum [Ma]) in which a tumbling flower beetle (Mordellidae), Angimordella burmitina gen. et sp. nov., has many tricolpate pollen grains attached. A. burmitina exhibits several specialized body structures for flower-visiting behavior including its body shape and pollen-feeding mouthparts revealed by X-ray microcomputed tomography (micro-CT). The tricolpate pollen in the amber belongs to the eudicots that comprise the majority of extant angiosperm species. These pollen grains exhibit zoophilous pollination attributes including their ornamentation, size, and clumping characteristics. Tricolpate pollen grains attached to the beetle's hairs are revealed by confocal laser scanning microscopy, which is a powerful tool for investigating pollen in amber. Our findings provide direct evidence of insect pollination of Cretaceous angiosperms, extending the range insect-angiosperm pollination association by at least 50 million years. Our results support the hypothesis that specialized insect pollination modes were present in eudicots 99 million years ago.
Collapse
Affiliation(s)
- Tong Bao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008 Nanjing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 210008 Nanjing, China
- Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008 Nanjing, China;
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 210008 Nanjing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianguo Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008 Nanjing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 210008 Nanjing, China
| | - David Dilcher
- Department of Geology and Atmospheric Science, Indiana University, Bloomington, IN 47405
| |
Collapse
|
6
|
Atkinson BA. The critical role of fossils in inferring deep-node phylogenetic relationships and macroevolutionary patterns in Cornales. AMERICAN JOURNAL OF BOTANY 2018; 105:1401-1411. [PMID: 29797563 DOI: 10.1002/ajb2.1084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The basal asterid order, Cornales, experienced a rapid radiation during the Cretaceous, which has made it difficult to elucidate the early evolution of the order using extant taxa only. Recent paleobotanical studies, however, have begun to shed light on the early diversification of Cornales. Herein, fossils are directly incorporated in phylogenetic and quantitative morphological analyses to reconstruct early cornalean evolution. METHODS A morphological matrix of 77 fruit characters and 58 taxa (24 extinct) was assembled. Parsimony analyses including and excluding fossils were conducted. A fossil inclusive tree was time-scaled to visualize the timing of the initial cornalean radiation. Disparity analyses were utilized to infer the morphological evolution of cornaleans with drupaceous fruits. KEY RESULTS Fossil inclusive and exclusive parsimony analyses resulted in well-resolved deep-node relationships within Cornales. Resolution in the fossil inclusive analysis is substantially higher, revealing a basal grade including Loasaceae, Hydrangeaceae, Hydrostachyaceae, Grubbiaceae, a Hironoia+Amersinia clade, and Curtisiaceae, respectively, that leads to a "core" group containing a clade comprising a Cretaceous grade leading to clade of Nyssaceae, Mastixiaceae, and Davidiaceae that is sister to a Cornaceae+Alangiaceae clade. The time-scaled tree indicates that the initial cornalean diversification occurred before 89.8 Ma. Disparity analyses suggest the morphological diversity of Cornales peaked during the Paleogene. CONCLUSIONS Phylogenetic analyses clearly demonstrate that novel character mosaics of Cretaceous cornaleans play a critical role in resolving deep-node relationships within Cornales. The post-Cretaceous increase of cornalean disparity is associated with a shift in morphospace occupation, which can be explained from ecological and developmental perspectives.
Collapse
Affiliation(s)
- Brian A Atkinson
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
7
|
Albert B, Ressayre A, Dillmann C, Carlson AL, Swanson RJ, Gouyon PH, Dobritsa AA. Effect of aperture number on pollen germination, survival and reproductive success in Arabidopsis thaliana. ANNALS OF BOTANY 2018; 121:733-740. [PMID: 29360918 PMCID: PMC5853032 DOI: 10.1093/aob/mcx206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/15/2017] [Indexed: 05/07/2023]
Abstract
Background and Aims Pollen grains of flowering plants display a fascinating diversity of forms, including diverse patterns of apertures, the specialized areas on the pollen surface that commonly serve as the sites of pollen tube initiation and, therefore, might play a key role in reproduction. Although many aperture patterns exist in angiosperms, pollen with three apertures (triaperturate) constitutes the predominant pollen type found in eudicot species. The aim of this study was to explore whether having three apertures provides selective advantages over other aperture patterns in terms of pollen survival, germination and reproductive success, which could potentially explain the prevalence of triaperturate pollen among eudicots. Methods The in vivo pollen germination, pollen tube growth, longevity and competitive ability to sire seeds were compared among pollen grains of Arabidopsis thaliana with different aperture numbers. For this, an arabidopsis pollen aperture series was used, which included the triaperturate wild type, as well as mutants without an aperture (inaperturate) and with more than three apertures. Key Results Aperture number appears to influence pollen grain performance. In most germination and longevity experiments, the triaperturate and inaperturate pollen grains performed better than pollen with higher aperture numbers. In mixed pollinations, in which triaperturate and inaperturate pollen were forced to compete with each other, the triaperturate pollen outperformed the inaperturate pollen. Conclusions Triaperturate pollen grains might provide the best trade-off among various pollen performance traits, thus explaining the prevalence of this morphological trait in the eudicot clade.
Collapse
Affiliation(s)
- Béatrice Albert
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay cedex, France
| | - Adrienne Ressayre
- UMR de Génétique Végétale, Univ. Paris-Sud, INRA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Christine Dillmann
- UMR de Génétique Végétale, Univ. Paris-Sud, INRA, CNRS, Université Paris-Saclay, Gif sur Yvette, France
| | - Ann L Carlson
- Biology Department, Valparaiso University, Valparaiso, IN, USA
| | | | - Pierre-Henri Gouyon
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| |
Collapse
|
8
|
Stull GW, Schori M, Soltis DE, Soltis PS. Character evolution and missing (morphological) data across Asteridae. AMERICAN JOURNAL OF BOTANY 2018; 105:470-479. [PMID: 29656519 DOI: 10.1002/ajb2.1050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/08/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this phylogenetic framework with extensive morphological data sets have been surprisingly rare. Here, we explore character evolution in Asteridae (asterids), a major angiosperm clade, using an extensive morphological data set and a well-resolved phylogeny. METHODS We scored 15 phenotypic characters (spanning chemistry, vegetative anatomy, and floral, fruit, and seed features) across 248 species for ancestral state reconstruction using a phylogenetic framework based on 73 plastid genes and the same 248 species. KEY RESULTS Iridoid production, unitegmic ovules, and cellular endosperm were all reconstructed as synapomorphic for Asteridae. Sympetaly, long associated with asterids, shows complex patterns of evolution, suggesting it arose several times independently within the clade. Stamens equal in number to the petals is likely a synapomorphy for Gentianidae, a major asterid subclade. Members of Lamianae, a major gentianid subclade, are potentially diagnosed by adnate stamens, unilacunar nodes, and simple perforation plates. CONCLUSIONS The analyses presented here provide a greatly improved understanding of character evolution across Asteridae, highlighting multiple characters potentially synapomorphic for major clades. However, several important parts of the asterid tree are poorly known for several key phenotypic features (e.g., degree of petal fusion, integument number, nucellus type, endosperm type, iridoid production). Further morphological, anatomical, developmental, and chemical investigations of these poorly known asterids are critical for a more detailed understanding of early asterid evolution.
