1
|
Vieites-Álvarez Y, Reigosa MJ, Sánchez-Moreiras AM. A decade of advances in the study of buckwheat for organic farming and agroecology (2013-2023). FRONTIERS IN PLANT SCIENCE 2024; 15:1354672. [PMID: 38510443 PMCID: PMC10950947 DOI: 10.3389/fpls.2024.1354672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
During the last decade, research has shown the environment and human health benefits of growing buckwheat (Fagopyrum spp.). This comprehensive review aims to summarize the major advancements made in the study of buckwheat from 2013 to 2023, focusing on its agronomic characteristics, nutritional value, and potential applications in sustainable agriculture. The review examines the diverse applications of buckwheat in organic and agroecological farming systems, and discusses the ability of buckwheat to control weeds through allelopathy, competition, and other sustainable farming methods, such as crop rotation, intercropping and green manure, while improving soil health and biodiversity. The review also explores the nutritional value of buckwheat. It delves into the composition of buckwheat grains, emphasizing their high protein content, and the presence of essential amino acids and valuable micronutrients, which is linked to health benefits such as lowering cholesterol levels, controlling diabetes and acting against different types of cancer, among others. Finally, the review concludes by highlighting the gaps in current knowledge, and proposing future research directions to further optimize buckwheat production in organic or agroecological farming systems. It emphasizes the need for interdisciplinary collaboration, and the integration of traditional knowledge with modern scientific approaches to unlock the full potential of buckwheat as a sustainable crop.
Collapse
Affiliation(s)
- Yedra Vieites-Álvarez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Manuel J. Reigosa
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| | - Adela M. Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Ourense, Spain
| |
Collapse
|
2
|
Sharma S, Kumar S, Singh RK. A Recent Advance on Phytochemicals, Nutraceutical and Pharmacological Activities of Buckwheat. Comb Chem High Throughput Screen 2024; 27:2654-2666. [PMID: 37818573 DOI: 10.2174/0113862073265824231004115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
Buckwheat, a member of the Fagopyrum genus in the Polygonaceae family, is an ancient pseudocereal with noteworthy nutraceutical properties that have been relatively less explored. This crop holds great promise for the future due to its gluten-free protein, wellbalanced amino acid profile, and the presence of bioactive flavonoids that promote good health. With its gluten-free nature and a combination of beneficial nutritional components, buckwheat shows significant potential for a variety of health benefits. The objective of the present review aims to explore various nutritional and pharmacological properties of buckwheat. With the help of various search engines such as, Pubmed, Google and Semantic Scholar, research and review papers were carefully investigated and summarized in a comprehensive review. A fascinating spectrum of nutritional and pharmacological activities of common buckwheat and Tartary buckwheat were explored such as antidiabetic, anti-inflammatory, neurological disorders, antiobesity, anticancer, cardiovascular agents and many more. This review provides a concise overview of the current understanding of the chemical composition of both common buckwheat and Tartary buckwheat and the captivating spectrum of pharmacological activity and also underscoring their immense potential for future advancements.
Collapse
Affiliation(s)
- Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Sahil Kumar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, 140126, Ropar, Punjab, India
| |
Collapse
|
3
|
Huang FM, Chang YC, Lee MW, Su NY, Yang LC, Kuan YH. Rutin alleviates bisphenol A-glycidyl methacrylate-induced generation of proinflammatory mediators through the MAPK and NF-κB pathways in macrophages. ENVIRONMENTAL TOXICOLOGY 2023; 38:628-634. [PMID: 36413001 DOI: 10.1002/tox.23711] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A-glycidyl methacrylate (BisGMA) is a methacrylate monomer that is mainly used in three-dimensional structures to reconstruct dental and bony defects. BisGMA has toxic and proinflammatory effects on macrophages. Rutin is a natural flavonol glycoside that is present in various plants and has useful biological effects, such as anti-inflammatory, anticancer, and antioxidative effects. The aim of this study was to investigate the anti-inflammation of rutin in macrophages after exposure to BisGMA. Pretreatment of the RAW264.7 macrophage with rutin at 0, 10, 30, and 100 μM for 30 min before being incubated with BisGMA at 0 or 3 μM. Proinflammatory cytokines and prostaglandin (PG) E2 were detected by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was detected by the Griess assay. Expression and phosphorylation of proteins were measured by Western blot assay. Pretreatment with rutin inhibited the BisGMA-induced generation of proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and PGE2, in macrophages. Rutin also suppressed the BisGMA-induced secretion of NO and expression of inducible nitric oxide synthase (iNOS) in a concentration-dependent manner. Furthermore, rutin suppressed the mitogen-activated protein kinase (MAPK) phosphorylation in a concentration-dependent manner. Finally, rutin suppressed the BisGMA-induced phosphorylation of nuclear factor (NF)-κB p65 and degradation of inhibitor of κB (IκB). These results indicate that the concentration of rutin has an inhibitory effect on proinflammatory mediator generation, MAPK phosphorylation, NF-κB p65 phosphorylation, and IκB degradation. In conclusion, rutin is a potential anti-inflammatory agent for BisGMA-stimulated macrophages through NF-κB p65 phosphorylation and IκB degradation resulting from MAPK phosphorylation.
Collapse
Affiliation(s)
- Fu-Mei Huang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Wei Lee
- A Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ni-Yu Su
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Chiu Yang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Valido E, Stoyanov J, Gorreja F, Stojic S, Niehot C, Kiefte-de Jong J, Llanaj E, Muka T, Glisic M. Systematic Review of Human and Animal Evidence on the Role of Buckwheat Consumption on Gastrointestinal Health. Nutrients 2022; 15:1. [PMID: 36615659 PMCID: PMC9823958 DOI: 10.3390/nu15010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Buckwheat is a commonly cultivated crop with growing evidence that it is beneficial to gastrointestinal (GI) health. This systematic review summarizes the role of buckwheat in modifying GI health outcomes and microbiomes. METHODS Four medical databases and Google Scholar were systematically searched. Clinical trials, observational studies, animal in vivo, and in vitro studies with human and animal GI-derived samples were included. RESULTS There were 32 studies (one randomized controlled trial [RCT], one non-randomized trial, 3 observational, 9 in vitro, and 18 animal in vivo studies) included. In preclinical studies, buckwheat extracts were observed to have cytotoxic potential against human-derived GI cancer cell lines. Animals fed with buckwheat had lower GI mucosal inflammation, higher alpha diversity in the GI microbiome, and higher levels of fecal short-chain fatty acids. Human evidence studies and clinical trials were limited and predominantly of moderate risk of bias. The majority of in vitro studies with GI-derived samples and in vivo studies were reliable without restrictions in study design. CONCLUSION In vivo and in vitro studies show that buckwheat may have potential GI benefits due to its anti-oxidant and anti-inflammatory potential; however, human evidence remains limited, and its impact on health in humans remains to be elucidated in future trials.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Department of Health Sciences, University of Lucerne, 6003 Lucerne, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Frida Gorreja
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Stevan Stojic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Christa Niehot
- Literature Searches Support, 3000 GA Dordrecht, The Netherlands
| | - Jessica Kiefte-de Jong
- Department of Public Health and Primary Care, Health Campus The Hague, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erand Llanaj
- ELKH-DE Public Health Research Group of the Hungarian Academy of Sciences, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Analysis of Phenolic Compounds in Buckwheat ( Fagopyrum esculentum Moench) Sprouts Modified with Probiotic Yeast. Molecules 2022; 27:molecules27227773. [PMID: 36431874 PMCID: PMC9695562 DOI: 10.3390/molecules27227773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat sprouts are a source of various nutrients, e.g., antioxidant flavonoids, which have a positive effect on human health. This study analyzed the content of phenolic compounds and assessed their impact on the antioxidant and anti-inflammatory properties and dietary fiber in modified buckwheat sprouts. For this purpose, the buckwheat seeds were modified by adding Saccharomyces cerevisiae var. boulardii. The modified buckwheat sprouts showed a higher content of total phenol compounds (1526 µg/g d.w.) than the control sprouts (951 µg/g d.w.) and seeds (672 µg/g d.w.). As a consequence, a higher antioxidant activity and anti-inflammatory effect were noted. Probiotic-rich sprouts also had the highest content of total dietary fiber and its soluble fraction. A correlation between phenolic compounds and the antioxidant and anti-inflammatory effects, as well as dietary fiber, was shown. The interaction between dietary fiber and phenolic compounds affects the bioaccessibility, bioavailability, and bioactivity of phenolic compounds in food. The introduction of probiotic yeast into the sprouts had a positive effect on increasing their nutritional value, as well as their antioxidant and anti-inflammatory activity. As a consequence, the nutraceutical potential of the raw material changed, opening a new direction for the use of buckwheat sprouts, e.g., in industry.
