1
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Wei Q, Zhang YH. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules 2024; 29:1570. [PMID: 38611849 PMCID: PMC11013936 DOI: 10.3390/molecules29071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/β-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.
Collapse
Affiliation(s)
- Qiang Wei
- School of Medicine, Anhui Xinhua University, 555 Wangjiang West Road, Hefei 230088, China;
| | | |
Collapse
|
3
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Li X, Chang Y, Shen W, Huang G, Hu N, Lv H, Jin M. miR-138 from ADSC Exo accelerates wound healing by targeting SIRT1/PTEN pathway to promote angiogenesis and fibrosis. Cell Signal 2023; 111:110843. [PMID: 37544635 DOI: 10.1016/j.cellsig.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuzhen Chang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Weijun Shen
- Department of Anesthesiology, Tenth People's Hospital of Tongji University, No 301 Middle Yan Chang Road, Shanghai 200072, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Nan Hu
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, 21000, Jiangsu, China.
| | - Haihong Lv
- Department of endocrinology, The First Hospital of Lanzhou University, #1 Donggang West Road Road, Lanzhou, 730000, Gansu, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
5
|
Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA, Rahmani AH. Effects and Mechanisms of Kaempferol in the Management of Cancers through Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:ijms24108630. [PMID: 37239974 DOI: 10.3390/ijms24108630] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Basmah F Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
6
|
Duan ZL, Wang YJ, Lu ZH, Tian L, Xia ZQ, Wang KL, Chen T, Wang R, Feng ZY, Shi GP, Xu XT, Bu F, Ding Y, Jiang F, Zhou JY, Wang Q, Chen YG. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154658. [PMID: 36706698 DOI: 10.1016/j.phymed.2023.154658] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.
Collapse
Affiliation(s)
- Zheng-Lan Duan
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yu-Ji Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhi-Hua Lu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Tian
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zi-Qian Xia
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Kui-Ling Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tuo Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Wang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ze-Yu Feng
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guo-Ping Shi
- Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xin-Tian Xu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fan Bu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yang Ding
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Feng Jiang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Qiong Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Yu-Gen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Collaborative Innovation Center for Cancer Medicine, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
7
|
Cui Z, Zhang W, Le X, Song K, Zhang C, Zhao W, Sha L. Analyzing network pharmacology and molecular docking to clarify Duhuo Jisheng decoction potential mechanism of osteoarthritis mitigation. Medicine (Baltimore) 2022; 101:e32132. [PMID: 36550856 PMCID: PMC9771196 DOI: 10.1097/md.0000000000032132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a classic remedy for treating Osteoarthritis (OA), Duhuo Jisheng decoction has successfully treated countless patients. Nevertheless, its specific mechanism is unknown. This study explored the active constituents of Duhuo Jisheng decoction and the potential molecular mechanisms for treating OA using a Network Pharmacology approaches. Screening active components and corresponding targets of Duhuo parasite decoction by traditional Chinese medicine systems pharmacology database and analysis platform database. Combining the following databases yielded OA disease targets: GeneCards, DrugBank, PharmGkb, Online Mendelian Inheritance in Man, and therapeutic target database. The interaction analysis of the herb-active ingredient-core target network and protein-protein interaction protein network was constructed by STRING platform and Cytoscape software. Gene ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were carried out. PyMOL and other software were used to verify the molecular docking between the essential active components and the core target. 262 active ingredients were screened, and their main components were quercetin, kaempferol, wogonin, baicalein, and beta-carotene. 108 intersection targets of disease and drug were identified, and their main components were RELA, FOS, STAT3, MAPK14, MAPK1, JUN, and ESR1. Gene ontology analysis showed that the key targets were mainly involved in biological processes such as response to lipopolysaccharide, response to xenobiotic stimulus, and response to nutrient levels. The results of Kyoto Encyclopedia of Genes and Genomes analysis show that the signal pathways include the AGE - RAGE signaling pathway, IL - 17 signaling pathway, TNF signaling pathway, and Toll - like receptor signaling pathway. Molecular docking showed that the main active components of Duhuo parasitic decoction had a good bonding activity with the key targets in treating OA. Duhuo Jisheng decoction can reduce the immune-inflammatory reaction, inhibit apoptosis of chondrocytes, strengthen proliferation and repair of chondrocytes and reduce the inflammatory response in a multi-component-multi-target-multi-pathway way to play a role in the treatment of OA.