Collapse
Affiliation(s)
- Gregory W Stull
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Melanie Schori
- United States Department of Agriculture, National Germplasm Resources Laboratory, Beltsville, MD, 20705-2305, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611-8525, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611-7800, USA
| |
Collapse
|
9
|
Taxa of Rosaceae of the Ukrainian flora: position in a new system of the family according to molecular phylogenetic data. UKRAINIAN BOTANICAL JOURNAL 2017. [DOI: 10.15407/ukrbotj74.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Zhao L, Li X, Zhang N, Zhang SD, Yi TS, Ma H, Guo ZH, Li DZ. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Mol Phylogenet Evol 2016; 105:166-176. [DOI: 10.1016/j.ympev.2016.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
|
11
|
Identification and characterisation of Short Interspersed Nuclear Elements in the olive tree (Olea europaea L.) genome. Mol Genet Genomics 2016; 292:53-61. [PMID: 27714457 DOI: 10.1007/s00438-016-1255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Short Interspersed Nuclear Elements (SINEs) are nonautonomous retrotransposons in the genome of most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, SINE identification has been carried out only in a limited number of plant species. This lack of information is apparent especially in non-model plants whose genome has not been sequenced yet. The aim of this work was to produce a specific bioinformatics pipeline for analysing second generation sequence reads of a non-model species and identifying SINEs. We have identified, for the first time, 227 putative SINEs of the olive tree (Olea europaea), that constitute one of the few sets of such sequences in dicotyledonous species. The identified SINEs ranged from 140 to 362 bp in length and were characterised with regard to the occurrence of the tRNA domain in their sequence. The majority of identified elements resulted in single copy or very lowly repeated, often in association with genic sequences. Analysis of sequence similarity allowed us to identify two major groups of SINEs showing different abundances in the olive tree genome, the former with sequence similarity to SINEs of Scrophulariaceae and Solanaceae and the latter to SINEs of Salicaceae. A comparison of sequence conservation between olive SINEs and LTR retrotransposon families suggested that SINE expansion in the genome occurred especially in very ancient times, before LTR retrotransposon expansion, and presumably before the separation of the rosids (to which Oleaceae belong) from the Asterids. Besides providing data on olive SINEs, our results demonstrate the suitability of the pipeline employed for SINE identification. Applying this pipeline will favour further structural and functional analyses on these relatively unknown elements to be performed also in other plant species, even in the absence of a reference genome, and will allow establishing general evolutionary patterns for this kind of repeats in plants.
Collapse
|
12
|
Matamoro-Vidal A, Prieu C, Furness CA, Albert B, Gouyon PH. Evolutionary stasis in pollen morphogenesis due to natural selection. THE NEW PHYTOLOGIST 2016; 209:376-394. [PMID: 26248868 DOI: 10.1111/nph.13578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Institut de Systématique, Évolution, Biodiversité, UMR 7205 - CNRS, MNHN, UPMC, EPHE Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39 F-75005, Paris, France
- Laboratoire Ecologie Systématique et Evolution, UMR 8079 CNRS-AgroParisTech-Université Paris-Sud, 11, F-91405, Orsay, France
| | - Charlotte Prieu
- Institut de Systématique, Évolution, Biodiversité, UMR 7205 - CNRS, MNHN, UPMC, EPHE Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39 F-75005, Paris, France
- Laboratoire Ecologie Systématique et Evolution, UMR 8079 CNRS-AgroParisTech-Université Paris-Sud, 11, F-91405, Orsay, France
| | - Carol A Furness
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Béatrice Albert
- Laboratoire Ecologie Systématique et Evolution, UMR 8079 CNRS-AgroParisTech-Université Paris-Sud, 11, F-91405, Orsay, France
| | - Pierre-Henri Gouyon
- Institut de Systématique, Évolution, Biodiversité, UMR 7205 - CNRS, MNHN, UPMC, EPHE Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39 F-75005, Paris, France
| |
Collapse
|
13
|
Raman G, Park S. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms. FRONTIERS IN PLANT SCIENCE 2016; 7:341. [PMID: 27047519 PMCID: PMC4800181 DOI: 10.3389/fpls.2016.00341] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/06/2016] [Indexed: 05/20/2023]
Abstract
Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of this study will contribute to better support of the evolution, molecular biology and genetic improvement of the plant Ampelopsis.
Collapse
|
14
|
Stull GW, Duno de Stefano R, Soltis DE, Soltis PS. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. AMERICAN JOURNAL OF BOTANY 2015; 102:1794-813. [PMID: 26507112 DOI: 10.3732/ajb.1500298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/16/2015] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Major relationships within Lamiidae, an asterid clade with ∼40000 species, have largely eluded resolution despite two decades of intensive study. The phylogenetic positions of Icacinaceae and other early-diverging lamiid clades (Garryales, Metteniusaceae, and Oncothecaceae) have been particularly problematic, hindering classification and impeding our understanding of early lamiid (and euasterid) character evolution. METHODS To resolve basal lamiid phylogeny, we sequenced 50 plastid genomes using the Illumina sequencing platform and combined these with available asterid plastome sequence data for more comprehensive phylogenetic analyses. KEY RESULTS Our analyses resolved basal lamiid relationships with strong support, including the circumscription and phylogenetic position of the enigmatic Icacinaceae. This greatly improved basal lamiid phylogeny offers insight into character evolution and facilitates an updated classification for this clade, which we present here, including phylogenetic definitions for 10 new or converted clade names. We also offer recommendations for applying this classification to the Angiosperm Phylogeny Group (APG) system, including the recognition of a reduced Icacinaceae, an expanded Metteniusaceae, and two orders new to APG: Icacinales (Icacinaceae + Oncothecaceae) and Metteniusales (Metteniusaceae). CONCLUSIONS The lamiids possibly radiated from an ancestry of tropical trees with inconspicuous flowers and large, drupaceous fruits, given that these morphological characters are distributed across a grade of lineages (Icacinaceae, Oncothecaceae, Metteniusaceae) subtending the core lamiid clade (Boraginales, Gentianales, Lamiales, Solanales, Vahlia). Furthermore, the presence of similar morphological features among members of Aquifoliales suggests these characters might be ancestral for the Gentianidae (euasterids) as a whole.
