1
|
De Luca D, Del Guacchio E, Cennamo P, Minutillo F, Bernardo L, Caputo P. Genetics and Distribution of the Italian Endemic Campanula fragilis Cirillo (Campanulaceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:3169. [PMID: 39599378 PMCID: PMC11598242 DOI: 10.3390/plants13223169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Campanula fragilis Cirillo is a species distributed in central and southern Italy and includes two subspecies with uncertain taxonomic position and distribution. By means of nuclear and chloroplast markers, we attempted at testing the genetic distinctness of the two subspecies, as well as their possible correspondence with geographical or ecological patterns. After a revision of geographic occurrences based on herbarium data, we carried out species distribution modeling to assess the present and future distribution of this species under different ecological variables, also for conservation purposes. Our findings support the recognition of two weakly differentiated taxa, here accepted at subspecific rank, in agreement with the current taxonomic treatment. We found that C. fragilis subsp. cavolinii is monophyletic and limited to mountains and hills of central Italy. On the contrary, C. fragilis subsp. fragilis shows a higher genetic variability and a broader distribution in central and southern Italy, with a wider altitudinal range from coasts to mountain cliffs. We confirmed that both subspecies are narrowly calcicolous and have similar ecological requirements, but C. fragilis subsp. cavolinii occurs in colder habitats. Our results forecast a significant distribution contraction in the long term.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Biology, University of Naples Federico II, 80139 Naples, Italy or (D.D.L.); (P.C.)
- Department of Humanities, University of Naples Suor Orsola Benincasa, 80132 Naples, Italy;
| | - Emanuele Del Guacchio
- Department of Biology, University of Naples Federico II, 80139 Naples, Italy or (D.D.L.); (P.C.)
- Botanical Garden of Naples, University of Naples Federico II, 80139 Naples, Italy
| | - Paola Cennamo
- Department of Humanities, University of Naples Suor Orsola Benincasa, 80132 Naples, Italy;
| | | | - Liliana Bernardo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Paolo Caputo
- Department of Biology, University of Naples Federico II, 80139 Naples, Italy or (D.D.L.); (P.C.)
- Botanical Garden of Naples, University of Naples Federico II, 80139 Naples, Italy
| |
Collapse
|
2
|
De Castro O, Bacchetta G, Brullo S, Del Guacchio E, Di Iorio E, Piazza C, Caputo P. Variability and Nativeness in the Mediterranean Taxa: Divergence and Phylogeography of Genista etnensis (Fabaceae) Inferred from Nuclear and Plastid Data. PLANTS (BASEL, SWITZERLAND) 2022; 11:3171. [PMID: 36432900 PMCID: PMC9698455 DOI: 10.3390/plants11223171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Genista etnensis is a remarkable and well-known tree endemic to Sicily, Sardinia, and Corsica (Mediterranean Basin). Nevertheless, its morphological variability and its native status throughout its range need to be further investigated. In this study, we aim to clarify some aspects of this infraspecific variability by molecular means. Sequences of one nuclear and five plastid markers were analyzed under maximum parsimony by using TCS software. Plastid data were also time-calibrated under a Bayesian Inference framework. Plastid data revealed strong isolation between the populations from the Cyrno-Sardinian biogeographical province, which are also the most diverse and presumably the most archaic, and those from Sicily and Southern Italy (in this latter area, the species is naturalized). The calibration analysis indicates that the last common ancestor between G. etnensis and its sister group G. fasselata dates back to the middle Pliocene or slightly later, when sclerophyllous Mediterranean vegetation spread, whereas G. etnensis itself might have originated in the middle Pleistocene. The current, rather unusual distribution of G. etnensis could be explained by long-range seed dispersal from the western part of the range or by anthropogenic introduction into Sicily, with extinctions of transported haplotypes in the region of origin. Interestingly, the Vesuvius population, introduced from Sicily in recent times and locally naturalized, shows private genotypes, and was richer in both genotypes and haplotypes than the Sicilian ones.