Collapse
Affiliation(s)
- Zhenhai Cui
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Weidong Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuezhen Le
- The Third Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Kunyu Song
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunliang Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wenhai Zhao
- Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liquan Sha
- The Third Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
- * Correspondence: Liquan Sha, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China (e-mail: )
| |
Collapse
|
8
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
9
|
Xu L, Song X, Zhang Y, Lin N, Wang J, Dai Q. Investigation of the mechanism of action of Shengxuexiaoban Capsules against primary immune thrombocytopenia using network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154413. [PMID: 36037773 DOI: 10.1016/j.phymed.2022.154413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Shengxuexiaoban Capsules (SC) is a classical prescription in traditional Chinese medicine (TCM) and has been clinically adopted in the treatment of primary immune thrombocytopenia (ITP) in China. However, the underlying mechanisms of the actions of SC on ITP remain clear. METHODS A network pharmacology approach was adopted to investigate the underlying molecular mechanism of SC in treating ITP, and the effects of SC on the proliferation, differentiation, and apoptosis of megakaryocyte (MK) and on the ITP animal model were investigated. RESULTS Network pharmacology analysis found 128 active compounds and 268 targets of these compounds in SC, as well as 221 ITP-related targets. The topological analysis found a central network containing 82 genes, which were significantly associated with the regulation of transcription, cell proliferation, apoptosis processes, the PI3K-AKT signaling pathway, the MAPK signaling pathway, and the ERK1 and ERK2 cascades. It showed that SC increased the proliferation and differentiation of MK, but had no significant impact on MK apoptosis in vivo. The addition of SC increased the gene expression of several potential targets, including STAT3, KDR, CASP3, and TGFB1. In addition, SC administration elevated the protein expression of p-AKT and inhibit the protein expression of p-ERK, but has no impact on the protein expression of p-P38. Moreover, SC could improve haemogram parameters, coagulation indicators, and the proliferation and differentiation of MK in the ITP animal model. CONCLUSIONS The present study systematically elucidated the underlying mechanisms of SC against ITP and provided an efficient strategy to discover the pharmacological mechanism of TCM. It may strengthen the understanding of SC and facilitate more application of this formula in the treatment of ITP.
Collapse
Affiliation(s)
- Liping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinwei Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jian Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaoding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China.
| |
Collapse
|
10
|
Chen M, Xiao J, El-Seedi HR, Woźniak KS, Daglia M, Little PJ, Weng J, Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Crit Rev Food Sci Nutr 2022; 64:2157-2175. [PMID: 36099317 DOI: 10.1080/10408398.2022.2121261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.
Collapse
Affiliation(s)
- Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Ali ES, Akter S, Ramproshad S, Mondal B, Riaz TA, Islam MT, Khan IN, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview. Cancer Cell Int 2022; 22:246. [PMID: 35941592 PMCID: PMC9358858 DOI: 10.1186/s12935-022-02666-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Thoufiqul Alam Riaz
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Study on Mechanism of Invigorating Qi and Promoting Blood Circulation in Treatment of Angiogenesis after Myocardial Infarction Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5093486. [PMID: 35656461 PMCID: PMC9152384 DOI: 10.1155/2022/5093486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2022]
Abstract
Objective This article aims to explore the impact and mechanism of invigorating qi and promoting blood circulation (IQPBC) on angiogenesis after myocardial infarction (AMI) by using network pharmacology approach. Methods First, IQPBC was searched on the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and the main active ingredients and targets of IQPBC were screened and obtained. Second, by virtue of GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, the targets related to AMI are screened and then obtained. Then, the intersection targets between IQPBC and AMI can be obtained by using online tool Venny 2.1.0. Third, based on the STRING database, the interaction of target proteins is established and some key targets can be analyzed and obtained. Finally, the IQPBC-AMI interaction network is constructed by using Cytoscape, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses are executed by DAVID and OmicShare databases. Results 143 intersection targets between IQPBC and AMI are obtained. Besides, key active ingredients, namely, quercetin, tanshinone, kaempferol, and luteolin, are shown. Furthermore, AKT1, VEGFA, STAT3, HIF-1α, and other 10 key targets are obtained. A total of 752 enrichment results are acquired by using GO analysis. KEGG pathway enrichment analysis shows 241 signaling pathways, focusing on cancer, fluid shear stress and atherosclerosis, and TNF and PI3K/AKT signaling pathways. Conclusion This article studies the potential targets and signaling pathways of IQPBC drugs acting on AMI via the network pharmacology approach, which better illustrates the effect and mechanism, and provides some good ideas for the following mechanism research studies.
