1
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3305-3325. [PMID: 36098621 DOI: 10.1080/02648725.2022.2122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
In response to different viral infections, including SARS-CoV-2 infection, pro-inflammatory, anti-inflammatory cytokines, and bioactive lipids are released from infected and immune cells. One of the most critical bioactive lipids is prostaglandins (PGs) which favor perseverance of inflammation leading to chronic inflammation as PGs act as cytokine amplifiers. PGs trigger the release of pro-inflammatory cytokines, activate Th cells, recruit immune cells, and increase the expression of pro-inflammatory genes. Therefore, PGs may induce acute and chronic inflammations in various inflammatory disorders and viral infections like SARS-CoV-2. PGs are mainly inhibited by non-steroidal anti-inflammatory drugs (NSAIDs) by blocking cyclooxygenase enzymes (COXs), which involve PG synthesis. NSAIDs reduce inflammation by selective or non-selective blocking activity of COX2 or COX1/2, respectively. In the Covid-19 era, there is a tremendous controversy regarding the use of NSAIDs in the management of SARS-CoV-2 infection. As well, the possible role of PGs in the pathogenesis of SARS-CoV-2 infection is not well-defined. Thus, the objective of the present study is to review the potential role of PGs and NSAIDs in Covid-19 in a narrative review regarding the preponderance of assorted views.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira
| | - Athanasios Alexiou
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, aghdad, Iraq
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nobendu Mukerjee
- AFNP Med, Wien, Austria
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, India
| | - Gaber El-Saber Batiha
- Department of Health Sciences, Novel Global Community Educational Foundation, Heber-sham, Australia
| |
Collapse
|
2
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2024; 66:3025-3041. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
3
|
Samarelli F, Graziano G, Gambacorta N, Graps EA, Leonetti F, Nicolotti O, Altomare CD. Small Molecules for the Treatment of Long-COVID-Related Vascular Damage and Abnormal Blood Clotting: A Patent-Based Appraisal. Viruses 2024; 16:450. [PMID: 38543815 PMCID: PMC10976273 DOI: 10.3390/v16030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
People affected by COVID-19 are exposed to, among others, abnormal clotting and endothelial dysfunction, which may result in deep vein thrombosis, cerebrovascular disorders, and ischemic and non-ischemic heart diseases, to mention a few. Treatments for COVID-19 include antiplatelet (e.g., aspirin, clopidogrel) and anticoagulant agents, but their impact on morbidity and mortality has not been proven. In addition, due to viremia-associated interconnected prothrombotic and proinflammatory events, anti-inflammatory drugs have also been investigated for their ability to mitigate against immune dysregulation due to the cytokine storm. By retrieving patent literature published in the last two years, small molecules patented for long-COVID-related blood clotting and hematological complications are herein examined, along with supporting evidence from preclinical and clinical studies. An overview of the main features and therapeutic potentials of small molecules is provided for the thromboxane receptor antagonist ramatroban, the pan-caspase inhibitor emricasan, and the sodium-hydrogen antiporter 1 (NHE-1) inhibitor rimeporide, as well as natural polyphenolic compounds.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Nicola Gambacorta
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Elisabetta Anna Graps
- ARESS Puglia—Agenzia Regionale Strategica per la Salute ed il Sociale, I-70121 Bari, Italy;
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | | |
Collapse
|
4
|
Farooqui AA, Farooqui T, Sun GY, Lin TN, Teh DBL, Ong WY. COVID-19, Blood Lipid Changes, and Thrombosis. Biomedicines 2023; 11:biomedicines11041181. [PMID: 37189799 DOI: 10.3390/biomedicines11041181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11929, Taiwan
| | - Daniel B L Teh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
5
|
Chiang KC, Gupta A, Sundd P, Krishnamurti L. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines 2023; 11:338. [PMID: 36830874 PMCID: PMC9953430 DOI: 10.3390/biomedicines11020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
People with sickle cell disease (SCD) are at greater risk of severe illness and death from respiratory infections, including COVID-19, than people without SCD (Centers for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated by endothelial injury, complement activation, inflammatory lipid storm, platelet activation, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, lipid mediators, including thromboxane A2, significantly increase in severe COVID-19 and SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages stimulates platelets to release microvesicles, which are harbingers of multicellular adhesion and thrombo-inflammation. Currently, there are limited therapeutic strategies targeting platelet-neutrophil activation and thrombo-inflammation in either SCD or COVID-19 during acute crisis. However, due to many similarities between the pathobiology of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease may likely be effective in the other. Therefore, the preclinical and clinical research spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, are potentially applicable to VOC. Here, we first outline the parallels between SCD and COVID-19; second, review the role of lipid mediators in the pathogenesis of these diseases; and lastly, examine the therapeutic targets and potential treatments for the two diseases.