Collapse
|
6
|
Liu J, Li L, Liu Y, Kong Z, Zhang P, Wang Q, Cheng S, Qin P. Combined transcriptome and metabolome analysis of the resistance mechanism of quinoa seedlings to Spodoptera exigua. FRONTIERS IN PLANT SCIENCE 2022; 13:931145. [PMID: 35968105 PMCID: PMC9370066 DOI: 10.3389/fpls.2022.931145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 05/31/2023]
Abstract
Quinoa has attracted considerable attention owing to its unique nutritional, economic, and medicinal values. The damage intensity of Spodoptera exigua at the seedling stage of quinoa fluctuates with the crop's biological cycle and the environmental changes throughout the growing season. In this study, we used independently selected quinoa seedling resistant and susceptible cultivars to investigate the difference between insect resistance and insect susceptibility of quinoa at the seedling stage. Samples were collected when Spodoptera exigua 45 days after planting the seedlings, and broad targeted metabolomics studies were conducted using liquid chromatography-mass spectrophotometry combined with transcriptomic co-analysis. The metabolomic and genomic analyses of the insect-resistant and insect-susceptible quinoa groups revealed a total of 159 differential metabolites and were functionally annotated to 2334 differential genes involved in 128 pathways using the Kyoto Encyclopedia of Genes and Genomes analysis. In total, 14 metabolites and 22 genes were identified as key factors for the differential accumulation of insect-resistant metabolites in quinoa seedlings. Among them, gene-LOC110694254, gene-LOC110682669, and gene-LOC110732988 were positively correlated with choline. The expression of gene-LOC110729518 and gene-LOC110723164, which were notably higher in the resistant cultivars than in the susceptible cultivars, and the accumulations of the corresponding metabolites were also significantly higher in insect-resistant cultivars. These results elucidate the regulatory mechanism between insect resistance genes and metabolite accumulation in quinoa seedlings, and can provide a basis for the breeding and identification of new insect-resistant quinoa cultivars as well as for screening potential regulatory metabolites of quinoa insect-resistant target genes.
Collapse
Affiliation(s)
- Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhiyou Kong
- College of Natural Resources and Environment, Baoshan University, Baoshan, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shunhe Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Institute of Agricultural Sciences, Yangzhou, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Kehinde BA, Majid I, Hussain S. Isolation of bioactive peptides and multiple nutraceuticals of antidiabetic and antioxidant functionalities through sprouting: Recent advances. J Food Biochem 2022; 46:e14317. [PMID: 35867040 DOI: 10.1111/jfbc.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
The employment of proteases directly from enzymes or indirectly from microorganisms during fermentation for the purpose of proteolysis of food proteins has been the conventional trend for the derivation of bioactive peptides from food matrices. However, recent studies have shown that inherent protease enzymes can be activated for this activity for vegetable foods using the sprouting process. The benefits of ease of operation, and reduced processing costs are formidable advantages for the optimal consideration of this technique. On another note, the demand for functional foods with therapeutic health effects has increased in recent years. Globally, plant foods are perceived as dietetic choices bearing sufficient quantities of concomitant nutraceuticals. In this manuscript, the sprouting route for the isolation of peptides and glucosinolates, and for the enhancement of total phenolic contents, polyunsaturated fatty acid profiles, and other bioactive constituents was explored. Advances regarding the phytochemical transformations in the course of sprouting, the therapeutic functionalities, and microbiological safety concerns of vegetable sprouts are delineated. In addition, consumption of vegetable sprouts has been shown to be more efficient in supplying nutraceutical components relative to their unsprouted counterparts. Biochemical mechanisms involving the inhibition of digestive enzymes such as α-amylase, β-glucosidase, and dipeptidyl peptidase IV (DPP-IV), single electron transfer, and metal chelation, for impartation of health benefits, have been reported to occur from bioactive components isolated from vegetable sprouts. PRACTICAL APPLICATIONS: Sprouting initiates proteolysis of vegetable proteins for the release of bioactive peptides. Abiotic stresses can be used as elicitors during the sprouting process to achieve enhanced phytochemical profiles of sprouts. Sprouting is a relatively more convenient approach to the improvement of the health benefits of vegetable foods. Vegetable sprouts are potential for the management of metabolic syndrome disorders.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Ishrat Majid
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Shafat Hussain
- Department of Fisheries, Government of Jammu and Kashmir, Anantnag, India
| |
Collapse
|
8
|
Effects of dietary whole grain buckwheat and oat on benzo[a]pyrene-induced genotoxicity, oxidative and pyroptotic injury in liver of mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Li D, Weng Y, Wang G, Zhen G. Anti-Septic Potential of 7-α-Obacunyl Acetate Isolated from the Toona sinensis on Cecal Ligation/Puncture Mice via Suppression of JAK-STAT/NF-κB Signal Pathway. Infect Drug Resist 2021; 14:1813-1821. [PMID: 34017187 PMCID: PMC8131011 DOI: 10.2147/idr.s302853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Sepsis is a life-threatening clinical syndrome and characterized by an inflammatory and innate immune response to infections. The current study was aimed to evaluate the anti-sepsis effect of 7-α-Obacunyl acetate (7-OBA), the abundant constituent isolated from Toona sinensis (Meliaceae), in cecal ligation and puncture (CLP)-induced mice and to investigate the related molecular mechanisms. Methods The CLP operation was performed to establish the sepsis mice model, and the survival rate and temperature were measured after 7-OBA treatment (7.5, 15, and 30 mg/kg; i.p.). Inflammatory cytokines levels of TNF-α, IL-1β, IL-6, and IL-10 were detected by ELISA kits, and the kidney, liver, and heart function were measured using an automatic biochemistry analyzer. Effects of 7-OBA on NF-κB and JAK2-STAT3 signaling pathways were determined by Western blot analysis in a lipopolysaccharide (LPS) stimulated RAW264.7 cells model. Results 7-OBA treatment significantly increased the survival rate (p<0.05 and p<0.01) and normalized temperature (p<0.05 and p<0.01) of sepsis mice. The levels of pro-inflammatory cytokines like TNF-α, IL-1β, and IL-6 in serum were obviously decreased, whereas the anti-inflammatory cytokines of IL-10 were increased. CLP-induced increases of the main markers of kidney, liver, and heart function in mice (p<0.01) were also obviously reversed by 7-OBA. The anti-sepsis effect of 7-OBA might be associated with regulation of nuclear factor kappa-B (NF-κB) and Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signal pathways. Conclusion Our investigation indicated that 7-OBA can be developed as an effective agent for treating/curing sepsis in the future.