Collapse
Affiliation(s)
- Gregory W Stull
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525 USA Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800 USA
| | - Rodrigo Duno de Stefano
- Herbario CICY, Centro de Investigación Científicas de Yucatán A. C., Mérida, Yucatán 97200 Mexico
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525 USA Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800 USA
| |
Collapse
|
15
|
Christmas MJ, Biffin E, Lowe AJ. Transcriptome sequencing, annotation and polymorphism detection in the hop bush, Dodonaea viscosa. BMC Genomics 2015; 16:803. [PMID: 26474753 PMCID: PMC4609105 DOI: 10.1186/s12864-015-1987-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/06/2015] [Indexed: 01/09/2023] Open
Abstract
Background The hop bush, Dodonaea viscosa, is a trans-oceanic species distributed oversix continents. It evolved in Australia where it is found over a wide range of habitat types and is an ecologically important species. Limited genomic resources are currently available for this species, thus our understanding of its evolutionary history and ecological adaptation is restricted. Here, we present a comprehensive transcriptome dataset for future genomic studies into this species. Methods We performed Illumina sequencing of cDNA prepared from leaf tissue collected from seven populations of D. viscosa ssp. angustissima and spatulata distributed along an environmental gradient in South Australia. Sequenced reads were assembled to provide a transcriptome resource. Contiguous sequences (contigs) were annotated using BLAST searches against the NCBI non-redundant database and gene ontology definitions were assigned. Single nucleotide polymorphisms were detected for the establishment of a genetic marker set. A comparison between the two subspecies was also carried out. Results Illumina sequencing returned 268,672,818 sequence reads, which were de novoassembled into 105,125 contigs. Contigs with significant BLAST alignments (E value < 1e-5)numbered at 44,191, with 38,311 of these having their most significant hits to sequences from land plant species. Gene Ontology terms were assigned to 28,440 contigs and KEGG analysis identified 146 pathways that the gene products from 5,070 contigs are potentially involved in. The subspecies comparison identified 8,494 fixed SNP differences across 3,979 contiguous sequences, indicating a level of genetic differentiation between them. Across all samples, 248,235 SNPs were detected. Conclusions We have established a significant genomic data resource for D. viscosa,providing a comprehensive transcriptomic reference. Genetic differences among morphologically distinct subspecies were found. A wide range of putative gene regions were identified along with a large set of variable SNP markers, providing a basis for studies into the evolution and ecological adaptation of D. viscosa. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1987-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew J Christmas
- Environment Institute and School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, 5005, SA, Australia.
| | - Ed Biffin
- Environment Institute and School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, 5005, SA, Australia.
| | - Andrew J Lowe
- Environment Institute and School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, 5005, SA, Australia.
| |
Collapse
|
16
|
Costa-Lima JLD, Alves M. Flora da Usina São José, Igarassu, Pernambuco: Erythroxylaceae. RODRIGUÉSIA 2015. [DOI: 10.1590/2175-7860201566118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythroxylaceae tem distribuição pantropical e apresenta cerca de 240 espécies circunscritas a quatro gêneros. Apenas Erythroxylum ocorre na região Neotropical e no Brasil são registradas 123 espécies, com maior diversidade na Mata Atlântica, especialmente no Nordeste. A Mata Atlântica do Nordeste do Brasil, considerada a porção mais ameaçada do bioma, é a área com maior diversidade de espécies de Erythroxylum e, embora diversa, a região ainda apresenta deficiência quanto a estudos florísticos e taxonômicos. Desse modo, este estudo objetivou inventariar as espécies de Erythroxylaceae que ocorrem nos fragmentos florestais da Usina São José (Igarassu, Pernambuco), e faz parte do levantamento da flora da área. Este estudo foi baseado na análise morfológica de espécimes coletados na referida área e de espécimes das coleções dos principais herbários do país. Foram registradas oito espécies: Erythroxylum citrifolium, E. mikanii, E. mucronatum, E. nitidum, E. rhodappendiculatum, E. rimosum, E. squamatum e E. subrotundum. Dentre estas, três espécies são registradas aqui pela primeira vez no estado de Pernambuco. Chave para identificação, descrições, ilustrações e comentários sobre hábitat e distribuição geográfica dos táxons são apresentados.
Collapse
|
17
|
Sun M, Soltis DE, Soltis PS, Zhu X, Burleigh JG, Chen Z. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol Phylogenet Evol 2015; 83:156-66. [DOI: 10.1016/j.ympev.2014.11.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
18
|
Qiao X, Li M, Li L, Yin H, Wu J, Zhang S. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC PLANT BIOLOGY 2015; 15:12. [PMID: 25604453 PMCID: PMC4310194 DOI: 10.1186/s12870-014-0401-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/22/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs), which act as important transcriptional regulatory proteins in eukaryotes, play a central role in controlling the expression of heat-responsive genes. At present, the genomes of Chinese white pear ('Dangshansuli') and five other Rosaceae fruit crops have been fully sequenced. However, information about the Hsfs gene family in these Rosaceae species is limited, and the evolutionary history of the Hsfs gene family also remains unresolved. RESULTS In this study, 137 Hsf genes were identified from six Rosaceae species (Pyrus bretschneideri, Malus × domestica, Prunus persica, Fragaria vesca, Prunus mume, and Pyrus communis), 29 of which came from Chinese white pear, designated as PbHsf. Based on the structural characteristics and phylogenetic analysis of these sequences, the Hsf family genes could be classified into three main groups (classes A, B, and C). Segmental and dispersed duplications were the primary forces underlying Hsf gene family expansion in the Rosaceae. Most of the PbHsf duplicated gene pairs were dated back to the recent whole-genome duplication (WGD, 30-45 million years ago (MYA)). Purifying selection also played a critical role in the evolution of Hsf genes. Transcriptome data demonstrated that the expression levels of the PbHsf genes were widely different. Six PbHsf genes were upregulated in fruit under naturally increased temperature. CONCLUSION A comprehensive analysis of Hsf genes was performed in six Rosaceae species, and 137 full length Hsf genes were identified. The results presented here will undoubtedly be useful for better understanding the complexity of the Hsf gene family and will facilitate functional characterization in future studies.
Collapse
Affiliation(s)
- Xin Qiao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Meng Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Leiting Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hao Yin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Marzouk MM, Hussein SR, Ibrahim LF, Elkhateeb A, Kawashty SA, Saleh NA. Flavonoids from Neurada procumbens L. (Neuradaceae) in Egypt. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Costa-Lima JLD, Loiola MIB, Jardim JG. Erythroxylaceae no Rio Grande do Norte, Brasil. RODRIGUÉSIA 2014. [DOI: 10.1590/2175-7860201465306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O presente estudo tem como objetivo contribuir para o conhecimento das espécies de Erythroxylaceae ocorrentes no estado do Rio Grande do Norte. O trabalho tem por base a análise morfológica de materiais depositados em herbários e coletas de campo, além da compilação de dados de literatura. Foram registradas 11 espécies: Erythroxylum barbatum, E. caatingae, E. nummularia, E. passerinum, E. pungens, E. revolutum, E. rimosum, E. simonis, E. squamatum, E. subrotundum e E. vacciniifolium, das quais sete são citadas pela primeira vez no Rio Grande do Norte. Chave para identificação, descrições, ilustrações, dados sobre hábitat, fenologia e distribuição geográfica das espécies são apresentados.