Collapse
|
13
|
Licoflavone A Suppresses Gastric Cancer Growth and Metastasis by Blocking the VEGFR-2 Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5497991. [PMID: 35509849 PMCID: PMC9061026 DOI: 10.1155/2022/5497991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Objectives Licoflavone A (LA) is a natural flavonoid compound derived from the root of Glycyrrhiza. This study investigated the antitumor effect and underlying molecular mechanisms of LA against gastric cancer (GC) in vitro and in vivo. Materials and Methods A CCK8 assay was used to measure the antiproliferative activity of LA in human GC SGC-7901, MKN-45, MGC-803 cells, and human GES-1 cells. Target prediction and protein-protein interaction (PPI) analysis were used to identify the potential molecular targets of LA. The binding pattern of LA to VEGFR-2 was analyzed by molecular docking and molecular dynamic (MD). The affinity of LA for VEGFR-2 was determined by microscale thermophoresis (MST). The protein tyrosine kinase activity of VEGFR-2 in the presence of LA was determined by an enzyme activity test. The effect of LA on the proliferation of VEGF-stimulated MKN-45 cells was measured with CCK8 assays, clone formation assays, and 3D microsphere models. Hoechst 33342 staining, FCM, MMP, and WB assays were used to investigate the ability of LA to block cell cycle and promote apoptosis of VEGF-stimulated MKN-45 cells. Transwell matrix assays were used to measure migration and invasion, and WB assays were used to measure EMT. Results LA inhibited the proliferation of SGC-7901, MKN-45, and MGC-803 cells and VEGF-stimulated MKN-45 cells. VEGFR-2 was identified as the target of LA. LA could also block cell cycle, induce apoptosis, and inhibit migration, invasion, and EMT of VEGF-stimulated MKN-45 cells. Functional analyses further revealed that the cytotoxic effect of LA on VEGF-stimulated MKN-45 cells potentially involved the PI3K/AKT and MEK/ERK signaling pathways. Conclusions This study demonstrates that LA has anti-GC potency in vitro and in vivo. LA affects the proliferation, cycle, apoptosis, migration, invasion, and EMT by targeting VEGFR-2 and blocks the PI3K/AKT and MEK/ERK signaling pathways in VEGF-stimulated MKN-45 cells.
Collapse
|
14
|
García-Caballero M, Torres-Vargas JA, Marrero AD, Martínez-Poveda B, Medina MÁ, Quesada AR. Angioprevention of Urologic Cancers by Plant-Derived Foods. Pharmaceutics 2022; 14:pharmaceutics14020256. [PMID: 35213989 PMCID: PMC8875200 DOI: 10.3390/pharmaceutics14020256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The number of cancer cases worldwide keeps growing unstoppably, despite the undeniable advances achieved by basic research and clinical practice. Urologic tumors, including some as prevalent as prostate, bladder or kidney tumors, are no exceptions to this rule. Moreover, the fact that many of these tumors are detected in early stages lengthens the duration of their treatment, with a significant increase in health care costs. In this scenario, prevention offers the most cost-effective long-term strategy for the global control of these diseases. Although specialized diets are not the only way to decrease the chances to develop cancer, epidemiological evidence support the role of certain plant-derived foods in the prevention of urologic cancer. In many cases, these plants are rich in antiangiogenic phytochemicals, which could be responsible for their protective or angiopreventive properties. Angiogenesis inhibition may contribute to slow down the progression of the tumor at very different stages and, for this reason, angiopreventive strategies could be implemented at different levels of chemoprevention, depending on the targeted population. In this review, epidemiological evidence supporting the role of certain plant-derived foods in urologic cancer prevention are presented, with particular emphasis on their content in bioactive phytochemicals that could be used in the angioprevention of cancer.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - José Antonio Torres-Vargas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Ana Dácil Marrero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Beatriz Martínez-Poveda
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), E-28019 Madrid, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
| | - Ana R. Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
- Correspondence:
| |
Collapse
|
15
|
Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci 2021; 22:12455. [PMID: 34830339 PMCID: PMC8621356 DOI: 10.3390/ijms222212455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is, globally, one of the main causes of death. Even though various therapies are available, they are still painful because of their adverse side effects. Available treatments frequently fail due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemotherapy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies have suggested small dietary molecules as complementary treatments for cancer patients. Different components of herbal/edible plants, known as flavonoids, have recently garnered attention due to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory, anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown anticancer activity by affecting different signaling cascades. This article summarizes the key progress made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR pathway in various cancers.
Collapse
Affiliation(s)
- Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Wang B, Wu Z, Li W, Liu G, Tang Y. Insights into the molecular mechanisms of Huangqi decoction on liver fibrosis via computational systems pharmacology approaches. Chin Med 2021; 16:59. [PMID: 34301291 PMCID: PMC8306236 DOI: 10.1186/s13020-021-00473-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6: 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. METHODS Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein-protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, considering the concentrations of prototype compounds and metabolites of HQD, the critical compound-liver fibrosis target bipartite network was constructed. RESULTS 68 compounds including 17 prototype components and 51 metabolic products were collected. 540 compound-target interactions were obtained between the 68 compounds and 95 targets. Combining network analysis, molecular docking and concentration of compounds, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis. These interactions would maintain the balance of ECM, reduce liver damage, inhibit hepatocyte apoptosis, and alleviate liver inflammation through five signaling pathways including p53, PPAR, HIF-1, IL-17, and TNF signaling pathway. CONCLUSIONS This study provides a new way to understand the MoA of HQD on liver fibrosis by considering the concentrations of components and metabolites, which might be a model for investigation of MoA of other Chinese herbs.