Collapse
Affiliation(s)
| | - Ajay Gupta
- KARE Biosciences, Orange, CA 89128, USA
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Irvine, CA 92868, USA
| | - Prithu Sundd
- Vascular Medicine Institute and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Ogletree ML, Chander Chiang K, Kulshrestha R, Agarwal A, Agarwal A, Gupta A. Treatment of COVID-19 Pneumonia and Acute Respiratory Distress With Ramatroban, a Thromboxane A2 and Prostaglandin D2 Receptor Antagonist: A Four-Patient Case Series Report. Front Pharmacol 2022; 13:904020. [PMID: 35935851 PMCID: PMC9355466 DOI: 10.3389/fphar.2022.904020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxemia in COVID-19 pneumonia is associated with hospitalization, mechanical ventilation, and mortality. COVID-19 patients exhibit marked increases in fatty acid levels and inflammatory lipid mediators, predominantly arachidonic acid metabolites, notably thromboxane B2 >> prostaglandin E2 > prostaglandin D2. Thromboxane A2 increases pulmonary capillary pressure and microvascular permeability, leading to pulmonary edema, and causes bronchoconstriction contributing to ventilation/perfusion mismatch. Prostaglandin D2-stimulated IL-13 production is associated with respiratory failure, possibly due to hyaluronan accumulation in the lungs. Ramatroban is an orally bioavailable, dual thromboxane A2/TP and prostaglandin D2/DP2 receptor antagonist used in Japan for allergic rhinitis. Four consecutive outpatients with COVID-19 pneumonia treated with ramatroban exhibited rapid relief of dyspnea and hypoxemia within 12–36 h and complete resolution over 5 days, thereby avoiding hospitalization. Therefore, ramatroban as an antivasospastic, broncho-relaxant, antithrombotic, and immunomodulatory agent merits study in randomized clinical trials that might offer hope for a cost-effective pandemic treatment.
Collapse
Affiliation(s)
- Martin L. Ogletree
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
- *Correspondence: Martin L. Ogletree, ; Ajay Gupta,
| | | | | | - Aditya Agarwal
- Charak Foundation of India, Indore, India
- EyeSight Eye Hospital and Retina Centre, Indore, India
| | - Ashutosh Agarwal
- Charak Foundation of India, Indore, India
- EyeSight Eye Hospital and Retina Centre, Indore, India
| | - Ajay Gupta
- Charak Foundation, Orange, CA, United States
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California, Irvine, CA, United States
- *Correspondence: Martin L. Ogletree, ; Ajay Gupta,
| |
Collapse
|
7
|
Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022; 12:metabo12040333. [PMID: 35448520 PMCID: PMC9030008 DOI: 10.3390/metabo12040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
The lipidome has a broad range of biological and signaling functions, including serving as a structural scaffold for membranes and initiating and resolving inflammation. To investigate the biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological advancements have significantly improved over the last decade. This has unlocked the power of metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery and therapeutic development programs; however, appropriate standards have not been established for the field. Standardization would improve lipidomic analyses and accelerate the development of innovative therapies. This review aims to summarize considerations for lipidomic study designs including instrumentation, sample stabilization, data validation, and data analysis. In addition, this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration, lung disease, and autoimmune disease.