Collapse
|
21
|
Abstract
PREMISE OF THE STUDY The Lamiidae, a clade composed of approximately 15% of all flowering plants, consists of five orders: Boraginales, Gentianales, Garryales, Lamiales, and Solanales; and four families unplaced in an order: Icacinaceae, Metteniusiaceae, Oncothecaceae, and Vahliaceae. Our understanding of the phylogenetic relationships of Lamiidae has improved significantly in recent years, however, relationships among the orders and unplaced families of the clade remain partly unresolved. Here, we present a phylogenetic analysis of the Lamiidae based on an expanded sampling, including all families together, for the first time, in a single phylogenetic analyses. METHODS Phylogenetic analyses were conducted using maximum parsimony, maximum likelihood, and Bayesian approaches. Analyses included nine plastid regions (atpB, matK, ndhF, psbBTNH, rbcL, rps4, rps16, trnL-F, and trnV-atpE) and the mitochondrial rps3 region, and 129 samples representing all orders and unplaced families of Lamiidae. KEY RESULTS Maximum Likelihood (ML) and Bayesian trees provide good support for Boraginales sister to Lamiales, with successive outgroups (Solanales + Vahlia) and Gentianales, together comprising the core Lamiidae. Early branching patterns are less well supported, with Garryales only poorly supported as sister to the above 'core' and a weakly supported clade composed of Icacinaceae, Metteniusaceae, and Oncothecaceae sister to all other Lamiidae. CONCLUSIONS Our phylogeny of Lamiidae reveals increased resolution and support for internal relationships that have remained elusive. Within Lamiales, greater resolution also is obtained, but some family interrelationships remain a challenge.
Collapse
|
22
|
Modi A, Jain S, Kumar V. Zizyphus xylopyrus (Retz.) Willd: a review of its folkloric, phytochemical and pharmacological perspectives. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60408-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Rehan SM, Leys R, Schwarz MP. First evidence for a massive extinction event affecting bees close to the K-T boundary. PLoS One 2013; 8:e76683. [PMID: 24194843 PMCID: PMC3806776 DOI: 10.1371/journal.pone.0076683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/31/2013] [Indexed: 11/19/2022] Open
Abstract
Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.
Collapse
Affiliation(s)
- Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
- * E-mail:
| | - Remko Leys
- School of Biological Sciences, Flinders University of South Australia, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australia Museum, Adelaide, South Australia, Australia
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael P. Schwarz
- School of Biological Sciences, Flinders University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Giorno F, Guerriero G, Baric S, Mariani C. Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 2012; 13:639. [PMID: 23167251 PMCID: PMC3575323 DOI: 10.1186/1471-2164-13-639] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
Background Heat shock transcriptional factors (Hsfs) play a crucial role in plant responses to biotic and abiotic stress conditions and in plant growth and development. Apple (Malus domestica Borkh) is an economically important fruit tree whose genome has been fully sequenced. So far, no detailed characterization of the Hsf gene family is available for this crop plant. Results A genome-wide analysis was carried out in Malus domestica to identify heat shock transcriptional factor (Hsf) genes, named MdHsfs. Twenty five MdHsfs were identified and classified in three main groups (class A, B and C) according to the structural characteristics and to the phylogenetic comparison with Arabidopsis thaliana and Populus trichocarpa. Chromosomal duplications were analyzed and segmental duplications were shown to have occurred more frequently in the expansion of Hsf genes in the apple genome. Furthermore, MdHsfs transcripts were detected in several apple organs, and expression changes were observed by quantitative real-time PCR (qRT-PCR) analysis in developing flowers and fruits as well as in leaves, harvested from trees grown in the field and exposed to the naturally increased temperatures. Conclusions The apple genome comprises 25 full length Hsf genes. The data obtained from this investigation contribute to a better understanding of the complexity of the Hsf gene family in apple, and provide the basis for further studies to dissect Hsf function during development as well as in response to environmental stimuli.
Collapse
Affiliation(s)
- Filomena Giorno
- Research Centre for Agriculture and Forestry Laimburg, Laimburg 6, Auer/Ora, BZ, 39040, Italy.
| | | | | | | |
Collapse
|
25
|
Pokorny L, Ho BC, Frahm JP, Quandt D, Shaw AJ. Phylogenetic analyses of morphological evolution in the gametophyte and sporophyte generations of the moss order Hookeriales (Bryopsida). Mol Phylogenet Evol 2012; 63:351-64. [PMID: 22266481 DOI: 10.1016/j.ympev.2012.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
Morphological characters from the gametophyte and sporophyte generations have been used in land plants to infer relationships and construct classifications, but sporophytes provide the vast majority of data for the systematics of vascular plants. In bryophytes both generations are well developed and characters from both are commonly used to classify these organisms. However, because morphological traits of gametophytes and sporophytes can have different genetic bases and experience different selective pressures, taxonomic emphasis on one generation or the other may yield incongruent classifications. The moss order Hookeriales has a controversial taxonomic history because previous classifications have focused almost exclusively on either gametophytes or sporophytes. The Hookeriales provide a model for comparing morphological evolution in gametophytes and sporophytes, and its impact on alternative classification systems. In this study we reconstruct relationships among mosses that are or have been included in the Hookeriales based on sequences from five gene regions, and reconstruct morphological evolution of six sporophyte and gametophyte traits that have been used to differentiate families and genera. We found that the Hookeriales, as currently circumscribed, are monophyletic and that both sporophyte and gametophyte characters are labile. We documented parallel changes and reversals in traits from both generations. This study addresses the general issue of morphological reversals to ancestral states, and resolves novel relationships in the Hookeriales.
Collapse
Affiliation(s)
- L Pokorny
- Department of Biology, Duke University, 125 Science Drive, Durham, NC 27708-0338, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
• Plants have utterly transformed the planet, but testing hypotheses of causality requires a reliable time-scale for plant evolution. While clock methods have been extensively developed, less attention has been paid to the correct interpretation and appropriate implementation of fossil data. • We constructed 17 calibrations, consisting of minimum constraints and soft maximum constraints, for divergences between model representatives of the major land plant lineages. Using a data set of seven plastid genes, we performed a cross-validation analysis to determine the consistency of the calibrations. Six molecular clock analyses were then conducted, one with the original calibrations, and others exploring the impact on divergence estimates of changing maxima at basal nodes, and prior probability densities within calibrations. • Cross-validation highlighted Tracheophyta and Euphyllophyta calibrations as inconsistent, either because their soft maxima were overly conservative or because of undetected rate variation. Molecular clock analyses yielded estimates ranging from 568-815 million yr before present (Ma) for crown embryophytes and from 175-240 Ma for crown angiosperms. • We reject both a post-Jurassic origin of angiosperms and a post-Cambrian origin of land plants. Our analyses also suggest that the establishment of the major embryophyte lineages occurred at a much slower tempo than suggested in most previous studies. These conclusions are entirely compatible with current palaeobotanical data, although not necessarily with their interpretation by palaeobotanists.
Collapse
Affiliation(s)
- John T Clarke
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Rachel C M Warnock
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| |
Collapse
|
27
|
Srivastava A, Rogers WL, Breton CM, Cai L, Malmberg RL. Transcriptome analysis of sarracenia, an insectivorous plant. DNA Res 2011; 18:253-61. [PMID: 21676972 PMCID: PMC3158462 DOI: 10.1093/dnares/dsr014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarracenia species (pitcher plants) are carnivorous plants which obtain a portion of their nutrients from insects captured in the pitchers. To investigate these plants, we sequenced the transcriptome of two species, Sarracenia psittacina and Sarracenia purpurea, using Roche 454 pyrosequencing technology. We obtained 46 275 and 36 681 contigs by de novo assembly methods for S. psittacina and S. purpurea, respectively, and further identified 16 163 orthologous contigs between them. Estimation of synonymous substitution rates between orthologous and paralogous contigs indicates the events of genome duplication and speciation within the Sarracenia genus both occurred ∼2 million years ago. The ratios of synonymous and non-synonymous substitution rates indicated that 491 contigs have been under positive selection (Ka/Ks > 1). Significant proportions of these contigs were involved in functions related to binding activity. We also found that the greatest sequence similarity for both of these species was to Vitis vinifera, which is most consistent with a non-current classification of the order Ericales as an asterid. This study has provided new insights into pitcher plants and will contribute greatly to future research on this genus and its distinctive ecological adaptations.