Collapse
Affiliation(s)
- Biting Wang
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zengrui Wu
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
17
|
Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 2021; 93:108634. [PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdi Wira Septama
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia; Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor
| |
Collapse
|
18
|
Li S, Hao M, Wu T, Wang Z, Wang X, Zhang J, Zhang L. Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis. Biomed Pharmacother 2021; 137:111419. [PMID: 33761622 DOI: 10.1016/j.biopha.2021.111419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Atherosclerosis, inflammatory disease, is a major reason for cardiovascular diseases and stroke. Kaempferol (Kae) has been well-documented to have pharmacological activities in the previous studies. However, the detailed mechanisms by which Kae regulates inflammation, oxidative stress, and apoptosis in Human Umbilical Vein Endothelial Cells (HUVECs) remain unknown. METHODS AND RESULTS The real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure expression levels of circNOL12, nucleolar protein 12 (NOL12), miR-6873-3p, and Fibroblast growth factor receptor substrate 2 (FRS2) in HUVECs treated with either oxidized low-density lipoprotein (ox-LDL) alone or in combination with Kae. The cells viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. The inflammation and oxidative stress were assessed by checking inflammatory factors, Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) levels in ox-LDL-induced HUVECs. The apoptotic cells were quantified by flow cytometry assay. The western blot assay was used for measuring protein expression. The interaction relationship between miR-6873-3p and circNOL12 or FRS2 was analyzed by dual-luciferase reporter and RNA pull-down assays. Treatment with Kae could inhibit ox-LDL-induced the upregulation of circNOL12 in HUVECs. Importantly, Kae weakened ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs, which was abolished by overexpression of circNOL12. What's more, miR-6873-3p was a target of circNOL12 in HUVECs, and the upregulation of miR-6873-3p overturned circNOL12 overexpression-induced effects on HUVECs treated with ox-LDL and Kae. FRS2 was negatively regulated by miR-6873-3p in HUVECs. CONCLUSION Kae alleviated ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs by regulating circNOL12/miR-6873-3p/FRS2 axis.
Collapse
Affiliation(s)
- Shuangzhan Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Meihua Hao
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Taisheng Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Zixuan Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xicheng Wang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Junjian Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Lei Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan, China.
| |
Collapse
|
19
|
Network Pharmacology Interpretation of Fuzheng-Jiedu Decoction against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4652492. [PMID: 33688358 PMCID: PMC7914091 DOI: 10.1155/2021/4652492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
Introduction Traditional Chinese medicine (TCM) believes that the pathogenic factors of colorectal cancer (CRC) are “deficiency, dampness, stasis, and toxin,” and Fuzheng–Jiedu Decoction (FJD) can resist these factors. In this study, we want to find out the potential targets and pathways of FJD in the treatment of CRC and also explain from a scientific point of view that FJD multidrug combination can resist “deficiency, dampness, stasis, and toxin.” Methods We get the composition of FJD from the TCMSP database and get its potential target. We also get the potential target of colorectal cancer according to the OMIM Database, TTD Database, GeneCards Database, CTD Database, DrugBank Database, and DisGeNET Database. Subsequently, PPI analysis, KEGG pathways analysis, and GO biological processes analysis were carried out for the target of FJD in the therapy of colorectal cancer. In addition, we have also built a relevant network diagram. Results In this study, we identified four core compounds of FJD in the therapy of colorectal cancer, including quercetin, kaempferol, beta-sitosterol, and stigmasterol. At the same time, we also obtained 30 core targets, including STAT3, INS, TP53, VEGFA, AKT1, TNF, IL6, JUN, EGF, CASP3, MAPK3, MAPK1, MAPK8, SRC, IGF1, CCND1, ESR1, EGFR, PTEN, MTOR, FOS, PTGS2, CXCL8, HRAS, CDH1, BCL2L1, FN1, MMP9, ERBB2, and JAK2. FJD treatment of colorectal cancer mainly involves 112 KEGG pathways, including FoxO (hsa04068) signaling pathway, PI3K-Akt (hsa04151) signaling pathway, HIF-1 (hsa04066) signaling pathway, T cell receptor (hsa04660) signaling pathway, and ErbB (hsa04012) signaling pathway. At the same time, 330 GO biological processes were summarized, including cell proliferation, cell apoptosis, angiogenesis, inflammation, and immune. Conclusions In this study, we found that FJD can regulate cell proliferation, apoptosis, inflammation and immunity, and angiogenesis through PI3K-Akt signaling pathway to play an anti-CRC effect.