Collapse
Affiliation(s)
- Duo Li
- Department of Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Yibing Weng
- Department of Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Guan Wang
- Department of Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Genshen Zhen
- Department of Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| |
Collapse
|
10
|
The growth-inhibitory effects of pawpaw (Asimina triloba [L.] Dunal) roots, twigs, leaves, and fruit against human gastric (AGS) and cervical (HeLa) cancer cells and their anti-inflammatory activities. Mol Biol Rep 2021; 48:2173-2181. [PMID: 33630206 DOI: 10.1007/s11033-021-06226-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The pawpaw tree has several beneficial effects. However, no studies have been conducted to address the mechanisms underlying the cytotoxic effects of pawpaw extracts against cancer cells, and no study has investigated the anti-inflammatory effects. Hence, in this study, the growth-inhibitory effects of pawpaw (Asimina triloba [L.] Dunal) extracts against gastric (AGS) and cervical (HeLa) cancer cells and the inhibitory effects of pawpaw extracts against inflammatory factors (NO, TNF-α, IL-6, iNOS, and COX-2) were investigated. METHODS AND RESULTS The viability of AGS and HeLa cells, the analysis of cell cycle, and the expression of apoptosis marker protein were determined using MTT assay, FACS, western blotting, and TUNEL assays. The inflammatory factors were determined using Griess method, ELISA assay kit, and RAW 264.7 cells. The IC50 values of twig and unripe fruit extracts for AGS cells were 82.01 and 100.61 µg/mL, respectively. For HeLa cells, pawpaw twig extracts exhibited the strongest ability to inhibit cervical cancer cell growth (IC50 = 97.73 µg/mL). Analysis of the cell cycle phase distribution and expression of the apoptosis regulatory proteins BCL-2, BAX, caspase-3, and PARP showed that pawpaw twig, root, and unripe fruit extracts induced Sub G1 cell cycle arrest and apoptosis of AGS and HeLa cells. In addition, the twig, root, and unripe fruit extracts of pawpaw effectively inhibited the inflammatory makers NO, TNF-α, IL-6, and iNOS. Particularly, the twig, root, and unripe fruit extracts at concentrations of 50 µg/mL exhibited > 50% inhibition of TNF-α. CONCLUSIONS These findings indicate that pawpaw extracts are natural therapeutic agents that may be used for the prevention and treatment of gastric and cervical cancers, and encourage further studies on the anti-inflammatory potential of the pawpaw tree.
Collapse
|
11
|
Laser light as a promising approach to improve the nutritional value, antioxidant capacity and anti-inflammatory activity of flavonoid-rich buckwheat sprouts. Food Chem 2020; 345:128788. [PMID: 33340896 DOI: 10.1016/j.foodchem.2020.128788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Buckwheat sprouts are rich in several nutrients such as antioxidant flavonoids that have a positive impact on human health. Although there are several studies reported the positive impact of laser light on crop plants, no studies have applied laser light to enhance the nutritive values of buckwheat sprouts. Herein, the contents of health-promoting minerals, metabolites and enzymes as well as the antioxidant and anti-inflammatory activities were determined in laser-treated (He-Ne laser, 632 nm, 5 mW) common buckwheat (CBW) and tartarybuckwheat (TBW) sprouts. Out of 49 targeted minerals, vitamins, pigments and antioxidants, more than 35 parameters were significantly increased in CBW and/or TBW sprouts by laser light treatment. Also, laser light boosted the antioxidant capacity and anti-inflammatory activities through inhibiting cyclooxygenase-2 and lipoxygenase activities, particularly in TBW sprouts. Accordingly, laser light could be recommended as a promising method to improve the nutritional and health-promoting values of buckwheat sprouts.
Collapse
|
12
|
Sun W, Ma Z, Liu M. Cytochrome P450 family: Genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. Int J Biol Macromol 2020; 164:4032-4045. [DOI: 10.1016/j.ijbiomac.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/15/2022]
|
13
|
Koval D, Plocková M, Kyselka J, Skřivan P, Sluková M, Horáčková Š. Buckwheat Secondary Metabolites: Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11631-11643. [PMID: 32985180 DOI: 10.1021/acs.jafc.0c04538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research groups have put significant emphasis on the evaluation of nutritional, health-promoting, and other biological activities of secondary metabolites from buckwheat. Among these phytochemicals, phenolic and lipophilic antioxidants, particularly, phenolic acids, flavonoids, and tocopherols, have been the focus of the latest studies since antioxidant activity has recently been associated with the possibility of inhibiting fungal growth and mycotoxin biosynthesis. The mycotoxin contamination of cereal and pseudocereal grains caused primarily by Fusarium, Penicillium, and Aspergillus species poses a significant hazard to human health. Therefore, efforts to examine the involvement of plant antioxidants in the biosynthesis of mycotoxins at the transcriptional level have emerged. In addition, hydrophobic interactions of buckwheat phenolics with cell membranes could also explain their capacity to reduce fungal development. Eventually, possibilities of enhancing the biological activity of cereal and pseudocereal phytochemicals have been studied, and sourdough fermentation has been proposed as an efficient method to increase antioxidant activities. This effect could result in an increased antifungal effects of sourdough and bakery products. This review reports the main advances in research on buckwheat phenolics and other antioxidant phytochemicals, highlighting possible mechanisms of action and processes that could improve their biological activities.
Collapse
Affiliation(s)
- Daniel Koval
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Pavel Skřivan
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marcela Sluková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
14
|
Pharmacokinetics and Protective Effects of Tartary Buckwheat Flour Extracts against Ethanol-Induced Liver Injury in Rats. Antioxidants (Basel) 2020; 9:antiox9100913. [PMID: 32987897 PMCID: PMC7599602 DOI: 10.3390/antiox9100913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/24/2023] Open
Abstract
The grains of Tartary buckwheat (Fagopyrum esculentum) are traditionally consumed on a daily basis and are used in the preparation of diverse processed foods owing to the high concentration of rutin, an antioxidant compound. However, rutin is highly concentrated in hull and bran, but not in edible flour fractions. Rutin-enriched TB flour extracts (TBFEs) were obtained by hydrothermal treatment (autoclaving, boiling, or steaming) and their pharmacokinetic profiles were evaluated following a single-dose oral administration in rats. The antioxidant and protective activities of the extracts against alcoholic liver disease (ALD) were investigated after repetitive oral administration of TBFEs for 28 days prior to ethanol ingestion. The results demonstrated that rutin-enriched TBFEs had better oral absorption and was retained longer in the bloodstream than native TBFE or standard rutin. The activities of antioxidant enzymes and intracellular antioxidant levels increased in ALD rats following TBFE treatments, especially following the administration of rutin-enriched TBFEs. The antioxidant activity of TBFEs consequently contributed toward protecting the liver against injury caused by repetitive ethanol administration, as confirmed by analyzing relative liver weight, liver injury markers, lipid peroxidation, and calcium permeability. These results suggest the promising potential of TBFEs as antioxidant-enriched functional foods for human health.