Collapse
Affiliation(s)
- Olga De Castro
- Department of Biology, University of Naples Federico II, Botanical Garden, Via Foria 223, 80139 Naples, Italy
| | - Gianluigi Bacchetta
- Department of Life and Environmental Science, Conservation and Biodiversity Center (CCB), University of Cagliari, V.le Sant’ Ignazio da Laconi, 11-13, 09123 Cagliari, Italy
| | - Salvatore Brullo
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125 Catania, Italy
| | - Emanuele Del Guacchio
- Department of Biology, University of Naples Federico II, Botanical Garden, Via Foria 223, 80139 Naples, Italy
| | - Emanuela Di Iorio
- Department of Biology, University of Naples Federico II, Botanical Garden, Via Foria 223, 80139 Naples, Italy
| | - Carole Piazza
- National Botanical Conservatory of Corsica, Office of the Environment of Corsica, Avenue Jean Nicoli, 14, 20250 Corte, France
| | - Paolo Caputo
- Department of Biology, University of Naples Federico II, Botanical Garden, Via Foria 223, 80139 Naples, Italy
| |
Collapse
|
3
|
Iamonico D, De Castro O, Di Iorio E, Nicolella G, Iberite M. Taxonomy Complexity of Some Tyrrhenian Endemic Limonium Species Belonging to L. multiforme Group (Plumbaginaceae): New Insights from Molecular and Morphometric Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3163. [PMID: 36432891 PMCID: PMC9693374 DOI: 10.3390/plants11223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The delimitation of Limonium taxa is highly complicated due to hybridization, polyploidy, and apomixis. Many "microspecies" were described and aggregated into groups, most of which are still poorly known from both molecular and morphological points of view. The aim of this study is to investigate four endemic species from the Tyrrhenian coast of central Italy and the Ponziane Archipelago belonging to the L. multiforme group (L. amynclaeum, L. circaei, L. pandatariae, and L. pontium) by means of molecular and morphometric analyses. Molecular data by sequencing ITS and three plastid markers and morphometric data highlight new information about the taxonomy of these taxa so as to reduce them into a single specific entity. In fact, the better taxonomic choice is to consider the populations studied as part of a single species, i.e., Limonium pontium. Three subspecies are recognized, i.e., subsp. pontium [= L. circaei = L. amynclaeum; from Circeo to Gianola localities (excluding Terracina) and from islands Ponza, Palmarola, Zannone, and Santo Stefano], subsp. pandatariae comb. et stat. nov. (from island of Ventotene), and subsp. terracinense subsp. nov. (from Terracina).
Collapse
Affiliation(s)
- Duilio Iamonico
- Department of Environmental Biology, University of Rome Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Olga De Castro
- Department of Biology, University of Naples Federico II, Botanical Garden, via Foria 223, 80139 Naples, Italy
- DNATech Srl, Spin-Off Company of the University of Naples Federico II, Botanical Garden, via Foria 223, 80139 Naples, Italy
| | - Emanuela Di Iorio
- Department of Biology, University of Naples Federico II, Botanical Garden, via Foria 223, 80139 Naples, Italy
| | - Gianluca Nicolella
- Department of Environmental Biology, University of Rome Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Mauro Iberite
- Department of Environmental Biology, University of Rome Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Molecular Characterization of Wild and Cultivated Strawberry (Fragaria × ananassa) through DNA Barcode Markers. Genet Res (Camb) 2022; 2022:9249561. [PMID: 36299683 PMCID: PMC9578897 DOI: 10.1155/2022/9249561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background DNA barcoding is a useful technique for the identification, conservation, and diversity estimation at the species level in plants. The current research work was carried out to characterize selected Fragaria species from northern Pakistan using DNA barcode markers. Methodology. Initially, the efficacy of eight DNA barcode markers was analyzed based on the amplification and sequencing of the genome of selected Fragaria species. The resultant sequences were analyzed using BLAST, MEGA 7.0, and Bio Edit software. The phylogenetic tree was constructed by using Fragaria current species sequences and reference sequences through the neighbor-joining method or maximum likelihood method. Results Among eight DNA barcode markers, only two (ITS2 and rbclC) were amplified, and sequences were obtained. ITS2 sequence was BLAST in NCBI for related reference species which ranged from 89.79% to 90.05% along with Fragaria vesca (AF163517.1) which have 99.05% identity. Similarly, the rbclC sequence of Fragaria species was ranged from 96% to 99.58% along with Fragaria × ananassa (KY358226.1) which had 99.58% identity. Conclusion It is recommended that DNA barcode markers are a useful tool to identify the genetic diversity of a species. Moreover, this study could be helpful for the identification of the Fragaria species cultivated in other regions of the world.