Collapse
Affiliation(s)
- Anuj Srivastava
- Institute of Bioinformatics, University of Georgia, Athens, USA.
| | | | | | | | | |
Collapse
|
28
|
Bell CD, Soltis DE, Soltis PS. The age and diversification of the angiosperms re-revisited. AMERICAN JOURNAL OF BOTANY 2010; 97:1296-303. [PMID: 21616882 DOI: 10.3732/ajb.0900346] [Citation(s) in RCA: 448] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY It has been 8 years since the last comprehensive analysis of divergence times across the angiosperms. Given recent methodological improvements in estimating divergence times, refined understanding of relationships among major angiosperm lineages, and the immense interest in using large angiosperm phylogenies to investigate questions in ecology and comparative biology, new estimates of the ages of the major clades are badly needed. Improved estimations of divergence times will concomitantly improve our understanding of both the evolutionary history of the angiosperms and the patterns and processes that have led to this highly diverse clade. • METHODS We simultaneously estimated the age of the angiosperms and the divergence times of key angiosperm lineages, using 36 calibration points for 567 taxa and a "relaxed clock" methodology that does not assume any correlation between rates, thus allowing for lineage-specific rate heterogeneity. • KEY RESULTS Based on the analysis for which we set fossils to fit lognormal priors, we obtained an estimated age of the angiosperms of 167-199 Ma and the following age estimates for major angiosperm clades: Mesangiospermae (139-156 Ma); Gunneridae (109-139 Ma); Rosidae (108-121 Ma); Asteridae (101-119 Ma). • CONCLUSIONS With the exception of the age of the angiosperms themselves, these age estimates are generally younger than other recent molecular estimates and very close to dates inferred from the fossil record. We also provide dates for all major angiosperm clades (including 45 orders and 335 families [208 stem group age only, 127 both stem and crown group ages], sensu APG III). Our analyses provide a new comprehensive source of reference dates for major angiosperm clades that we hope will be of broad utility.
Collapse
Affiliation(s)
- Charles D Bell
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 USA
| | | | | |
Collapse
|
29
|
Jung S, Cho I, Sosinski B, Abbott A, Main D. Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny. BMC Res Notes 2010; 3:168. [PMID: 20565715 PMCID: PMC2893199 DOI: 10.1186/1756-0500-3-168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragaria belongs to the Rosaceae, an economically important family that includes a number of important fruit producing genera such as Malus and Prunus. Using genomic sequences from 50 Fragaria fosmids, we have examined the microsynteny between Fragaria and other plant models. RESULTS In more than half of the strawberry fosmids, we found syntenic regions that are conserved in Populus, Vitis, Medicago and/or Arabidopsis with Populus containing the greatest number of syntenic regions with Fragaria. The longest syntenic region was between LG VIII of the poplar genome and the strawberry fosmid 72E18, where seven out of twelve predicted genes were collinear. We also observed an unexpectedly high level of conserved synteny between Fragaria (rosid I) and Vitis (basal rosid). One of the strawberry fosmids, 34E24, contained a cluster of R gene analogs (RGAs) with NBS and LRR domains. We detected clusters of RGAs with high sequence similarity to those in 34E24 in all the genomes compared. In the phylogenetic tree we have generated, all the NBS-LRR genes grouped together with Arabidopsis CNL-A type NBS-LRR genes. The Fragaria RGA grouped together with those of Vitis and Populus in the phylogenetic tree. CONCLUSIONS Our analysis shows considerable microsynteny between Fragaria and other plant genomes such as Populus, Medicago, Vitis, and Arabidopsis to a lesser degree. We also detected a cluster of NBS-LRR type genes that are conserved in all the genomes compared.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
30
|
Schönenberger J, von Balthazar M, Sytsma KJ. Diversity and evolution of floral structure among early diverging lineages in the Ericales. Philos Trans R Soc Lond B Biol Sci 2010; 365:437-48. [PMID: 20047870 PMCID: PMC2838269 DOI: 10.1098/rstb.2009.0247] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This is a combination of review and original data on floral structure and diversity in the two earliest diverging lineages of the Ericales, i.e. the balsaminoids, comprising Balsaminaceae, Marcgraviaceae and Tetrameristaceae, and the polemonioids, comprising Fouquieriaceae and Polemoniaceae. Each clade is strongly supported in molecular studies, while structural synapomorphies have largely been lacking. For the balsaminoid families, we compare floral morphology, anatomy and histology among selected taxa and find that the entire clade is strongly supported by the shared presence of nectariferous tissue in the floral periphery, thread-like structures on anthers, truncate stigmas, secretion in the ovary, as well as mucilage cells, raphides and tannins in floral tissues. A possible sister group relationship between Balsaminaceae and Tetrameristaceae is supported by the shared presence of post-genital fusion of filaments and ovary and a star-shaped stylar canal. For polemonioids, we document unexpected diversity of floral features in Polemoniaceae, partly providing structural links to Fouquieriaceae. Features include cochlear and quincuncial corolla aestivation, connective protrusions, ventrifixed anthers and nectariferous tissue in the base of the ovary. In addition, we outline future directions for research on floral structure in the Ericales and briefly discuss the general importance of structural studies for our understanding of plant phylogeny and evolution.
Collapse
Affiliation(s)
- Jürg Schönenberger
- Department of Botany, Stockholm University, Lilla Frescativägen 5, 10691 Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Ferrándiz C, Fourquin C, Prunet N, Scutt CP, Sundberg E, Trehin C, Vialette-Guiraud AC. Carpel Development. ADVANCES IN BOTANICAL RESEARCH 2010. [PMID: 0 DOI: 10.1016/b978-0-12-380868-4.00001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
32
|
Snir S, Tuller T. The NET-HMM approach: phylogenetic network inference by combining maximum likelihood and Hidden Markov Models. J Bioinform Comput Biol 2009; 7:625-44. [PMID: 19634195 DOI: 10.1142/s021972000900428x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 12/05/2008] [Accepted: 12/06/2008] [Indexed: 11/18/2022]
Abstract
Horizontal gene transfer (HGT) is the event of transferring genetic material from one lineage in the evolutionary tree to a different lineage. HGT plays a major role in bacterial genome diversification and is a significant mechanism by which bacteria develop resistance to antibiotics. Although the prevailing assumption is of complete HGT, cases of partial HGT (which are also named chimeric HGT) where only part of a gene is horizontally transferred, have also been reported, albeit less frequently. In this work we suggest a new probabilistic model, the NET-HMM, for analyzing and modeling phylogenetic networks. This new model captures the biologically realistic assumption that neighboring sites of DNA or amino acid sequences are not independent, which increases the accuracy of the inference. The model describes the phylogenetic network as a Hidden Markov Model (HMM), where each hidden state is related to one of the network's trees. One of the advantages of the NET-HMM is its ability to infer partial HGT as well as complete HGT. We describe the properties of the NET-HMM, devise efficient algorithms for solving a set of problems related to it, and implement them in software. We also provide a novel complementary significance test for evaluating the fitness of a model (NET-HMM) to a given dataset. Using NET-HMM, we are able to answer interesting biological questions, such as inferring the length of partial HGT's and the affected nucleotides in the genomic sequences, as well as inferring the exact location of HGT events along the tree branches. These advantages are demonstrated through the analysis of synthetical inputs and three different biological inputs.