Collapse
|
15
|
Li J, Hossain MS, Ma H, Yang Q, Gong X, Yang P, Feng B. Comparative metabolomics reveals differences in flavonoid metabolites among different coloured buckwheat flowers. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Comparative Transcriptome and Metabolic Profiling Analysis of Buckwheat ( Fagopyrum Tataricum (L.) Gaertn.) under Salinity Stress. Metabolites 2019; 9:metabo9100225. [PMID: 31614965 PMCID: PMC6835380 DOI: 10.3390/metabo9100225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) is a nutritional crop, which has high flavonoid content. However, buckwheat is a salt sensitive glycophyte cereal crop and the growth and grain yield of buckwheat are significantly affected by soil salinity. In this study, we performed a comprehensive analysis of the transcriptome and metabolome of salt treated-buckwheat to understand the effects of salinity on buckwheat. A total of 50,681,938 clean reads were acquired from all samples. We acquired 94,950 unigenes with a mean length of 1133 bp and N50 length of 1900 bp assembly. Of these, 63,305 unigenes (66.7%) were matched in public databases. Comparison of the transcriptome expression patterns between control and salt treated groups showed that 4098 unigenes were up-regulated and 3292 unigenes were down-regulated significantly. Further, we found that genes involved with amino acid, lipid and nucleotide metabolism were most responsive to salt stress. Additionally, many genes involved in secondary metabolite biosynthesis changed significantly following treatment. Those affected included phenylpropanoid biosynthesis and flavonoid biosynthesis. Chromatographic analysis was used to examine the differences in concentration of flavonoids, carotenoids, amino acids and organic acids in the samples following treatment. There was a significant increase in rutin (12.115 mg/g dry weight), following salt stress; whereas, six carotenoids (lutein, zeaxanthin, 13Z-β-carotene, α-carotene, E-β-carotene and 9Z-β-carotene) did not significantly respond to salt stress. Ultimately, our data acts as a valuable resource for future research on buckwheat and can be used as the basis for future analysis focused on gene-to-metabolite networks in buckwheat.
Collapse
|
17
|
Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chem 2019; 285:240-251. [DOI: 10.1016/j.foodchem.2019.01.141] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/03/2023]
|
18
|
Analysis of Flavonoid Metabolites in Buckwheat Leaves Using UPLC-ESI-MS/MS. Molecules 2019; 24:molecules24071310. [PMID: 30987158 PMCID: PMC6479795 DOI: 10.3390/molecules24071310] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Flavonoids from plants are particularly important in our diet. Buckwheat is a special crop that is rich in flavonoids. In this study, four important buckwheat varieties, including one tartary buckwheat and three common buckwheat varieties, were selected as experimental materials. The total flavonoid content of leaves from red-flowered common buckwheat was the highest, followed by tartary buckwheat leaves. A total of 182 flavonoid metabolites (including 53 flavone, 37 flavonol, 32 flavone C-glycosides, 24 flavanone, 18 anthocyanins, 7 isoflavone, 6 flavonolignan, and 5 proanthocyanidins) were identified based on Ultra Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (UPLC-ESI-MS/MS) system. Through clustering analysis, principal component analysis (PCA), and orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA), different samples were clearly separated. Considerable differences were observed in the flavonoid metabolites between tartary buckwheat leaves and common buckwheat leaves, and both displayed unique metabolites with important biological functions. This study provides new insights into the differences of flavonoid metabolites between tartary buckwheat and common buckwheat leaves and provides theoretical basis for the sufficient utilization of buckwheat.
Collapse
|
19
|
Ji X, Han L, Liu F, Yin S, Peng Q, Wang M. A mini-review of isolation, chemical properties and bioactivities of polysaccharides from buckwheat (Fagopyrum Mill). Int J Biol Macromol 2019; 127:204-209. [DOI: 10.1016/j.ijbiomac.2019.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 01/04/2023]
|
20
|
Kim SY, Lee MS, Chang E, Jung S, Ko H, Lee E, Lee S, Kim CT, Kim IH, Kim Y. Tartary Buckwheat Extract Attenuated the Obesity-Induced Inflammation and Increased Muscle PGC-1a/SIRT1 Expression in High Fat Diet-Induced Obese Rats. Nutrients 2019; 11:nu11030654. [PMID: 30889894 PMCID: PMC6471111 DOI: 10.3390/nu11030654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is intimately related to a chronic inflammatory state, with augmentation of macrophage infiltration and pro-inflammatory cytokine secretion in white adipose tissue (WAT) and mitochondrial dysfunction in skeletal muscle. The specific aim of this study is to evaluate effects of tartary buckwheat extract (TB) on obesity-induced adipose tissue inflammation and muscle peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α/sirtulin 1 (SIRT1) pathway in rats fed a high-fat diet. Sprague-Dawley rats were divided into four groups and fed either a normal diet (NOR), 45% high-fat diet (HF), HF + low dose of TB (TB-L; 5 g/kg diet), or HF + high dose of TB (TB-H; 10 g/kg diet) for 13 weeks. TB significantly reduced adipose tissue mass with decreased adipogenic gene expression of PPAR-γ and aP2. Serum nitric oxide levels and adipose tissue macrophage M1 polarization gene markers, such as iNOS, CD11c, and Arg1, and pro-inflammatory gene expression, including TNF-α, IL-6, and MCP-1, were remarkably downregulated in the TB-L and TB-H groups. Moreover, TB supplementation increased gene expression of PGC-1α and SIRT1, involved in muscle biogenesis and function. These results suggested that TB might attenuate obesity-induced inflammation and mitochondrial dysfunction by modulating adipose tissue inflammation and the muscle PGC-1α/SIRT1 pathway.
Collapse
Affiliation(s)
- Seog-Young Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eugene Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hyunmi Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Eunyoung Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Soojin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
21
|
Liu M, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics 2019; 20:113. [PMID: 30727951 PMCID: PMC6366116 DOI: 10.1186/s12864-019-5500-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/30/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The NAC (NAM, ATAF1/2, and CUC2) transcription factor family represents a group of large plant-specific transcriptional regulators, participating in plant development and response to external stress. However, there is no comprehensive study on the NAC genes of Tartary buckwheat (Fagopyrum tataricum), a large group of extensively cultivated medicinal and edible plants. The recently published Tartary buckwheat genome permits us to explore all the FtNAC genes on a genome-wide basis. RESULTS In the present study, 80 NAC (FtNAC) genes of Tartary buckwheat were obtained and named uniformly according to their distribution on chromosomes. Phylogenetic analysis of NAC proteins in both Tartary buckwheat and Arabidopsis showed that the FtNAC proteins are widely distributed in 15 subgroups with one subgroup unclassified. Gene structure analysis found that multitudinous FtNAC genes contained three exons, indicating that the structural diversity in Tartary buckwheat NAC genes is relatively low. Some duplication genes of FtNAC have a conserved structure that was different from others, indicating that these genes may have a variety of functions. By observing gene expression, we found that FtNAC genes showed abundant differences in expression levels in various tissues and at different stages of fruit development. CONCLUSIONS In this research, 80 NAC genes were identified in Tartary buckwheat, and their phylogenetic relationships, gene structures, duplication, global expression and potential roles in Tartary buckwheat development were studied. Comprehensive analysis will be useful for a follow-up study of functional characteristics of FtNAC genes and for the development of high-quality Tartary buckwheat varieties.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
22
|
He X, Li JJ, Chen Y, Yang JQ, Chen XY. Genome-wide Analysis of the WRKY Gene Family and its Response to Abiotic Stress in Buckwheat ( Fagopyrum Tataricum). Open Life Sci 2019; 14:80-96. [PMID: 33817140 PMCID: PMC7874777 DOI: 10.1515/biol-2019-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/15/2019] [Indexed: 12/30/2022] Open
Abstract
The WRKY gene family is an ancient plant transcription factor (TF) family with a vital role in plant growth and development, especially in response to biotic and abiotic stresses. Although many researchers have studied WRKY TFs in numerous plant species, little is known of them in Tartary buckwheat (Fagopyrum tataricum). Based on the recently reported genome sequence of Tartary buckwheat, we identified 78 FtWRKY proteins that could be classified into three major groups. All 77 WRKY genes were distributed unevenly across all eight chromosomes. Exon-intron analysis and motif composition prediction revealed the complexity and diversity of FtWRKYs, indicating that WRKY TFs may be of significance in plant growth regulation and stress response. Two separate pairs of tandem duplication genes were found, but no segmental duplications were identified. Overall, most orthologous gene-pairs between Tartary and common buckwheat evolved under strong purifying selection. qRT-PCR was used to analyze differences in expression among four FtWRKYs (FtWRKY6, 74, 31, and 7) under salt, drought, cold, and heat treatments. The results revealed that all four proteins are related to abiotic stress responses, although they exhibited various expression patterns. In particular, the relative expression levels of FtWRKY6, 74, and 31 were significantly upregulated under salt stress, while the highest expression of FtWRKY7 was observed from heat treatment. This study provides comprehensive insights into the WRKY gene family in Tartary buckwheat, and can support the screening of additional candidate genes for further functional characterization of WRKYs under various stresses.