Collapse
|
5
|
Ashokan A, Xavier A, Suksathan P, Ardiyani M, Leong-Škorničková J, Newman M, Kress WJ, Gowda V. Himalayan orogeny and monsoon intensification explain species diversification in an endemic ginger (Hedychium: Zingiberaceae) from the Indo-Malayan Realm. Mol Phylogenet Evol 2022; 170:107440. [PMID: 35192919 DOI: 10.1016/j.ympev.2022.107440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
The Indo-Malayan Realm is a biogeographic realm that extends from the Indian Subcontinent to the islands of Southeast Asia (Malay Archipelago). Despite being megadiverse, evolutionary hypotheses explaining taxonomic diversity in this region have been rare. Here, we investigate the role of geoclimatic events such as Himalayan orogeny and monsoon intensification in the diversification of the ginger-lilies (Hedychium J.Koenig: Zingiberaceae). We first built a comprehensive, time-calibrated phylogeny of Hedychium with 75% taxonomic and geographic sampling. We found that Hedychium is a very young lineage that originated in Northern Indo-Burma, in the Late Miocene (c. 10.6 Ma). This was followed by a late Neogene and early Quaternary diversification, with multiple dispersal events to Southern Indo-Burma, Himalayas, Peninsular India, and the Malay Archipelago. The most speciose clade IV i.e., the predominantly Indo-Burmese clade also showed a higher diversification rate, suggesting its recent rapid radiation. Our divergence dating and GeoHiSSE results demonstrate that the diversification of Hedychium was shaped by both the intensifications in the Himalayan uplift as well as the Asian monsoon. Ancestral character-state reconstructions identified the occurrence of vegetative dormancy in both clades I and II, whereas the strictly epiphytic growth behavior, island dwarfism, lack of dormancy, and a distinct environmental niche were observed only in the predominantly island clade i.e., clade III. Finally, we show that the occurrence of epiphytism in clade III corresponds with submergence due to sea-level changes, suggesting it to be an adaptive trait. Our study highlights the role of recent geoclimatic events and environmental factors in the diversification of plants within the Indo-Malayan Realm and the need for collaborative work to understand biogeographic patterns within this understudied region. This study opens new perspectives for future biogeographic studies in this region and provides a framework to explain the taxonomic hyperdiversity of the Indo-Malayan Realm.
Collapse
Affiliation(s)
- Ajith Ashokan
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| | - Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Piyakaset Suksathan
- Herbarium (QBG), Queen Sirikit Botanic Garden, P.O. Box 7, Mae Rim, Chiang Mai 50180, Thailand
| | - Marlina Ardiyani
- Herbarium Bogoriense, Research Center for Biology, Indonesian Institute of Sciences/Lembaga Ilmu Pengetahuan Indonesia (LIPI), Cibinong Science Center, Jl Raya Bogor Km. 46, Cibinong 16912, Indonesia
| | - Jana Leong-Škorničková
- Research & Conservation Branch, Singapore Botanic Gardens, 1 Cluny Road, 259569, Singapore
| | - Mark Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC 20013-7012, United States
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
6
|
De Giorgi P, Giacò A, Astuti G, Minuto L, Varaldo L, De Luca D, De Rosa A, Bacchetta G, Sarigu M, Peruzzi L. An Integrated Taxonomic Approach Points towards a Single-Species Hypothesis for Santolina (Asteraceae) in Corsica and Sardinia. BIOLOGY 2022; 11:356. [PMID: 35336730 PMCID: PMC8945001 DOI: 10.3390/biology11030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022]
Abstract
Santolina is a plant genus of dwarf aromatic shrubs that includes about 26 species native to the western Mediterranean Basin. In Corsica and Sardinia, two of the main islands of the Mediterranean, Santolina corsica (tetraploid) and S. insularis (hexaploid) are reported. Along with the cultivated pentaploid S. chamaecyparissus, these species form a group of taxa that is hard to distinguish only by morphology. Molecular (using ITS, trnH-psbA, trnL-trnF, trnQ-rps16, rps15-ycf1, psbM-trnD, and trnS-trnG), cypsela morpho-colorimetric, morphometric, and niche similarity analyses were conducted to investigate the diversity of plants belonging to this species group. Our results confute the current taxonomic hypothesis and suggest considering S. corsica and S. insularis as a single species. Moreover, molecular and morphometric results highlight the strong affinity between S. chamaecyparissus and the Santolina populations endemic to Corsica and Sardinia. Finally, the populations from south-western Sardinia, due to their high differentiation in the studied plastid markers and the different climatic niche with respect to all the other populations, could be considered as an evolutionary significant unit.