Collapse
Affiliation(s)
- Sagi Snir
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel.
| | | |
Collapse
|
33
|
Jin G, Nakhleh L, Snir S, Tuller T. Parsimony score of phylogenetic networks: hardness results and a linear-time heuristic. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2009; 6:495-505. [PMID: 19644176 DOI: 10.1109/tcbb.2008.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phylogenies-the evolutionary histories of groups of organisms-play a major role in representing the interrelationships among biological entities. Many methods for reconstructing and studying such phylogenies have been proposed, almost all of which assume that the underlying history of a given set of species can be represented by a binary tree. Although many biological processes can be effectively modeled and summarized in this fashion, others cannot: recombination, hybrid speciation, and horizontal gene transfer result in networks of relationships rather than trees of relationships. In previous works, we formulated a maximum parsimony (MP) criterion for reconstructing and evaluating phylogenetic networks, and demonstrated its quality on biological as well as synthetic data sets. In this paper, we provide further theoretical results as well as a very fast heuristic algorithm for the MP criterion of phylogenetic networks. In particular, we provide a novel combinatorial definition of phylogenetic networks in terms of "forbidden cycles," and provide detailed hardness and hardness of approximation proofs for the "small" MP problem. We demonstrate the performance of our heuristic in terms of time and accuracy on both biological and synthetic data sets. Finally, we explain the difference between our model and a similar one formulated by Nguyen et al., and describe the implications of this difference on the hardness and approximation results.
Collapse
Affiliation(s)
- Guohua Jin
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| | | | | | | |
Collapse
|
34
|
Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG. PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. PLANTA 2009; 229:847-59. [PMID: 19125288 DOI: 10.1007/s00425-008-0885-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 12/19/2008] [Indexed: 05/03/2023]
Abstract
In many plant species, exposure to a prolonged period of low temperature during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis, the vernalization requirement of winter annual ecotypes is caused by a MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering gene. Here, a MADS-box gene was isolated from an early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata L. Raf) by the RACE method combined with a cDNA library. Phylogenetic analysis reveals that the MADS-box gene is more closely related to the homologs of the FLOWERING LOCUS C lineage than to any of the other MIKC-type MADS-box lineages known from Arabidopsis. The expression profile of the MADS-box gene by real-time PCR showed upregulation of PtFLC during the winter, followed by a decrease in the spring and summer. This kind of cycling is contrary to the pattern observed in Arabidopsis. In situ hybridization reveals that the MADS-box gene is predominately expressed in the vegetative and reproductive meristems. In addition, five alternatively spliced transcripts of the MADS-box gene were also isolated at juvenile and adult mutant developmental stages. Expression analysis of these transcripts at different developmental stages indicated involvement of alternative splicing during phase change. The information suggests a complicated regulation mechanism in seasonal response and flower formation in perennial woody plants.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China.
| | | | | | | | | |
Collapse
|
35
|
Abstract
The rosid clade (70,000 species) contains more than one-fourth of all angiosperm species and includes most lineages of extant temperate and tropical forest trees. Despite progress in elucidating relationships within the angiosperms, rosids remain the largest poorly resolved major clade; deep relationships within the rosids are particularly enigmatic. Based on parsimony and maximum likelihood (ML) analyses of separate and combined 12-gene (10 plastid genes, 2 nuclear; >18,000 bp) and plastid inverted repeat (IR; 24 genes and intervening spacers; >25,000 bp) datasets for >100 rosid species, we provide a greatly improved understanding of rosid phylogeny. Vitaceae are sister to all other rosids, which in turn form 2 large clades, each with a ML bootstrap value of 100%: (i) eurosids I (Fabidae) include the nitrogen-fixing clade, Celastrales, Huaceae, Zygophyllales, Malpighiales, and Oxalidales; and (ii) eurosids II (Malvidae) include Tapisciaceae, Brassicales, Malvales, Sapindales, Geraniales, Myrtales, Crossosomatales, and Picramniaceae. The rosid clade diversified rapidly into these major lineages, possibly over a period of <15 million years, and perhaps in as little as 4 to 5 million years. The timing of the inferred rapid radiation of rosids [108 to 91 million years ago (Mya) and 107-83 Mya for Fabidae and Malvidae, respectively] corresponds with the rapid rise of angiosperm-dominated forests and the concomitant diversification of other clades that inhabit these forests, including amphibians, ants, placental mammals, and ferns.
Collapse
|
36
|
Soltis DE, Bell CD, Kim S, Soltis PS. Origin and Early Evolution of Angiosperms. Ann N Y Acad Sci 2008; 1133:3-25. [DOI: 10.1196/annals.1438.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Birin H, Gal-Or Z, Elias I, Tuller T. Inferring horizontal transfers in the presence of rearrangements by the minimum evolution criterion†. Bioinformatics 2008; 24:826-32. [DOI: 10.1093/bioinformatics/btn024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evol Biol 2007; 7:217. [PMID: 17996110 PMCID: PMC2222252 DOI: 10.1186/1471-2148-7-217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/10/2007] [Indexed: 12/03/2022] Open
Abstract
Background Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including matR, two plastid genes (rbcL, atpB), and one nuclear gene (18S rDNA). Results Comparison of mitochondrial matR and two plastid genes (rbcL and atpB) showed that the synonymous substitution rate in matR was approximately four times slower than those of rbcL and atpB; however, the nonsynonymous substitution rate in matR was relatively high, close to its synonymous substitution rate, indicating that the matR has experienced a relaxed evolutionary history. Analyses of our matR sequences supported the monophyly of malvids and most orders of the rosids. However, fabids did not form a clade; instead, the COM clade of fabids (Celastrales, Oxalidales, Malpighiales, and Huaceae) was sister to malvids. Analyses of the four-gene data set suggested that Geraniales and Myrtales were successively sister to other rosids, and that Crossosomatales were sister to malvids. Conclusion Compared to plastid genes such as rbcL and atpB, slowly evolving matR produced less homoplasious but not less informative substitutions. Thus, matR appears useful in higher-level angiosperm phylogenetics. Analysis of matR alone identified a novel deep relationship within rosids, the grouping of the COM clade of fabids and malvids, which was not resolved by any previous molecular analyses but recently suggested by floral structural features. Our four-gene analysis supported the placements of Geraniales, Myrtales at basal nodes of the rosid clade and placed Crossosomatales as sister to malvids. We also suggest that the core part of rosids should include fabids, malvids and Crossosomatales.