Collapse
Affiliation(s)
- Xia He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangzhou510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou510642, China
| | - Jing-jian Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangzhou510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou510642, China
| | - Yuan Chen
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou510642, China
| | - Jia-qi Yang
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou510642, China
| | - Xiao-yang Chen
- ushan road NO.483 Guangzhou city, GuangdongGuangzhou, P.R.China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangzhou510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
23
|
Metal Chelating, Inhibitory DNA Damage, and Anti-Inflammatory Activities of Phenolics from Rambutan ( Nephelium lappaceum) Peel and the Quantifications of Geraniin and Corilagin. Molecules 2018; 23:molecules23092263. [PMID: 30189625 PMCID: PMC6225213 DOI: 10.3390/molecules23092263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Whereas the preparation and biological properties of rambutan peel phenolics (RPP) were explored in our previous studies, the metal chelating, inhibitory DNA damage, and anti-inflammatory activities of RPP were evaluated and the important phenolics of RPP quantified in this study. Results showed that RPP had high Fe2+ and Cu2+-chelating activities with EC50 of 0.80 mg/mL and 0.13 mg/mL, respectively. RPP effectively decreased the production of hydroxyl radical with IC50 of 62.4 μg/mL. The protective effects of RPP against AAPH-induced DNA damage were also explored. RPP efficiently inhibited peroxyl radical-induced plasmid DNA strand breakage. The anti-inflammatory effects of RPP were determined using a lipopolysaccharide (LPS)-induced RAW 264.7 cell model. RPP significantly inhibited the production of nitric oxide (NO) and controlled the levels of inducible NO synthase mRNA in LPS-induced RAW 264.7 cells. The inhibitory activity increased in a dose-dependent manner. The above bioactivity of RPP was associated with its phenolic content and phenolic profiles. Furthermore, the contents of geraniin and corilagin in RPP were determined by an ultra-high performance liquid chromatography coupled with triple quadruple mass spectrometry (UPLC-QQQ-MS), showing 140.02 and 7.87 mg/g extract dry weight. Thus, RPP has potential applications as a novel nutraceutical and functional food in health promotion.
Collapse
|
24
|
Panth N, Paudel KR, Karki R. Phytochemical profile and biological activity of Juglans regia. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 14:359-73. [PMID: 27641607 DOI: 10.1016/s2095-4964(16)60274-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Juglans regia Linn. (Juglandaceae), popularly known as English or Persian walnut, is a valuable medicinal plant with a potency to cure various diseases in traditional medicine. Since ancient time, different local ethnic groups have used various part of J. regia for a wide array of ailments including helminthiasis, diarrhea, sinusitis, stomach ache, arthritis, asthma, eczema, scrofula, skin disorders, diabetes mellitus, anorexia, thyroid dysfunction, cancer and infectious diseases. Biological activities of J. regia have been reported in several peer review journals and scientific attention is increasing. The present review attempts to provide comprehensive information on plant description, ethnobotanical use, toxicity, phytochemical profile, pharmacology, clinical studies and current research prospective of the J. regia. Currently, there is an immense interest on isolation/identification of active constituents from walnut and screening those active compounds for pharmacological activities. In addition, researchers are performing clinical trials as well as screening various solvent extracts or fractions of J. regia in several animal diseases models to identify promising therapeutic benefits. In the present work, we review the latest information based on published scientific investigations of J. regia.
Collapse
Affiliation(s)
- Nisha Panth
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun 58554, South Korea
| | - Keshav Raj Paudel
- Department of Oriental Medicine Resource, Mokpo National University, Muan-gun 534-729, South Korea
| | - Rajendra Karki
- Department of Oriental Medicine Resource, Mokpo National University, Muan-gun 534-729, South Korea
| |
Collapse
|
25
|
Li F, Zhang X, Li Y, Lu K, Yin R, Ming J. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food Funct 2018; 8:177-188. [PMID: 27942664 DOI: 10.1039/c6fo01230b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolics extracted from tartary buckwheat (Fagopyrum tartaricum L. Gaerth) bran were analyzed quantitatively and qualitatively. The bioactivity of the phenolic extracts was evaluated, such as the antioxidant activity, and the inhibition capacity on the growth of cancer cells. The molecular mechanism for the inhibitive effect on cancer cells was explored. Results indicated that tartary buckwheat bran phenolics mainly exist in a free form, and free phenolics were twice as abundant as bound phenolics. Free caffeic acid (119.75 μg per 100 mg DW) and bound rutin (51.66 μg per 100 mg DW) represented the main free and bound phenolic compounds, respectively. The free phenolic extract contributed to the major (>90%) antioxidant activities including the oxygen radical antioxidant capacity (ORAC) and cellular antioxidant activity (CAA). The free phenolic extract exhibited anticancer activity for human breast cancer MDA-MB-231 cells in a dose-dependent manner. This significant inhibition effect was achieved through the p38/MAP kinase pathway by inducing cell apoptosis (up-regulating p-p38 and p-ASK1 expressions and down-regulating TRAF2 and p-p53 expressions), and negatively regulating the progression of the cell cycle from the G1 to S phase (increased expression of p21 and suppressed expressions of PCNA, cyclin D1 and CDK4). All these results indicated that tartary buckwheat bran could be a rich resource of natural antioxidants and inhibitors for the growth of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, 400715, PR China. and School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xiaoli Zhang
- College of Food Science, Southwest University, Chongqing, 400715, PR China.
| | - Yao Li
- College of Food Science, Southwest University, Chongqing, 400715, PR China.
| | - Keke Lu
- College of Food Science, Southwest University, Chongqing, 400715, PR China.
| | - Ran Yin
- Department of Food Science, 245 Stocking Hall and Cornell University, Ithaca, New York 14853-7201, USA
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
26
|
The Vasodilatory Effects of Anti-Inflammatory Herb Medications: A Comparison Study of Four Botanical Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1021284. [PMID: 29333177 PMCID: PMC5733232 DOI: 10.1155/2017/1021284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/08/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
Inflammation plays a pivotal role in the development and progression of cardiovascular diseases, in which, the endothelium dysfunction has been a key element. The current study was designed to explore the vasodilatory effect of anti-inflammatory herbs which have been traditionally used in different clinical applications. The total saponins from Actinidia arguta radix (SAA), total flavonoids from Glycyrrhizae radix et rhizoma (FGR), total coumarins from Peucedani radix (CPR), and total flavonoids from Spatholobi caulis (FSC) were extracted. The isometric measurement of vasoactivity was used to observe the effects of herbal elements on the isolated aortic rings with or without endothelium. To understand endothelium-independent vasodilation, the effects of herb elements on agonists-induced vasocontractility and on the contraction of endothelium-free aortic rings exposed to a Ca2+-free medium were examined. Furthermore, the role of nitric oxide signaling in endothelium-dependent vasodilation was also evaluated. In summary, FGR and FSC exhibit potent anti-inflammatory effects compared to CPR and SAA. FGR exerts the strongest vasodilatory effect, while CPR shows the least. The relaxation induced by SAA and FSC required intact endothelia. The mechanism of this vasodilation might involve eNOS. CPR-mediated vasorelaxation appears to involve interference with intracellular calcium homeostasis, blocking Ca2+ influx or releasing intracellular Ca2+.