Collapse
|
20
|
Wu H, Wei M, Li N, Lu Q, Shrestha SM, Tan J, Zhang Z, Wu G, Shi R. Clopidogrel-Induced Gastric Injury in Rats is Attenuated by Stable Gastric Pentadecapeptide BPC 157. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5599-5610. [PMID: 33376304 PMCID: PMC7763470 DOI: 10.2147/dddt.s284163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Aim Although Clopidogrel is safe in healthy volunteers, it can induce recurrence of gastric ulcers in high-risk patients. Here, we investigated the protective effect of the natural product, stable gastric pentadecapeptide 157 (BPC 157) on Clopidogrel-induced gastric injury. Methods We used acetic acid to induce gastric ulcer in Sprague Dawley rats. Clopidogrel alone or in combination with BPC 157 or L-NAME (nitric oxide system blockade) were administered after healing of acetic acid-induced ulcer. One percent methylcellulose solution was used as control. Ulcer recurrence rate and the ulcer index were compared between these groups. Gastric mucosal apoptosis rate, microscopic inflammation activity and angiogenesis markers vascular endothelial growth factor A (VEGF-A) and CD34 were examined by TUNEL, histological evaluations (HE) and immunohistochemistry (IHC). Pathways involved, expressions of endoplasmic reticulum (ER) stress apoptosis marker CHOP, angiogenic markers VEGF-A and its receptor VEGFR1, and endothelial NO synthase (eNOS) were all analyzed by Western blot. Results This study indicated that Clopidogrel significantly induced the gastric ulcers recurrence, severe inflammation and ER stress related apoptosis of the gastric mucosa, suppressed the synthesis of angiogenic markers and eNOS. Furthermore, Clopidrogel intervention resulted in the activation of protein kinase B (AKT) and p38 mitogen-activated protein kinase (p38/MAPK). BPC 157 attenuated the gastric mucosal damage caused by Clopidogrel and reversed these molecular effects. However, NO blockade L-NAME weakened the protective effect and thus the molecular effects of BPC 157 on gastric mucosa. Conclusion In conclusion, these results suggest that BPC 157 inhibited Clopidogrel-induced gastric mucosa injury partially by inhibition of gastric mucosa cell ER stress-mediated apoptosis and inflammation, and promoting gastric mucosa angiogenesis via VEGF-A/VEGFR1 mediated-AKT/p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Hailu Wu
- Medical School of Southeast University, Nanjing 210009, People's Republic of China.,Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, People's Republic of China
| | - Ming Wei
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, People's Republic of China
| | - Nan Li
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, People's Republic of China
| | - Qin Lu
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, People's Republic of China
| | | | - Jiacheng Tan
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, People's Republic of China
| | - Zhenyu Zhang
- Division of Gastroenterology, Department of Medicine, Nanjing Medical University Nanjing First Hospital, Nanjing 210009, People's Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Nanjing 210009, People's Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
21
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
22
|
Cho HD, Lee KW, Won YS, Kim JH, Seo KI. Cultivated Orostachys japonicus extract inhibits VEGF-induced angiogenesis via regulation of VEGFR2 signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112664. [PMID: 32045685 DOI: 10.1016/j.jep.2020.112664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Orostachys japonicus A. Berger (O. japonicus), so-called Wa-song in Korea, a traditional food and medicine that grows on mountain rocks and roof tiles. Wa-song containing various phenolic compounds have been reported as a medicinal plant for prevention of fibrosis, cancer, inflammation, and oxidative damage. AIM OF THE STUDY The present study was designed to examine the anti-angiogenic effects of cultivated Orostachys japonicus 70% ethanol extract (CE) in vascular endothelial growth factor (VEGF)-stimulated human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS CE was prepared with 70% ethanol. HUVECs, rat aortic rings, and matrigel plug in mice were treated with CE (10-20 μg/mL) and VEGF (20-50 ng/mL), and the anti-angiogenic activities of CE were analyzed by SRB, wound healing, trans-well invasion, capillary-like tubule formation, rat aortas, Western blot, and matrigel plug assay. Phenolic compounds in CE were analyzed using a high-performance liquid chromatography (HPLC)-PDA system. RESULTS Treatment of CE (10-20 μg/mL) markedly suppressed proliferation of HUVECs in the presence (from 136.5% to 112.2%) or absence of VEGF (from 100.0% to 92.1%). The proliferation inhibitory effect of CE was caused by G0/G1 cell cycle arrest, and the decrease of CDK-2, CDK-4, Cyclin D1 and Cyclin E1. Furthermore, CE treatment showed significant angiogenesis inhibitory effects on motility, invasion and micro-vessel formation of HUVECs, rat aortic rings and subcutaneous matrigels under VEGF-stimulation condition. In HUVECs, CE-induced anti-angiogenic effect was regulated by inhibition of the PI3K/AKT/mTOR, MAPK/p38, MAPK/ERK, FAK-Src, and VEGF-VEGFR2 signaling pathways. CONCLUSION This study demonstrated that CE might be used as a potential natural substance, multi-targeted angiogenesis inhibitor, functional food material.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Industry-Academy Cooperation, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwan-Woo Lee
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Yeong-Seon Won
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Jeong-Ho Kim
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
23
|
Kim JK, Park SU. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI JOURNAL 2020; 19:627-634. [PMID: 32536833 PMCID: PMC7290101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/05/2020] [Indexed: 10/26/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea,*To whom correspondence should be addressed: Sang Un Park, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea; Tel.: +82-42-821-5730, Fax: +82-42-822-2631, E-mail:
| |
Collapse
|
24
|