Collapse
|
8
|
Chiang KC, Rizk JG, Nelson DJ, Krishnamurti L, Subbian S, Imig JD, Khan I, Reddy ST, Gupta A. Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opin Ther Targets 2022; 26:13-28. [PMID: 35068281 PMCID: PMC10119876 DOI: 10.1080/14728222.2022.2031975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In COVID-19 pneumonia, there is a massive increase in fatty acid levels and lipid mediators with a predominance of cyclooxygenase metabolites, notably TxB2 ≫ PGE2 > PGD2 in the lungs, and 11-dehydro-TxB2, a TxA2 metabolite, in the systemic circulation. While TxA2 stimulates thromboxane prostanoid (TP) receptors, 11-dehydro-TxB2 is a full agonist of DP2 (formerly known as the CRTh2) receptors for PGD2. Anecdotal experience of using ramatroban, a dual receptor antagonist of the TxA2/TP and PGD2/DP2 receptors, demonstrated rapid symptomatic relief from acute respiratory distress and hypoxemia while avoiding hospitalization. AREAS COVERED Evidence supporting the role of TxA2/TP receptors and PGD2/DP2 receptors in causing rapidly progressive lung injury associated with hypoxemia, a maladaptive immune response and thromboinflammation is discussed. An innovative perspective on the dual antagonism of TxA2/TP and PGD2/DP2 receptor signaling as a therapeutic approach in COVID-19 is presented. This paper examines ramatroban an anti-platelet, immunomodulator, and antifibrotic agent for acute and long-haul COVID-19. EXPERT OPINION Ramatroban, a dual blocker of TP and DP2 receptors, has demonstrated efficacy in animal models of respiratory dysfunction, atherosclerosis, thrombosis, and sepsis, as well as preliminary evidence for rapid relief from dyspnea and hypoxemia in COVID-19 pneumonia. Ramatroban merits investigation as a promising antithrombotic and immunomodulatory agent for chemoprophylaxis and treatment.
Collapse
Affiliation(s)
| | - John G. Rizk
- Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore, MD, USA
- Arizona State University, Edson College, Phoenix, AZ, USA
| | | | - Lakshmanan Krishnamurti
- Department of Pediatric Hematology and Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Selvakumar Subbian
- Rutgers University, New Jersey Medical School and Public Health Research Institute, Newark, NJ, USA
| | - John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Imran Khan
- Department of Pathology and Laboratory Medicine, the University of California at Davis, Sacramento, CA, USA
| | - Srinivasa T. Reddy
- Departments of Medicine, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Toxicology Interdepartmental Degree Program, UCLA, Los Angeles, CA, USA
| | - Ajay Gupta
- Charak Foundation, Orange, CA
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, CA, USA
| |
Collapse
|
9
|
Chiang KC, Imig JD, Kalantar-Zadeh K, Gupta A. Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. Curr Opin Nephrol Hypertens 2022; 31:36-46. [PMID: 34846312 DOI: 10.1097/mnh.0000000000000750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Severe COVID-19 disease is often complicated by acute kidney injury (AKI), which may transition to chronic kidney disease (CKD). Better understanding of underlying mechanisms is important in advancing therapeutic approaches. RECENT FINDINGS SARS-CoV-2-induced endothelial injury initiates platelet activation, platelet-neutrophil partnership and release of neutrophil extracellular traps. The resulting thromboinflammation causes ischemia-reperfusion (I/R) injury to end organs. Severe COVID-19 induces a lipid-mediator storm with massive increases in thromboxane A2 (TxA2) and PGD2, which promote thromboinflammation and apoptosis of renal tubular cells, respectively, and thereby enhance renal fibrosis. COVID-19-associated AKI improves rapidly in the majority. However, 15-30% have protracted renal injury, raising the specter of transition from AKI to CKD. SUMMARY In COVID-19, the lipid-mediator storm promotes thromboinflammation, ischemia-reperfusion injury and cytotoxicity. The thromboxane A2 and PGD2 signaling presents a therapeutic target with potential to mitigate AKI and transition to CKD. Ramatroban, the only dual antagonist of the thromboxane A2/TPr and PGD2/DPr2 signaling could potentially mitigate renal injury in acute and long-haul COVID. Urgent studies targeting the lipid-mediator storm are needed to potentially reduce the heavy burden of kidney disease emerging in the wake of the current pandemic.