Collapse
|
27
|
Mišan A, Petelin A, Stubelj M, Mandić A, Šimurina O, Pojić M, Milovanović I, Jakus T, Filipčev B, Jenko Pražnikar Z. Buckwheat – enriched instant porridge improves lipid profile and reduces inflammation in participants with mild to moderate hypercholesterolemia. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
Hu Y, Hou Z, Yi R, Wang Z, Sun P, Li G, Zhao X, Wang Q. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice. Food Funct 2017; 8:2803-2816. [PMID: 28714504 DOI: 10.1039/c7fo00359e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Zuoxu Hou
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Zhongming Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Guijie Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Qiang Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
29
|
Huang S, Ma Y, Sun D, Fan J, Cai S. In vitro
DNA damage protection and anti-inflammatory effects of Tartary buckwheats (Fagopyrum tataricum
L. Gaertn) fermented by filamentous fungi. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiqi Huang
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| | - Yanli Ma
- College of Food Science and Technology; Hebei Agricultural University; Baoding Hebei Province 071001 China
| | - Dan Sun
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| | - Jian Fan
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| | - Shengbao Cai
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan Province 650500 China
| |
Collapse
|
30
|
Hęś M, Szwengiel A, Dziedzic K, Le Thanh-Blicharz J, Kmiecik D, Górecka D. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products. J Food Sci 2017; 82:882-889. [DOI: 10.1111/1750-3841.13682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Marzanna Hęś
- Dept. of Food Service and Catering; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| | - Artur Szwengiel
- Inst. of Food Technology of Plant Origin; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| | - Krzysztof Dziedzic
- Dept. of Pediatric Gastroenterology and Metabolic Diseases; Poznan Univ. of Medical Sciences; Szpitalna 33/27 60-572 Poznań Poland
| | - Joanna Le Thanh-Blicharz
- Dept. of Food Concentrates and Starch Products; prof. Wacław Dąbrowski Inst. of Agricultural and Food Biotechnology; Starołęcka 40 61-361 Poznań Poland
| | - Dominik Kmiecik
- Dept. of Food Service and Catering; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| | - Danuta Górecka
- Dept. of Food Service and Catering; Poznań Univ. of Life Sciences; Wojska Polskiego 31 60-624 Poznań Poland
| |
Collapse
|
31
|
Li W, Zhi W, Liu F, He Z, Wang X, Niu X. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res 2017; 353:26-34. [PMID: 28274716 DOI: 10.1016/j.yexcr.2017.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiuei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
32
|
Yao H, Li C, Zhao H, Zhao J, Chen H, Bu T, Anhu W, Wu Q. Deep sequencing of the transcriptome reveals distinct flavonoid metabolism features of black tartary buckwheat ( Fagopyrum tataricum Garetn.). PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 124:49-60. [DOI: 10.1016/j.pbiomolbio.2016.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
|
33
|
Liu M, Zhao G, Cao S, Zhang Y, Li X, Lin X. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine. Front Pharmacol 2017; 7:523. [PMID: 28119606 PMCID: PMC5220067 DOI: 10.3389/fphar.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| |
Collapse
|
34
|
Hu Y, Hou Z, Liu D, Yang X. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways. Food Funct 2016; 7:1523-36. [PMID: 26899161 DOI: 10.1039/c5fo01467k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress plays a crucial role in chronic complication of diabetes. In this study, the protective effect of purified tartary buckwheat flavonoids (TBF) fraction against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser307)-IRS-1 expression, and glucose uptake were evaluated. Results suggest that treatment of HepG2 cells with TBF alone improved glucose uptake and antioxidant enzymes, and activated Nrf2, and attenuated the IRS-1 Ser307 phosphorylation, and enhanced total levels of IRS-1. Furthermore, the high glucose-induced changes in antioxidant defences, Nrf2, p-MAPKs, p-IRS1 Ser307, and IRS-1 levels, and glucose uptake were also significantly inhibited by pre-treatment with TBF. Interestingly, the selective MAPK inhibitors significantly enhanced the TBF-mediated protection by inducing changes in the redox status, glucose uptake, p-(Ser307) and total IRS-1 levels. This report firstly showed that TBF could recover the redox status of insulin-resistant HepG2 cells, suggesting that TBF significantly protected the cells against high glucose-induced oxidative stress, and these beneficial effects of TBF on redox balance and insulin resistance were mediated by targeting MAPKs.
Collapse
Affiliation(s)
- Yuanyuan Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Zuoxu Hou
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Dongyang Liu
- The First Brigade of Cadets, Fourth Military Medical University, Xi'an 710032, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
35
|
Giménez-Bastida JA, Zielinski H, Piskula M, Zielinska D, Szawara-Nowak D. Buckwheat bioactive compounds, their derived phenolic metabolites and their health benefits. Mol Nutr Food Res 2016; 61. [PMID: 27709826 PMCID: PMC6599964 DOI: 10.1002/mnfr.201600475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
SCOPE Buckwheat (BW) consumption has been associated with a broad range of health benefits: antioxidant, anti-inflammatory and anticancer. These beneficial effects have been partially related to the presence of flavonoids. However, some of these compounds (i.e., rutin and quercetin) are metabolized in the gastrointestinal tract generating derived phenolic metabolites. In this study, we investigated the biological activity of rutin (Ru), quercetin (Q) an their derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), 3-hydroxyphenylacetic acid (3-HPAA), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid, HVA). METHODS AND RESULTS Q showed the highest antioxidant and reducing activity, and Ru the maximum chelating activity (85.33%). Antioxidant activity of 3,4-DHPAA was 5-fold higher than that of HVA, whereas their reducing activity was similar. The formation of methylglyoxal (MGO)-BSA and glucose-BSA (advanced glycation end products) was inhibited by Ru (98.5 and 92.7%), Q (95.6 and 89.1%) and 3,4-DHPPA (84.4.6 and 77.5%). Furthermore, Q (10-50 μM) and Ru (1-50 μM) downregulated the release of PGE2 , IL-8 and MCP-1, molecules involved in the inflammatory response, in IL1β-inflamed myofibroblasts of colon CCD-18Co. CONCLUSION This study suggests that BW phytochemicals and their phenolic metabolites may be responsible for the beneficial effects against chronic diseases attributed to BW consumption.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Henryk Zielinski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| | - Mariusz Piskula
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| | - Danuta Zielinska
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Szawara-Nowak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| |
Collapse
|
36
|
He Y, Shi JZ, Zhang RJ, Zhai DX, Zhang D, Yu CQ, Liu YH. Effects of Hydrogen Gas Inhalation on Endometriosis in Rats. Reprod Sci 2016; 24:324-331. [DOI: 10.1177/1933719116655622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Y. He
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - J. Z. Shi
- Graduate Management Unit, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - R. J. Zhang
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - D. X. Zhai
- Department of Chinese Traditional Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - D. Zhang
- Department of Chinese Traditional Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - C. Q. Yu
- Department of Chinese Traditional Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Y. H. Liu
- Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
37
|
Eun CS, Hwang EY, Lee SO, Yang SA, Yu MH. Anti-oxidant and Anti-inflammatory Activities of Barley Sprout Extract. ACTA ACUST UNITED AC 2016. [DOI: 10.5352/jls.2016.26.5.537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Abstract
AbstractBuckwheat (Fagopyrum esculentum Moench, F. tataricum Gaertner) groats and flour have been established globally as nutritional foods because of their high levels of proteins, polyphenols and minerals. In some regions, buckwheat herb is used as a functional food. In the present study, reports of in vitro studies, preclinical and clinical trials dealing with the effect of buckwheat and its metabolites were reviewed. There are numerous reports of potential health benefits of consuming buckwheat, which may be in the form of food, dietary supplements, home remedies or possibly pharmaceutical drugs; however, adverse effects, including those resulting from contamination, must be considered. There are reports of antioxidative activity of buckwheat, which contains high levels of rutin and quercetin. On the other hand, both cytotoxic and antigenotoxic effects have been shown. Reduction of hyperlipidaemia, reduction of blood pressure and improved weight regulation have been suggested. Consuming buckwheat may have a beneficial effect on diabetes, since lower postprandial blood glucose and insulin response have been reported. In addition, buckwheat metabolites, such as rutin, may have intrinsic protective effects in preserving insulin signalling. Rutin has also been suggested to have potential therapeutic applications for the treatment of Alzheimer’s disease. The literature indicates that buckwheat is safe to consume and may have various beneficial effects on human health.