Ocaña MC, Martínez-Poveda B, Marí-Beffa M, Quesada AR, Medina MÁ. Fasentin diminishes endothelial cell proliferation, differentiation and invasion in a glucose metabolism-independent manner. Sci Rep 2020; 10:6132. [PMID: 32273578 PMCID: PMC7145862 DOI: 10.1038/s41598-020-63232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
The synthetic compound fasentin has been described as a modulator of GLUT-1 and GLUT-4 transporters, thus inhibiting glucose uptake in some cancer cells. Endothelial glucose metabolism has been recently connected to angiogenesis and it is now an emerging topic in scientific research. Indeed, certain compounds with a known effect on glucose metabolism have also been shown to inhibit angiogenesis. In this work we tested the capability of fasentin to modulate angiogenesis in vitro and in vivo. We show that fasentin inhibited tube formation in endothelial cells by a mechanism that involves a negative effect on endothelial cell proliferation and invasion, without affecting other steps related to the angiogenic process. However, fasentin barely decreased glucose uptake in human dermal microvascular endothelial cells and the GLUT-1 inhibitor STF-31 failed to inhibit tube formation in these cells. Therefore, this modulatory capacity on endothelial cells function exerted by fasentin is most likely independent of a modulation of glucose metabolism. Taken together, our results show a novel biological activity of fasentin, which could be evaluated for its utility in cancer and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain
| | - Manuel Marí-Beffa
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, E-29071, Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071, Málaga, Spain.
- IBIMA (Biomedical Research Institute of Málaga), E-29071, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), E-29071, Málaga, Spain.
| |
Collapse
|
25
|
Bradley JR, Wang J, Pacey S, Warren AY, Pober JS, Al‐Lamki RS. Tumor necrosis factor receptor-2 signaling pathways promote survival of cancer stem-like CD133 + cells in clear cell renal carcinoma. FASEB Bioadv 2020; 2:126-144. [PMID: 32123862 PMCID: PMC7003657 DOI: 10.1096/fba.2019-00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 08/25/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) contains cancer stem-like cells (CSCs) that express CD133 (ccRCC-CD133+). CSCs are rarely in cell cycle and, as nonproliferating cells, resist most chemotherapeutic agents. Previously, we reported that tumor necrosis factor receptor-2 (TNFR2) signaling promotes the cell cycle entry of ccRCC-CD133+CSCs, rendering them susceptible to cell-cycle-dependent chemotherapeutics. Here, we describe a TNFR2-activated signaling pathway in ccRCC-CD133+CSCs that is required for cell survival. Wild-type (wt)TNF or R2TNF but not R1TNF (TNF muteins that selectively bind to TNFR2 and TNFR1) induces phosphorylation of signal transducer and activator of transcription 3 (STAT3) on serine727 but not tyrosine705, resulting in pSTAT3Ser727 translocation to and colocalization with TNFR2 in mitochondria. R2TNF signaling activates a kinase cascade involving the phosphorylation of VEGFR2, PI-3K, Akt, and mTORC. Inhibition of any of the kinases or siRNA knockdown of TNFR2 or STAT3 promotes cell death associated with mitochondrial morphological changes, cytochrome c release, generation of reactive oxygen species, and TUNEL+cells expressing phosphorylated mixed lineage kinase-like (MLKL). Pretreatment with necrostatin-1 is more protective than z-VAD.fmk, suggesting that most death is necroptotic and TNFR2 signaling promotes cell survival by preventing mitochondrial-mediated necroptosis. These data suggest that a TNFR2 selective agonist may offer a potential therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- John R. Bradley
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Jun Wang
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Simon Pacey
- Department of OncologyNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Anne Y. Warren
- Department of HistopathologyAddenbrooke's Hospital and University of CambridgeCambridgeUK
| | | | - Rafia S. Al‐Lamki
- Department of MedicineNIHR Cambridge Biomedical Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
26
|
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2019; 34:911-923. [PMID: 31829475 DOI: 10.1002/ptr.6577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Regulated cell death (RCD) guarantees to preserve organismal homeostasis. Apoptosis and autophagy are two major arms of RCD, while endoplasmic reticulum (ER) as a crucial organelle involved in proteostasis, promotes cells toward autophagy and apoptosis. Alteration in ER stress and autophagy machinery is responsible for a great number of diseases. Therefore, targeting those pathways appears to be beneficial in the treatment of relevant diseases. Meantime, among the traditional herb medicine, kaempferol as a flavonoid seems to be promising to modulate ER stress and autophagy and exhibits protective effects on malfunctioning cells. There are some reports indicating the capability of kaempferol in affecting autophagy and ER stress. In brief, kaempferol modulates autophagy in noncancerous cells to protect cells against malfunction, while it induces cell mortality derived from autophagy through the elevation of p-AMP-activated protein kinase, light chain-3-II, autophagy-related geness, and Beclin-1 in cancer cells. Noteworthy, kaempferol enhances cell survival through C/EBP homologous protein (CHOP) suppression and GRP78 increment in noncancerous cells, while it enhances cell mortality through the induction of unfolding protein response and CHOP increment in cancer cells. In this review, we discuss how kaempferol modulates autophagy and ER stress in noncancer and cancer cells to expand our knowledge of new pharmacological compounds for the treatment of associated diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Sahar Roomiani
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
27
|
Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2019; 11:cancers11101618. [PMID: 31652660 PMCID: PMC6827047 DOI: 10.3390/cancers11101618] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Mihail Buse
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Rares Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | | | - Alexandru Irimie
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 40015 Cluj-Napoca, Romania.