Collapse
Affiliation(s)
| | - John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| | - Ajay Gupta
- KARE Biosciences, Orange, California
- Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine, Orange, California, USA
| |
Collapse
|
10
|
Ricciotti E, Laudanski K, FitzGerald GA. Nonsteroidal anti-inflammatory drugs and glucocorticoids in COVID-19. Adv Biol Regul 2021; 81:100818. [PMID: 34303107 PMCID: PMC8280659 DOI: 10.1016/j.jbior.2021.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by a wide spectrum of symptom severity, which is manifested at different phases of infection and demands different levels of care. Viral load, host innate-immune response to SARS-CoV-2, and comorbidities have a direct impact on the clinical outcomes of COVID-19 patients and determine the diverse disease trajectories. The initial SARS-CoV-2 penetrance and replication in the host causes death of infected cells, determining the viral response. SARS-CoV-2 replication in the host triggers the activation of host antiviral immune mechanisms, determining the inflammatory response. While a healthy immune response is essential to eliminate infected cells and prevent spread of the virus, a dysfunctional immune response can result in a cytokine storm and hyperinflammation, contributing to disease progression. Current therapies for COVID-19 target the virus and/or the host immune system and may be complicated in their efficacy by comorbidities. Here we review the evidence for use of two classes of anti-inflammatory drugs, glucocorticoids and nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of COVID-19. We consider the clinical evidence regarding the timing and efficacy of their use, their potential limitations, current recommendations and the prospect of future studies by these and related therapies.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA; Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Archambault AS, Zaid Y, Rakotoarivelo V, Turcotte C, Doré É, Dubuc I, Martin C, Flamand O, Amar Y, Cheikh A, Fares H, El Hassani A, Tijani Y, Côté A, Laviolette M, Boilard É, Flamand L, Flamand N. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. FASEB J 2021; 35:e21666. [PMID: 34033145 PMCID: PMC8206770 DOI: 10.1096/fj.202100540r] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for coronavirus disease 2019 (COVID-19). While COVID-19 is often benign, a subset of patients develops severe multilobar pneumonia that can progress to an acute respiratory distress syndrome. There is no cure for severe COVID-19 and few treatments significantly improved clinical outcome. Dexamethasone and possibly aspirin, which directly/indirectly target the biosynthesis/effects of numerous lipid mediators are among those options. Our objective was to define if severe COVID-19 patients were characterized by increased bioactive lipids modulating lung inflammation. A targeted lipidomic analysis of bronchoalveolar lavages (BALs) by tandem mass spectrometry was done on 25 healthy controls and 33 COVID-19 patients requiring mechanical ventilation. BALs from severe COVID-19 patients were characterized by increased fatty acids and inflammatory lipid mediators. There was a predominance of thromboxane and prostaglandins. Leukotrienes were also increased, notably LTB4 , LTE4 , and eoxin E4 . Monohydroxylated 15-lipoxygenase metabolites derived from linoleate, arachidonate, eicosapentaenoate, and docosahexaenoate were also increased. Finally yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also increased, underscoring that the lipid mediator storm occurring in severe COVID-19 involves pro- and anti-inflammatory lipids. Our data unmask the lipid mediator storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Younes Zaid
- Biology Department, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Volatiana Rakotoarivelo
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Caroline Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Étienne Doré
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| | - Olivier Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Youssef Amar
- Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Amine Cheikh
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Hakima Fares
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Amine El Hassani
- Cheikh Zaïd Hospital, Abulcasis University of Health Sciences, Rabat, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Andréanne Côté
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada
| | - Éric Boilard
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Centre de Recherche Arthrite, Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier, Universitaire de Québec-Université Laval, Québec, QC, Canada.,Département de Microbiologie-Infectiologie et d'immunologie, Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Département de médecine, Université Laval, Québec, QC, Canada.,Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
The Reply. Am J Med 2021; 134:e298. [PMID: 33888224 PMCID: PMC8054639 DOI: 10.1016/j.amjmed.2020.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022]
|