Collapse
Affiliation(s)
- Paola De Giorgi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (P.D.G.); (L.P.)
| | - Antonio Giacò
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (P.D.G.); (L.P.)
| | - Giovanni Astuti
- Botanic Garden and Museum, University of Pisa, 56126 Pisa, Italy;
| | - Luigi Minuto
- Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (L.M.); (L.V.)
| | - Lucia Varaldo
- Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (L.M.); (L.V.)
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, 80139 Naples, Italy; (D.D.L.); (A.D.R.)
| | - Alessandro De Rosa
- Department of Biology, University of Naples Federico II, 80139 Naples, Italy; (D.D.L.); (A.D.R.)
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (G.B.); (M.S.)
| | - Marco Sarigu
- Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy; (G.B.); (M.S.)
| | - Lorenzo Peruzzi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (P.D.G.); (L.P.)
| |
Collapse
|
7
|
Chang H, Zhang L, Xie H, Liu J, Xi Z, Xu X. The Conservation of Chloroplast Genome Structure and Improved Resolution of Infrafamilial Relationships of Crassulaceae. FRONTIERS IN PLANT SCIENCE 2021; 12:631884. [PMID: 34276716 PMCID: PMC8281817 DOI: 10.3389/fpls.2021.631884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/10/2021] [Indexed: 06/04/2023]
Abstract
Crassulaceae are the largest family in the angiosperm order Saxifragales. Species of this family are characterized by succulent leaves and a unique photosynthetic pathway known as Crassulacean acid metabolism (CAM). Although the inter- and intrageneric relationships have been extensively studied over the last few decades, the infrafamilial relationships of Crassulaceae remain partially obscured. Here, we report nine newly sequenced chloroplast genomes, which comprise several key lineages of Crassulaceae. Our comparative analyses and positive selection analyses of Crassulaceae species indicate that the overall gene organization and function of the chloroplast genome are highly conserved across the family. No positively selected gene was statistically supported in Crassulaceae lineage using likelihood ratio test (LRT) based on branch-site models. Among the three subfamilies of Crassulaceae, our phylogenetic analyses of chloroplast protein-coding genes support Crassuloideae as sister to Kalanchoideae plus Sempervivoideae. Furthermore, within Sempervivoideae, our analyses unambiguously resolved five clades that are successively sister lineages, i.e., Telephium clade, Sempervivum clade, Aeonium clade, Leucosedum clade, and Acre clade. Overall, this study enhances our understanding of the infrafamilial relationships and the conservation of chloroplast genomes within Crassulaceae.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huanhuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Fernández-Mazuecos M, Vargas P, McCauley RA, Monjas D, Otero A, Chaves JA, Guevara Andino JE, Rivas-Torres G. The Radiation of Darwin’s Giant Daisies in the Galápagos Islands. Curr Biol 2020; 30:4989-4998.e7. [DOI: 10.1016/j.cub.2020.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
|
9
|
Pannell CM, Schnitzler J, Muellner-Riehl AN. Two new species and a new species record of Aglaia (Meliaceae) from Indonesia. PHYTOKEYS 2020; 155:33-51. [PMID: 32863723 PMCID: PMC7428463 DOI: 10.3897/phytokeys.155.53833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Two new species of Aglaia from Indonesia are described, Aglaia monocaula restricted to West Papua, and Aglaia nyaruensis occurring on Borneo (Kalimantan, Brunei, Sabah and Sarawak). A phylogenetic analysis using nuclear ITS and ETS, and plastid rps15-ycf1 sequence data indicates that the two new species of Aglaia are also genetically distinct. Aglaia monocaula belongs to sectionAmoora, while A. nyaruensis is included in section Aglaia. A dichotomous key, drawings and three-locus DNA barcodes are provided as aids for the identification of the two new species of Aglaia. In addition, the geographic range of Aglaia mackiana (section Amoora) is expanded from a single previously known site in Papua New Guinea to West Papua, Indonesia.