Collapse
|
39
|
Yang X, Lu SG, Peng H. First report of chromosome numbers of the Carlemanniaceae (Lamiales). JOURNAL OF PLANT RESEARCH 2007; 120:707-12. [PMID: 17805478 DOI: 10.1007/s10265-007-0113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 07/14/2007] [Indexed: 05/17/2023]
Abstract
The Carlemanniaceae comprises two small genera that are restricted to East Asia: the Carlemannia and Silvianthus. These genera were previously placed in the Rubiaceae or Caprifoliaceae, but are now considered a distinct family that is probably related to the Oleaceae in the Lamiales. The family is still poorly understood with respect to its morphological characteristics. Here, we present the first report of the chromosome numbers of the family using species from both genera, i.e., Carlemannia tetragona, Silvianthus bracteatus ssp. bracteatus, and S. bracteatus ssp. clerodendroides. The species were compared with the chromosome numbers of Oleaceae and associated families using a Bayesian tree that was generated from rbcL and ndhF sequence data from Genbank. C. tetragona had 2n = 30 (x = 15), whereas the two subspecies of Silvianthus had 2n = 38 (x = 19). Comparisons of chromosome numbers support the distinctness of the Carlemanniaceae, not only from the Oleaceae (x = 11, 13, 23), but also from the Tetrachondraceae (x = 10, 11), a family that is possibly related to the Carlemanniaceae and/or Oleaceae in the Lamiales. The notable difference in chromosome number between Carlemannia and Silvianthus, as well as the differences in other characteristics (pollen, seed, and fruit morphology), suggests that the family split early in its evolution.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Ecology and Geobotany, Yunnan University, Kunming, 650091, China.
| | | | | |
Collapse
|
40
|
Chen I, Manchester SR. Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. AMERICAN JOURNAL OF BOTANY 2007; 94:1534-1553. [PMID: 21636520 DOI: 10.3732/ajb.94.9.1534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Seeds are useful in distinguishing among extant genera of Vitaceae and provide a good basis for interpretation of fossil remains in reconstructing the evolutionary and phytogeographic history of this putatively basal Rosid family. Seeds of Ampelocissus s.l. including Pterisanthes and Nothocissus are distinguished from those of all other vitaceous genera by long, parallel ventral infolds and a centrally positioned oval chalazal scar. Principal component analysis facilitates recognition of four Ampelocissus s.l. seed morphotypes differentiated by dorsiventral thickness, width of ventral infolds, chalazal depth, and degree of dorsal surface rugosity. While these intergrade, their end-member morphologies are distinctive and coincide well with inflorescence morphology, extant geographic distribution, and ecology. Seven fossil morphospecies are recognized. Ampelocissus parvisemina sp. n. (Paleocene of North Dakota; Eocene of Oregon) and A. auriforma Manchester (Eocene of Oregon) resemble extant Central American species; A. bravoi Berry (Eocene of Peru) is similar to one group of Old World extant species; and A. parachandleri sp. n. (Eocene of Oregon) and the three European fossil species A. chandleri (Kirchheimer) comb. n., A. lobatum (Chandler) comb. n., and A. wildei sp. n. (Eocene to Miocene) resemble another group of extant Old World Ampelocissus. All these fossils occur outside the present geographic range of the genus, reflecting warmer climates and former intercontinental links.
Collapse
Affiliation(s)
- Iju Chen
- Florida Museum of Natural History and Department of Botany, University of Florida, Gainesville, Florida 32611-7800 USA
| | | |
Collapse
|
41
|
Deleu W, González V, Monfort A, Bendahmane A, Puigdomènech P, Arús P, Garcia-Mas J. Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 2007; 278:611-22. [PMID: 17665215 DOI: 10.1007/s00438-007-0277-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 07/04/2007] [Accepted: 07/06/2007] [Indexed: 01/23/2023]
Abstract
In this study, two melon bacterial artificial chromosome (BAC) clones have been sequenced and annotated. BAC 1-21-10 spans 92 kb and contains the nsv locus conferring resistance to the Melon Necrotic Spot Virus (MNSV) in melon linkage group 11. BAC 13J4 spans 98 kb and belongs to a BAC contig containing resistance gene homologues, extending a previous sequenced region of 117 kb in linkage group 4. Both regions have microsyntenic relationships to the model plant species Arabidopsis thaliana, and to Medicago truncatula and Populus trichocarpa. The network of synteny found between melon and each of the sequenced genomes reflects the polyploid structure of Arabidopsis, Populus, and Medicago genomes due to whole genome duplications (WGD). A detailed analysis revealed that both melon regions have a lower relative syntenic quality with Arabidopsis (eurosid II) than when compared to Populus and Medicago (eurosid I). Although phylogenetically Cucurbitales seem to be closer to Fabales than to Malphigiales, synteny was higher between both melon regions and Populus. Presented data imply that the recently completed Populus genome sequence could preferentially be used to obtain positional information in melon, based on microsynteny.
Collapse
Affiliation(s)
- Wim Deleu
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km2, 08348 Cabrils, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Lens F, Schönenberger J, Baas P, Jansen S, Smets E. The role of wood anatomy in phylogeny reconstruction of Ericales. Cladistics 2007; 23:229-294. [DOI: 10.1111/j.1096-0031.2006.00142.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 2006; 176:295-307. [PMID: 17179080 PMCID: PMC1893026 DOI: 10.1534/genetics.106.069336] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In many plant species, exposure to a prolonged period of cold during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis thaliana, the vernalization requirement of winter-annual ecotypes is caused by the MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering. During the vernalization process, FLC is downregulated by alteration of its chromatin structure, thereby permitting flowering to occur. In wheat, a vernalization requirement is imposed by a different repressor of flowering, suggesting that some components of the regulatory network controlling the vernalization response differ between monocots and dicots. The extent to which the molecular mechanisms underlying vernalization have been conserved during the diversification of the angiosperms is not well understood. Using phylogenetic analysis, we identified homologs of FLC in species representing the three major eudicot lineages. FLC homologs have not previously been documented outside the plant family Brassicaceae. We show that the sugar beet FLC homolog BvFL1 functions as a repressor of flowering in transgenic Arabidopsis and is downregulated in response to cold in sugar beet. Cold-induced downregulation of an FLC-like floral repressor may be a central feature of the vernalization response in at least half of eudicot species.
Collapse
Affiliation(s)
- Patrick A Reeves
- United States Department of Agriculture, Agricultural Research Service, National Center for Genetic Resources Preservation, Fort Collins, Colorado 80521, USA
| | | | | | | | | | | |
Collapse
|
44
|
Synek L, Schlager N, Eliáš M, Quentin M, Hauser MT, Žárský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:54-72. [PMID: 16942608 PMCID: PMC2865999 DOI: 10.1111/j.1365-313x.2006.02854.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The exocyst is a hetero-oligomeric protein complex involved in exocytosis and has been extensively studied in yeast and animal cells. Evidence is now accumulating that the exocyst is also present in plants. Bioinformatic analysis of genes encoding plant homologs of the exocyst subunit, Exo70, revealed that three Exo70 subgroups are evolutionarily conserved among angiosperms, lycophytes and mosses. Arabidopsis and rice contain 22 and approximately 39 EXO70 genes, respectively, which can be classified into nine clusters considered to be ancient in angiosperms (one has been lost in Arabidopsis). We characterized two independent T-DNA insertional mutants of the AtEXO70A1 gene (exo70A1-1 and exo70A1-2). Heterozygous EXO70A1/exo70A1 plants appear to be normal and segregate in a 1:2:1 ratio, suggesting that neither male nor female gametophytes are affected by the EXO70A1 disruption. However, both exo70A1-1 and exo70A1-2 homozygotes exhibit an array of phenotypic defects. The polar growth of root hairs and stigmatic papillae is disturbed. Organs are generally smaller, plants show a loss of apical dominance and indeterminate growth where instead of floral meristems new lateral inflorescences are initiated in a reiterative manner. Both exo70A1 mutants have dramatically reduced fertility. These results suggest that the putative exocyst subunit EXO70A1 is involved in cell and organ morphogenesis.