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 601 77 Brno, Czech Republic.
| | - Calin Ionescu
- th Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania.
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
28
|
Zhao J, Wu J, Xu B, Yuan Z, Leng Y, Min J, Lan X, Luo J. Kaempferol promotes bone formation in part via the mTOR signaling pathway. Mol Med Rep 2019; 20:5197-5207. [PMID: 31638215 PMCID: PMC6854588 DOI: 10.3892/mmr.2019.10747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Previous research indicates that kaempferol (Kae) promotes osteogenesis, but its underlying mechanism of action remains unclear. The present study hypothesized that the osteogenic effects of Kae were mediated through mammalian target of rapamycin (mTOR). To validate this hypothesis, bone marrow mesenchymal stem cells (BMSCs) from ovariectomized (OVX) rats were differentiated into osteoblasts. The bone mineral density and bone microarchitecture of the OVX rats was measured in vivo, while osteogenesis was evaluated in vitro via Alizarin Red S staining and alkaline phosphatase activity measurements in cultured BMSCs. The levels of phosphorylated eukaryotic translation initiation factor 4E‑binding protein 1 (p‑4E/BP1) and phosphorylated ribosomal protein S6 kinase B1 (p‑S6K), and the expression of Runt‑related transcription factor 2 and Osterix, were concurrently quantified by western blot analysis. The data suggested that Kae prevented OVX‑induced osteoporosis in rats by promoting osteoblastogenesis. Furthermore, treatment with Kae in rat BMSCs enhanced mineralization, elevated ALP activity, increased the expression levels of Runx‑2 and Osterix and increased the levels of p‑S6K and decreased the levels of p‑4E/BP1 and, consistent with its ability to promote osteoblast differentiation. In contrast, treatment with rapamycin, an mTOR inhibitor, produced the opposite phenotype. Taken together, these data suggested that the protective effects of Kae in BMSCs and in the OVX rat model resulted from the induction of osteogenesis via mTOR signaling, or at least partially via the regulation of downstream effectors of the mTOR pathway.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jue Wu
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Binwu Xu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhen Yuan
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of Jiangxi, Nanchang, Jiangxi 330000, P.R. China
| | - Yu Leng
- Department of Emergency, The First People's Hospital of Jiujiang City, Jiujiang, Jiangxi 332000, P.R. China
| | - Jun Min
- Department of Rehabilitation, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Xiaoyong Lan
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Jun Luo
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of Jiangxi, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
29
|
Feng S, Wang H, Wang Y, Sun R, Xie Y, Zhou Z, Wang H, Aa J, Zhou F, Wang G. Apatinib induces 3-hydroxybutyric acid production in the liver of mice by peroxisome proliferator-activated receptor α activation to aid its antitumor effect. Cancer Sci 2019; 110:3328-3339. [PMID: 31429167 PMCID: PMC6778632 DOI: 10.1111/cas.14168] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Apatinib, an antiangiogenic agent, shows efficient antitumor activity in a broad range of malignancies. Considering tumor is a type of metabolic disease, we investigated the metabolomics changes in serum and tumor after apatinib treatment and the molecular mechanism of characteristic changes associated with its antitumor efficacy. Molecules in serum and tumor tissue were extracted and analyzed by a gas chromatography-mass spectrometry metabolic platform. Apatinib significantly inhibited e tumor growth and alleviated metabolic rearrangement in both serum and tumor of A549 xenograft mice. Among these endogenous metabolites, 3-hydroxybutyric acid (3-HB) was significantly increased in serum, tumor and liver after apatinib treatment. Interestingly, giving exogenous 3-HB also inhibited tumor growth. Gene expression, dual luciferase reporter gene assay and molecular docking analysis all indicated that apatinib could induce 3-HB production through the dependent activation of peroxisome proliferator-activated receptor α (PPARα) and promotion of fatty acid utilization in the liver. Therefore, increased content of 3-HB induced by PPARα activation in the liver partially contributed to the antitumor effect of apatinib. It may provide clues to another potential mechanism underlying the antitumor effect of apatinib besides its antiangiogenic effect through inhibiting vascular endothelial growth factor receptor 2.