Collapse
Affiliation(s)
- Caroline M. Pannell
- University of Oxford, Department of Plant Sciences and Daubeny Herbarium (FHO), South Parks Road, Oxford OX1 3RB, United KingdomLeipzig UniversityLeipzigGermany
- Royal Botanic Gardens, Kew (K), Richmond, Surrey TW9 3AE, United KingdomUniversity of OxfordOxfordUnited Kingdom
- Queen’s University Belfast, Marine Laboratory, 12–13 The Strand, Portaferry, County Down, BT22 1PF, United KingdomRoyal Botanic GardensKewUnited Kingdom
- Leipzig University, Institute of Biology, Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Johannisallee 21–23, D-04103 Leipzig, GermanyQueen’s UniversityBelfastUnited Kingdom
| | - Jan Schnitzler
- Leipzig University, Institute of Biology, Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Johannisallee 21–23, D-04103 Leipzig, GermanyQueen’s UniversityBelfastUnited Kingdom
| | - Alexandra N. Muellner-Riehl
- Leipzig University, Institute of Biology, Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Johannisallee 21–23, D-04103 Leipzig, GermanyQueen’s UniversityBelfastUnited Kingdom
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, GermanyGerman Centre for Integrative Biodiversity ResearchLeipzigGermany
| |
Collapse
|
10
|
Niu Z, Hou Z, Wang M, Ye M, Zhang B, Xue Q, Liu W, Ding X. A comparative plastomics approach reveals available molecular markers for the phylogeographic study of Dendrobium huoshanense, an endangered orchid with extremely small populations. Ecol Evol 2020; 10:5332-5342. [PMID: 32607156 PMCID: PMC7319108 DOI: 10.1002/ece3.6277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 11/08/2022] Open
Abstract
Comparative plastomics approaches have been used to identify available molecular markers for different taxonomic level studies of orchid species. However, the adoption of such methods has been largely limited in phylogeographic studies. Therefore, in this study, Dendrobium huoshanense, an endangered species with extremely small populations, was used as a model system to test whether the comparative plastomic approaches could screen available molecular markers for the phylogeographic study. We sequenced two more plastomes of D. huoshanense and compared them with our previously published one. A total of 27 mutational hotspot regions and six polymorphic cpSSRs have been screened for the phylogeographic studies of D. huoshanense. The cpDNA haplotype data revealed that the existence of haplotype distribution center was located in Dabieshan Mts. (Huoshan). The genetic diversity and phylogenetic analyses showed that the populations of D. huoshanense have been isolated and evolved independently for long period. On the contrary, based on cpSSR data, the genetic structure analysis revealed a mixed structure among the populations in Anhui and Jiangxi province, which suggested that the hybridization or introgression events have occurred among the populations of D. huoshanense. These results indicated that human activities have played key roles in shaping the genetic diversity and distributional patterns of D. huoshanense. According to our results, both two markers showed a high resolution for the phylogeographic studies of D. huoshanense. Therefore, we put forth that comparative plastomic approaches could revealed available molecular markers for phylogeographic study, especially for the species with extremely small populations.