Collapse
|
39
|
Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery. Atherosclerosis 2016; 248:179-89. [PMID: 27018542 DOI: 10.1016/j.atherosclerosis.2016.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
AIMS Restenosis- an adverse consequence following angioplasty, and atherosclerosis are characterized by abnormal vascular smooth muscle cell (VSMC) proliferation and migration leading to neo-intima formation. In the present study, we investigated the inhibitory effects of alkaloid rich fraction (ARF) from Nelumbo nucifera and isolated compound neferine on platelet-derived growth factor (PDGF-BB) induced VSMC proliferation and migration in vitro and neo-intima formation in a rat carotid artery injury model. METHODS PDGF-BB induced VSMC proliferation and migration was assessed using colorimetric assay and modified Boyden chamber method respectively. Gene expression of cell cycle associated molecules was determined by reverse transcription-polymerase chain reaction (RT-PCR). The signaling molecules such as PDGF-Rβ, extracellular regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), P38, metalloproteinase (MMP)-9 and nuclear factor-kappa B (NF-κB) were determined by western blot analysis. Stress fiber formation was evaluated using immunofluorescence microscopy. The rat carotid artery balloon injury model was performed to assess the effect of ARF on neo-intima formation. RESULTS ARF possessed the strongest anti-oxidant activities. The anti-proliferative activity of both ARF and neferine was due to suppression of cyclin D1, cyclin E and cyclin-dependent kinase (Cdk) gene expression. Moreover, ARF and neferine inhibited PDGF-Rβ, ERK1/2, JNK and P38 activations and NF-κB translocation. Also, ARF and neferine inhibited VSMC migration by inhibiting MMP-9 activity without affecting cytoskeleton remodeling. In a rat carotid artery injury model, ARF inhibited neo-intima formation. CONCLUSION Our results indicate that ARF targets VSMC proliferation and migration to attenuate neo-intima formation by inhibition of PDGF-Rβ mediated signaling.
Collapse
|
40
|
Paudel KR, Panth N, Kim DW. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression. SCIENTIFICA 2016; 2016:8514056. [PMID: 27066292 PMCID: PMC4811266 DOI: 10.1155/2016/8514056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 06/04/2023]
Abstract
The levels of circulating microparticles (MPs) are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs) described as complex submicron (0.1 to 1.0 μm) vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Nisha Panth
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Dong-Wook Kim
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
41
|
Chemical composition and health effects of Tartary buckwheat. Food Chem 2016; 203:231-245. [PMID: 26948610 DOI: 10.1016/j.foodchem.2016.02.050] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health.
Collapse
|
42
|
Methyl jasmolate treated buckwheat sprout powder enhances glucose metabolism by potentiating hepatic insulin signaling in estrogen-deficient rats. Nutrition 2016; 32:129-37. [DOI: 10.1016/j.nut.2015.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 01/21/2023]
|
43
|
Giménez-Bastida JA, Zieliński H. Buckwheat as a Functional Food and Its Effects on Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7896-913. [PMID: 26270637 DOI: 10.1021/acs.jafc.5b02498] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Buckwheat (BW) is a gluten-free pseudocereal that belongs to the Polygonaceae family. BW grain is a highly nutritional food component that has been shown to provide a wide range of beneficial effects. Health benefits attributed to BW include plasma cholesterol level reduction, neuroprotection, anticancer, anti-inflammatory, antidiabetic effects, and improvement of hypertension conditions. In addition, BW has been reported to possess prebiotic and antioxidant activities. In vitro and animal studies suggest that BW's bioactive compounds, such as D-chiro-inositol (DCI), BW proteins (BWP), and BW flavonoids (mainly rutin and quercetin) may be partially responsible for the observed effects. The purpose of this paper is to review the recent research regarding the health benefits of BW, in vitro and in vivo, focusing on the specific role of its bioactive compounds and on the mechanisms by which these effects are exerted.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences , Tuwima 10, P.O. Box 55, 10-748 Olsztyn, Poland
| | - Henryk Zieliński
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences , Tuwima 10, P.O. Box 55, 10-748 Olsztyn, Poland
| |
Collapse
|
44
|
Campana PRV, Mansur DS, Gusman GS, Ferreira D, Teixeira MM, Braga FC. Anti-TNF-α Activity of Brazilian Medicinal Plants and Compounds from Ouratea semiserrata. Phytother Res 2015; 29:1509-15. [PMID: 26094613 DOI: 10.1002/ptr.5401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Several plant species are used in Brazil to treat inflammatory diseases and associated conditions. TNF-α plays a pivotal role on inflammation, and several plant extracts have been assayed against this target, both in vitro and in vivo. The effect of 11 Brazilian medicinal plants on TNF-α release by LPS-activated THP-1 cells was evaluated. The plant materials were percolated with different solvents to afford 15 crude extracts, whose effect on TNF-α release was determined by ELISA. Among the evaluated extracts, only Jacaranda caroba (Bignoniaceae) presented strong toxicity to THP-1 cells. Considering the 14 non-toxic extracts, TNF-α release was significantly reduced by seven of them (inhibition > 80%), originating from six plants, namely Cuphea carthagenensis (Lythraceae), Echinodorus grandiflorus (Alismataceae), Mansoa hirsuta (Bignoniaceae), Ouratea semiserrata (Ochnaceae), Ouratea spectabilis and Remijia ferruginea (Rubiaceae). The ethanol extract from O. semiserrata leaves was fractionated over Sephadex LH-20 and RP-HPLC to give three compounds previously reported for the species, along with agathisflavone and epicatechin, here described for the first time in the plant. Epicatechin and lanceoloside A elicited significant inhibition of TNF-α release, indicating that they may account for the effect produced by O. semiserrata crude extract.