Collapse
Affiliation(s)
- Lukáš Synek
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 00 Prague 6, Czech Republic
| | - Nicole Schlager
- Institute of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Marek Eliáš
- Department of Plant Physiology, Faculty of Sciences, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Michaël Quentin
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 00 Prague 6, Czech Republic
| | - Marie-Theres Hauser
- Institute of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 135, 165 00 Prague 6, Czech Republic
- Department of Plant Physiology, Faculty of Sciences, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic
- For correspondence (fax +420 225 106 461; phone +420 225 106 457; )
| |
Collapse
|
45
|
Kölsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:680-7. [PMID: 16883484 DOI: 10.1055/s-2006-924286] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CYCLOIDEA-like genes belong to the TCP family of transcriptional regulators and have been shown to control different aspects of shoot development in various angiosperm lineages, including flower monosymmetry in asterids and axillary meristem growth in monocots. Genes related to the CYC gene from ANTIRRHINUM show independent duplications in both asterids and rosids. However, it remains unclear to what extent this affected the evolution of flower symmetry and shoot branching in these and other eudicot lineages. Here, we show that CYC-like genes have also undergone duplications in two related Ranunculales families, Fumariaceae and Papaveraceae s.str. These families exhibit morphological diversity in flower symmetry and inflorescence architecture that is potentially related to functions of CYC-like genes. We present sequences of 14 CYC-related genes covering 9 genera. Phylogenetic analyses indicate the presence of three clades of CYC-like genes. Shared motifs in the region between the TCP and R domains of CYC-like genes between Fumariaceae, Papaveraceae s.str., and AQUILEGIA (Ranunculaceae) indicate that the observed duplications originated from a single CYC gene present in all Ranunculales. RT-PCR expression data suggest that gene duplication and diversification in Fumariaceae and Papaveraceae s.str. was accompanied by divergence in expression patterns.
Collapse
Affiliation(s)
- A Kölsch
- Institut für Spezielle Botanik, Johannes-Gutenberg-Universität, Bentzelweg 9 a, 55099 Mainz, Germany
| | | |
Collapse
|
46
|
Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, Donze TJ, Vivian LA, Stamova B, Coleman-Derr D. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:186-95. [PMID: 16791686 DOI: 10.1007/s00122-006-0285-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 03/31/2006] [Indexed: 05/10/2023]
Abstract
Brachypodium distachyon (Brachypodium) is a temperate grass with the physical and genomic attributes necessary for a model system (small size, rapid generation time, self-fertile, small genome size, diploidy in some accessions). To increase the utility of Brachypodium as a model grass, we sequenced 20,440 expressed sequence tags (ESTs) from five cDNA libraries made from leaves, stems plus leaf sheaths, roots, callus and developing seed heads. The ESTs had an average trimmed length of 650 bp. Blast nucleotide alignments against SwissProt and GenBank non-redundant databases were performed and a total of 99.9% of the ESTs were found to have some similarity to existing protein or nucleotide sequences. Tentative functional classification of 77% of the sequences was possible by association with gene ontology or clusters of orthologous group's index descriptors. To demonstrate the utility of this EST collection for studying cell wall composition, we identified homologs for the genes involved in the biosynthesis of lignin subunits. A subset of the ESTs was used for phylogenetic analysis that reinforced the close relationship of Brachypodium to wheat and barley.
Collapse
Affiliation(s)
- John P Vogel
- USDA Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rebourg C, . FP, . EC, . EF. Patterns of Speciation and Adaptive Radiation in Parnassius Butterflies. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/je.2006.204.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Nickrent DL, Der JP, Anderson FE. Discovery of the photosynthetic relatives of the "Maltese mushroom" Cynomorium. BMC Evol Biol 2005; 5:38. [PMID: 15969755 PMCID: PMC1182362 DOI: 10.1186/1471-2148-5-38] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/21/2005] [Indexed: 11/27/2022] Open
Abstract
Background Although recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae. The nonphotosynthetic (holoparasitic) flowering plant Cynomorium coccineum has long been known to the Muslim world as "tarthuth" and to Europeans as the "Maltese mushroom"; C. songaricum is known in Chinese medicine as "suo yang." Interest in these plants is increasing and they are being extensively collected from wild populations for use in herbal medicines. Results Here we report molecular phylogenetic analyses of nuclear ribosomal DNA and mitochondrial matR sequence data that strongly support the independent origin of Balanophoraceae and Cynomoriaceae. Analyses of single gene and combined gene data sets place Cynomorium in Saxifragales, possibly near Crassulaceae (stonecrop family). Balanophoraceae appear related to Santalales (sandalwood order), a position previously suggested from morphological characters that are often assumed to be convergent. Conclusion Our work shows that Cynomorium and Balanophoraceae are not closely related as indicated in all past and present classifications. Thus, morphological features, such as inflorescences bearing numerous highly reduced flowers, are convergent and were attained independently by these two holoparasite lineages. Given the widespread harvest of wild Cynomorium species for herbal medicines, we here raise conservation concerns and suggest that further molecular phylogenetic work is needed to identify its photosynthetic relatives. These relatives, which will be easier to cultivate, should then be examined for phytochemical activity purported to be present in the more sensitive Cynomorium.
Collapse
Affiliation(s)
- Daniel L Nickrent
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6509, USA
| | - Joshua P Der
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6509, USA
| | - Frank E Anderson
- Department of Zoology, Southern Illinois University, Carbondale, IL 62901-6501, USA
| |
Collapse
|
49
|
Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, depamphilis CW. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Mol Biol Evol 2005; 22:1948-63. [PMID: 15944438 DOI: 10.1093/molbev/msi191] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea, and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca, and Typha), a water lily (Nuphar), a ranunculid (Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein data sets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiosperm phylogeny. However, their relative positions proved to be dependent on the method of analysis, with parsimony favoring Amborella as sister to all other angiosperms and maximum likelihood (ML) and neighbor-joining methods favoring an Amborella + Nymphaeales clade as sister. The ML phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single-gene phylogenies, estimated divergence dates, and conflicting indel characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiosperm phylogeny. Molecular dating analyses provided median age estimates of 161 MYA for the most recent common ancestor (MRCA) of all extant angiosperms and 145 MYA for the MRCA of monocots, magnoliids, and eudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction might mislead genome-scale phylogenetic analyses.
Collapse
Affiliation(s)
- Jim Leebens-Mack
- Department of Biology, Institute of Molecular Evolutionary Genetics, and The Huck Institutes of Life Sciences, The Pennsylvania State University, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|