Collapse
Affiliation(s)
- Zhitao Niu
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Zhenyu Hou
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Mengting Wang
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Meirong Ye
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Benhou Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Qingyun Xue
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Wei Liu
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| | - Xiaoyu Ding
- College of Life SciencesNanjing Normal UniversityNanjingChina
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for DendrobiumNanjingChina
| |
Collapse
|
11
|
Shen J, Zhang X, Landis JB, Zhang H, Deng T, Sun H, Wang H. Plastome Evolution in Dolomiaea (Asteraceae, Cardueae) Using Phylogenomic and Comparative Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:376. [PMID: 32351518 PMCID: PMC7174903 DOI: 10.3389/fpls.2020.00376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/16/2020] [Indexed: 05/24/2023]
Abstract
Dolomiaea is a medicinally important genus of Asteraceae endemic to alpine habitats of the Qinghai-Tibet Plateau (QTP) and adjacent areas. Despite significant medicinal value, genomic resources of Dolomiaea are still lacking, impeding our understanding of its evolutionary history. Here, we sequenced and annotated plastomes of four Dolomiaea species. All analyzed plastomes share the gene content and structure of most Asteraceae plastomes, indicating the conservation of plastome evolutionary history of Dolomiaea. Eight highly divergent regions (rps16-trnQ, trnC-petN, trnE-rpoB, trnT-trnL-trnF, psbE-petL, ndhF-rpl32-trnL, rps15-ycf1, and ycf1), along with a total of 51-61 simple sequence repeats (SSRs) were identified as valuable molecular markers for further species delimitation and population genetic studies. Phylogenetic analyses confirmed the evolutionary position of Dolomiaea as a clade within the subtribe Saussureinae, while revealing the discordance between the molecular phylogeny and morphological treatment. Our analysis also revealed that the plastid genes, rpoC2 and ycf1, which are rarely used in Asteraceae phylogenetic inference, exhibit great phylogenetic informativeness and promise in further phylogenetic studies of tribe Cardueae. Analysis for signatures of selection identified four genes that contain sites undergoing positive selection (atpA, ndhF, rbcL, and ycf4). These genes may play important roles in the adaptation of Dolomiaea to alpine environments. Our study constitutes the first investigation on the sequence and structural variation, phylogenetic utility and positive selection of plastomes of Dolomiaea, which will facilitate further studies of its taxonomy, evolution and conservation.
Collapse
Affiliation(s)
- Jun Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Zhang X, Deng T, Moore MJ, Ji Y, Lin N, Zhang H, Meng A, Wang H, Sun Y, Sun H. Plastome phylogenomics of Saussurea (Asteraceae: Cardueae). BMC PLANT BIOLOGY 2019; 19:290. [PMID: 31266465 PMCID: PMC6604455 DOI: 10.1186/s12870-019-1896-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/19/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Saussurea DC. is one of the largest and most morphologically heterogeneous genera in Asteraceae. The relationships within Saussurea have been poorly resolved, probably due an early, rapid radiation. To examine plastome evolution and resolve backbone relationships within Saussurea, we sequenced the complete plastomes of 17 species representing all four subgenera. RESULTS All Saussurea plastomes shared the gene content and structure of most Asteraceae plastomes. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection. Phylogenomic analyses of 20 Saussurea plastomes that alternatively included nucleotide or amino acid sequences of all protein-coding genes, vs. the nucleotide sequence of the entire plastome, supported the monophyly of Saussurea and identified three clades within it. Three of the four traditional subgenera were recovered as paraphyletic. Seven plastome regions were identified as containing the highest nucleotide variability. CONCLUSIONS Our analyses reveal both the structural conservatism and power of the plastome for resolving relationships in congeneric taxa. It is very likely that differences in topology among data sets is due primarily to differences in numbers of parsimony-informative characters. Our study demonstrates that the current taxonomy of Saussurea is likely based at least partly on convergent morphological character states. Greater taxon sampling will be necessary to explore character evolution and biogeography in the genus. Our results here provide helpful insight into which loci will provide the most phylogenetic signal in Saussurea and Cardueae.