Collapse
Affiliation(s)
- Siqi Feng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhu Zhou
- Department of Chemistry, York College, The City University of New York, New York, New York
| | - Hong Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Neuroprotective effect of FMS-like tyrosine kinase-3 silence on cerebral ischemia/reperfusion injury in a SH-SY5Y cell line. Gene 2019; 697:152-158. [DOI: 10.1016/j.gene.2019.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 02/05/2023]
|
31
|
Jiang R, Hao P, Yu G, Liu C, Yu C, Huang Y, Wang Y. Kaempferol protects chondrogenic ATDC5 cells against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-146a. Int Immunopharmacol 2019; 69:373-381. [PMID: 30776646 DOI: 10.1016/j.intimp.2019.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 12/30/2022]
Abstract
Kaempferol is a kind of bioflavonoid exerts diverse pharmacological activities, including anti-apoptotic and anti-inflammatory activities. Kaempferol has been recognized as an effective agent for alleviating the clinical symptoms of osteoarthritis (OA). This study aimed to provide evidence that Kaempferol has potential in the management of OA. Lipopolysaccharide (LPS) stimulation induced a significant cell death and inflammatory injury in ATDC5 cells, as evidenced by the decreased cell viability, the induced apoptosis, the activated caspase-3, and the excessive production of IL-6, IL-8 and TNF-α. Precondition of cells with Kaempferol prevented apoptosis and the release of proinflammatory cytokines triggered by LPS. miR-146a was down-regulated by Kaempferol treatment, and Decorin was up-regulated by miR-146a overexpression. Consistently, both silence of miR-146a and Decorin exhibited Kaempferol-like effects towards ATDC5 cells stimulated by LPS. Moreover, Decorin silence activated PI3K/AKT/mTOR signaling pathway. In rat model of OA, the expression of miR-146a and Decorin in cartilage tissues was repressed by Kaempferol. Also, the activated PI3K/AKT/mTOR signaling pathway in OA animal model was enhanced by Kaempferol administration. These data suggested that Kaempferol exerted potential anti-OA effects through down-regulation of miR-146a, and thus repressing the expression of Decorin.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Peng Hao
- Department of Orthopaedics, Heze Municipal Hospital, Heze 274031, Shandong, China
| | - Guisheng Yu
- Department of Orthopaedics, Heze Municipal Hospital, Heze 274031, Shandong, China
| | - Chuanan Liu
- Department of Orthopaedics, Heze Municipal Hospital, Heze 274031, Shandong, China
| | - Chuandong Yu
- Department of Orthopaedics, Heze Municipal Hospital, Heze 274031, Shandong, China
| | - Yan Huang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Yongkun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
32
|
Yi J, Gao ZF. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4. Int J Biol Macromol 2019; 130:1-9. [PMID: 30716366 DOI: 10.1016/j.ijbiomac.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
Abstract
High glucose (HG) has the potential to cause vascular endothelial cell injury, while microRNAs (miRNAs) play a key role in treating endothelial cell injury. CXC chemokine receptor-4 (CXCR4) is reported to be expressed in vascular endothelial cells. Hence, this study investigated role of miR-9-5p in the angiogenesis and apoptosis of HG-induced human umbilical vascular endothelial cells (HUVECs) injury. Dual luciferase reporter gene assay verified that miR-9-5p targeted CXCR4. RT-qPCR and western blot analysis revealed that miR-9-5p was down-regulated, meanwhile CXCR4 was up-regulated in the HG-induced HUVECs. HUVECs were cultured in 30 mmol/L HG in vitro, and then transfected with miR-9-5p mimic or CXCR4 siRNA to identify the effect of miR-9-5p on cell activity, angiogenesis, apoptosis, and inflammation of HG-induced HUVECs. The results suggested that overexpression of miR-9-5p or silencing of CXCR4 in HG-induced HUVECs increased cell proliferation and tubule length, while decreasing the apoptosis rate and the expression of inflammatory factors. Furthermore, miR-9-5p inhibited the phosphorylation of extracellular regulated protein kinases (ERK), protein kinase B (AKT), and Mammalian Target of Rapamycin (mTOR) proteins via downregulation of CXCR4. Therefore, overexpression of miR-9-5p suppressed the mitogen-activated protein kinase (MAPK)/ERK and the PI3K/AKT/mTOR pathway by inhibiting CXCR4, thereby reducing HG-induced injury in HUVECs.
Collapse
Affiliation(s)
- Jun Yi
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Zhi-Feng Gao
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, PR China.
| |
Collapse
|
33
|
Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J Surg Res 2019; 233:284-296. [DOI: 10.1016/j.jss.2018.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|