Collapse
Affiliation(s)
- Priscilla R V Campana
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, CEP 31.270-901, Brazil.,Divisão de Ciências Farmacêuticas, Fundação Ezequiel Dias, R. Conde Pereira Carneiro 80, Belo Horizonte, CEP 30.510-010, Brazil
| | - Daniel S Mansur
- Departamento de Bioquímica, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, CEP 31.270-901, Brazil
| | - Grasielle S Gusman
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, CEP 31.270-901, Brazil
| | - Daneel Ferreira
- Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, University of Mississippi, MS, 38677, USA
| | - Mauro M Teixeira
- Departamento de Bioquímica, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, CEP 31.270-901, Brazil
| | - Fernão C Braga
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, campus Pampulha, Belo Horizonte, CEP 31.270-901, Brazil
| |
Collapse
|
45
|
The effects and possible mechanisms of puerarin to treat endometriosis model rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:269138. [PMID: 25815028 PMCID: PMC4359829 DOI: 10.1155/2015/269138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/14/2015] [Indexed: 12/05/2022]
Abstract
Objective. To explore the effects of puerarin to treat endometriosis (EMT) model rats and the possible regulatory mechanisms. Methods. EMT model rats were surgically induced by autotransplantion of endometrial tissues. The appropriate dosage of puerarin to treat EMT model rats was determined by observing the pathologic morphology of ectopic endometrial tissues and by detecting the levels of estradiol (E2) and prostaglandin E2 (PGE2) of both serum and ectopic endometrial tissues. The related genes and proteins of ectopic endometrial tissues were analyzed by Real-time PCR and immunohistochemistry (IHC) to explore the possible mechanisms. Results. Puerarin could reduce the levels of E2 and PGE2 and prevent the growth of ectopic endometrium tissues by inhibiting the expression of aromatase cytochrome P450 (p450arom) and cyclooxygenase-2 (cox-2); puerarin could adjust the anabolism of E2 by upregulating the expression of 17β-hydroxysteroid-2 (17β-hsd-2) and downregulating the expression of 17β-hydroxysteroid-1 (17β-hsd-1) of the ectopic endometrium tissues; puerarin could increase the expression of ERβ and improve the inflammatory microenvironment of EMT model rats. Conclusions. Our data suggest that puerarin has a therapeutic effect on EMT model rats and could be a potential therapeutic agent for the treatment of EMT in clinic.
Collapse
|
46
|
Evaluation of a topical herbal agent for the promotion of bone healing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:905270. [PMID: 25810746 PMCID: PMC4355818 DOI: 10.1155/2015/905270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 11/17/2022]
Abstract
A topically used Chinese herbal paste, namely, CDNR, was designed to facilitate fracture healing which is usually not addressed in general hospital care. From our in vitro studies, CDNR significantly inhibited the release of nitric oxide from RAW264.7 cells by 51 to 77%. This indicated its anti-inflammatory effect. CDNR also promoted the growth of bone cells by stimulating the proliferation of UMR106 cells up to 18%. It also increased the biomechanical strength of the healing bone in a drill-hole defect rat model by 16.5% significantly. This result revealed its in vivo efficacy on facilitation of bone healing. Furthermore, the detection of the chemical markers of CDNR in the skin and muscle of the treatment area demonstrated its transdermal properties. However, CDNR did not affect the bone turnover markers in serum of the rats. With its anti-inflammatory and bone formation properties, CDNR is found effective in promoting bone healing.
Collapse
|
47
|
Terminalia chebula Fructus Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells and Production of Inflammatory Mediators in RAW 264.7. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:502182. [PMID: 25784946 PMCID: PMC4345257 DOI: 10.1155/2015/502182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 01/11/2023]
Abstract
Pathogenesis of atherosclerosis and neointima formation after angioplasty involves vascular smooth muscle cells (VSMCs) migration and proliferation followed by inflammatory responses mediated by recruited macrophages in the neointima. Terminalia chebula is widely used traditional medicine in Asia for its beneficial effects against cancer, diabetes, and bacterial infection. The study was designed to determine whether Terminalia chebula fructus water extract (TFW) suppresses VSMC migration and proliferation and inflammatory mediators production in macrophage (RAW 264.7). Our results showed that TFW possessed strong antioxidative effects in 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging and lipid peroxidation assays. In addition, TFW reduced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 cells. Also, TFW inhibited platelet-derived growth factor (PDGF-BB) induced VSMC migration as determined by wound healing and Boyden chamber assays. The antimigratory effect of TFW was due to its inhibitory effect on metalloproteinase-9 (MMP-9) expression, focal adhesion kinase (FAK) activation, and Rho-family of small GTPases (Cdc42 and RhoA) expression in VSMCs. Furthermore, TFW suppressed PDGF-BB induced VSMC proliferation by downregulation of mitogen activated protein kinases (MAPKs) signaling molecules. These results suggest that TFW could be a beneficial resource in the prevention of atherosclerosis.
Collapse
|
48
|
Xu Q, Liu J, Guo X, Tang Y, Zhou G, Liu Y, Huang Q, Geng Y, Liu Z, Su L. Xuebijing injection reduces organ injuries and improves survival by attenuating inflammatory responses and endothelial injury in heatstroke mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:4. [PMID: 25653103 PMCID: PMC4323134 DOI: 10.1186/s12906-015-0519-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/13/2015] [Indexed: 01/04/2023]
Abstract
Background The pathogenesis of heatstroke is a multi-factorial process involved with an interplay among subsequent inflammation, endothelial injury and coagulation disturbances, which makes pharmacological therapy of heatstroke a challenging problem. Xuebijing injection (XBJ), a traditional Chinese medicine used to sepsis, has been reported to suppress inflammatory responses and restore coagulation disturbances. However, little is known about the role of XBJ in heatstroke. Methods Mice were treated with indicated dose of XBJ before and/or after the induction of heatstroke. Serum inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and endothelial markers, von Willebrand Factor (vWF) and E-selectin, were measured by ELISA. Liver, kidney and heart profiles including alanine aminotransferase, aspartic aminotransferase, creatinine, blood urea nitrogen, and lactate dehydrogenase, were evaluated by UniCel DxC 800 Synchron Clinical Systems, and troponin was measured by ELISA. Coagulation profiles, including thrombin time, prothrombin time, activated partial thromboplastin time, international normalized ratio, and fibrinogen were examined by STA Compact® Hemostasis System. Jejunum injury was evaluated with H&E staining. Changes in mitochondrial structure in cardiac tissue were assesed by electron microscopy. Results Pretreatment with XBJ decreased serum pro-inflammatory cytokines including TNF-α and IL-6, as well as endothelial injury markers, vWF and E-selectin, in a dose-dependent manner in heatstroke mice. Similar protective effects were observed when XBJ was administered after, or both before and after heat insult. These protective effects lasted for over 12 h in mice receiving XBJ before and after heat insult. XBJ also improved survival rates in heatstroke mice, ameliorated liver, heart, and kidney injuries, including mitochondrial damage to the heart, and reduced coagulation disturbances. Conclusions XBJ prevents organ injuries and improves survival in heatstroke mice by attenuating inflammatory responses and endothelial injury. XBJ may be a potentially useful in the prevention and treatment of heatstroke.
Collapse
|
49
|
Choi SY, Choi JY, Lee JM, Lee S, Cho EJ. Tartary buckwheat on nitric oxide-induced inflammation in RAW264.7 macrophage cells. Food Funct 2015; 6:2664-70. [DOI: 10.1039/c5fo00639b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the effects of tartary buckwheat (TB, Fagopyrum tataricum) on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)- and interferon (IFN)-γ-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Soo Yeon Choi
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Ji Yeon Choi
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Jeong Min Lee
- Department of Integrative Plant Science
- Chung-Ang University
- Anseong 456-756
- Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science
- Chung-Ang University
- Anseong 456-756
- Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition
- Pusan National University
- Busan 609-735
- Republic of Korea
| |
Collapse
|
50
|
A new cycloartane-type triterpenoid saponin xanthine oxidase inhibitor from Homonoia riparia Lour. Molecules 2014; 19:13422-31. [PMID: 25178063 PMCID: PMC6271680 DOI: 10.3390/molecules190913422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022] Open
Abstract
A new cycloartane-type triterpenoid saponin named riparsaponin (1) was isolated from the stem of Homonoia riparia Lour together with six known compounds. The structure of riparsaponin was determined by using NMR and mass spectroscopy and X-ray crystallography techniques. Additionally, riparsaponin has a significant inhibitory effect on xanthine oxidase in vitro, and the IC50 was 11.16 nmol/mL.
Collapse
|