Collapse
Affiliation(s)
- Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Michael J Moore
- Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH, USA
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiping Meng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Yanxia Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
13
|
Morris AB, Shaw J. Markers in time and space: A review of the last decade of plant phylogeographic approaches. Mol Ecol 2019; 27:2317-2333. [PMID: 29675939 DOI: 10.1111/mec.14695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/28/2023]
Abstract
Plant studies comprise a relatively small proportion of the phylogeographic literature, likely as a consequence of the fundamental challenges posed by the complex genomic structures and life history strategies of these organisms. Comparative plastomics (i.e., comparisons of mutation rates within and among regions of the chloroplast genome) across plant lineages has led to an increased understanding of which markers are likely to provide the most information at low taxonomic levels. However, the extent to which the results of such work have influenced the literature has not been fully assessed, nor has the extent to which plant phylogeographers explicitly analyse markers in time and space, both of which are integral components of the field. Here, we reviewed more than 400 publications from the last decade of plant phylogeography to specifically address the following questions: (i) What is the phylogenetic breadth of studies to date? (ii) What molecular markers have been used, and why were they chosen? (iii) What kinds of markers are most frequently used and in what combinations? (iv) How frequently are divergence time estimation and ecological niche modelling used in plant phylogeography? Our results indicate that chloroplast DNA sequence data remain the primary tool of choice, followed distantly by nuclear DNA sequences and microsatellites. Less than half (42%) of all studies use divergence time estimation, while even fewer use ecological niche modelling (14%). We discuss the implications of our findings, as well as the need for community standards on data reporting.
Collapse
Affiliation(s)
- Ashley B Morris
- Department of Biology and Center for Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee
| | - Joey Shaw
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee
| |
Collapse
|
14
|
Su Y, Huang L, Wang Z, Wang T. Comparative chloroplast genomics between the invasive weed Mikania micrantha and its indigenous congener Mikania cordata: Structure variation, identification of highly divergent regions, divergence time estimation, and phylogenetic analysis. Mol Phylogenet Evol 2018; 126:181-195. [PMID: 29684597 DOI: 10.1016/j.ympev.2018.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 11/27/2022]
Abstract
Mikania micrantha and Mikania cordata are the only two species in genus Mikania (Asteraceae) in China. They share very similar morphological and life-history characteristics but occupy quite different habitats. Most importantly, they generate totally different ecological consequences. While M. micrantha has become an exotic invasive weed, M. cordata exists as an indigenous species with no harmful effects on native plants or habitats. As a continuous study of our previously reported M. micrantha chloroplast (cp) genome, in this study we have further sequenced the M. cordata cp genome to (1) conduct a comparative genome analysis to gain insights into the mechanism of invasiveness; (2) develop cp markers to examine the population genetic adaptation of M. micrantha; and (3) screen variable genome regions of phylogenetic utility. The M. cordata chloroplast genome is 151,984 bp in length and displays a typical quadripartite structure. The number and distribution of protein coding genes, tRNA genes, and rRNA genes of M. cordata are identical to those of M. micrantha. The main difference lays in that the pseudogenization of ndhF and a 118-bp palindromic repeat only arises in M. cordata. Fourteen highly divergent regions, 235 base substitutions, and 58 indels were identified between the two cp genomes. Phylogenetic inferences revealed a sister relationship between M. micrantha and M. cordata whose divergence was estimated to occur around 1.78 million years ago (MYA). Twelve cpSSR loci were detected to be polymorphic and adopted to survey the genetic adaptation of M. micrantha populations. No cpSSR loci were found to undergo selection. Our results build a foundation to examine the invasive mechanism of Mikania weed.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
15
|
Integral Phylogenomic Approach over Ilex L. Species from Southern South America. Life (Basel) 2017; 7:life7040047. [PMID: 29165335 PMCID: PMC5745560 DOI: 10.3390/life7040047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/03/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
The use of molecular markers with inadequate variation levels has resulted in poorly resolved phylogenetic relationships within Ilex. Focusing on southern South American and Asian species, we aimed at contributing informative plastid markers. Also, we intended to gain insights into the nature of morphological and physiological characters used to identify species. We obtained the chloroplast genomes of I.paraguariensis and I. dumosa, and combined these with all the congeneric plastomes currently available to accomplish interspecific comparisons and multilocus analyses. We selected seven introns and nine IGSs as variable non-coding markers that were used in phylogenomic analyses. Eight extra IGSs were proposed as candidate markers. Southern South American species formed one lineage, except for I. paraguariensis, I. dumosa and I. argentina, which occupied intermediate positions among sampled taxa; Euroasiatic species formed two lineages. Some concordant relationships were retrieved from nuclear sequence data. We also conducted integral analyses, involving a supernetwork of molecular data, and a simultaneous analysis of quantitative and qualitative morphological and phytochemical characters, together with molecular data. The total evidence tree was used to study the evolution of non-molecular data, evidencing fifteen non-ambiguous synapomorphic character states and consolidating the relationships among southern South American species. More South American representatives should be incorporated to elucidate their origin.
Collapse
|
16
|
Feng C, Xu M, Feng C, von Wettberg EJB, Kang M. The complete chloroplast genome of Primulina and two novel strategies for development of high polymorphic loci for population genetic and phylogenetic studies. BMC Evol Biol 2017; 17:224. [PMID: 29115917 PMCID: PMC5678776 DOI: 10.1186/s12862-017-1067-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 10/31/2017] [Indexed: 12/03/2022] Open
Abstract
Background Primulina Hance is an emerging model for studying evolutionary divergence, adaptation and speciation of the karst flora. However, phylogenetic relationships within the genus have not been resolved due to low variation detected in the cpDNA regions. Chloroplast genomes can provide important information for phylogenetic and population genetic studies. Recent advances in next-generation sequencing (NGS) techniques greatly facilitate sequencing whole chloroplast genomes for multiple individuals. Consequently, novel strategies for development of highly polymorphic loci for population genetic and phylogenetic studies based on NGS data are needed. Methods For development of high polymorphic loci for population genetic and phylogenetic studies, two novel strategies are proposed here. The first protocol develops lineage-specific highly variable markers from the true high variation regions (Con_Seas) across whole cp genomes, instead of traditional noncoding regions. The pipeline has been integrated into a single perl script, and named "Con_Sea_Identification_and_PIC_Calculation". The second method assembles chloroplast fragments (poTs) and sub-super-marker (CpContigs) through our "SACRing" pipeline. This approach can fundamentally alter the strategies used in phylogenetic and population genetic studies based on cp markers, facilitating a transition from traditional Sanger sequencing to RAD-Seq. Both of these scripts are available at https://github.com/scbgfengchao/. Results Three complete Primulina chloroplast genomes were assembled from genome survey data, and then two novel strategies were developed to yield highly polymorphic markers. For experimental evaluation of the first protocol, a set of Primulina species were used for PCR amplification. The results showed that these newly developed markers are more variable than traditional ones, and seem to be a better choice for phylogenetic and population studies in Primulina. The second method was also successfully applied in population genetic studies of 21 individuals from three natural populations of Primulina. Conclusions These two novel strategies may provide a pathway for similar research in other non-model species. The newly developed high polymorphic loci in this study will promote further the phylogenetic and population genetic studies in Primulina and other genera of the family Gesneriaceae. Electronic supplementary material The online version of this article (10.1186/s12862-017-1067-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China
| | - Meizhen Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eric J B von Wettberg
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou, 510650, China.
| |
Collapse
|
17
|
Twyford AD, Ness RW. Strategies for complete plastid genome sequencing. Mol Ecol Resour 2017; 17:858-868. [PMID: 27790830 PMCID: PMC6849563 DOI: 10.1111/1755-0998.12626] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/01/2022]
Abstract
Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.
Collapse
Affiliation(s)
- Alex D. Twyford
- Institute of Evolutionary BiologyAshworth LaboratoriesUniversity of EdinburghEdinburghEH9 3FLUK
| | - Rob W. Ness
- Department of BiologyUniversity of Toronto MississaugaMississaugaONCanada
| |
Collapse
|
18
|
Intra and interspecific sequence variation in closely related species of Cereus (CACTACEAE). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Romeiro-Brito M, Moraes EM, Taylor NP, Zappi DC, Franco FF. Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae). APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1500074. [PMID: 26819857 PMCID: PMC4716776 DOI: 10.3732/apps.1500074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. METHODS We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). RESULTS Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. DISCUSSION Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies.
Collapse
Affiliation(s)
- Monique Romeiro-Brito
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos Km 110, 18052780 Sorocaba, São Paulo, Brazil
| | - Evandro M. Moraes
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos Km 110, 18052780 Sorocaba, São Paulo, Brazil
| | - Nigel P. Taylor
- National Parks Board, Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569, Singapore
| | - Daniela C. Zappi
- Conservation Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom
| | - Fernando F. Franco
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos Km 110, 18052780 Sorocaba, São Paulo, Brazil
| |
Collapse
|