1
|
Dash D, Mishra V, Panda MK, Pathak SK. Effects of Lactobacillus spp. on Helicobacter pylori: A Promising Frontier in the Era of Antibiotic Resistance. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10396-z. [PMID: 39499454 DOI: 10.1007/s12602-024-10396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
Helicobacter pylori, a pathogenic bacterium responsible for multiple gastrointestinal disorders, has emerged as a major global concern due to rise in antibiotic resistance. Unwanted side effects of antibiotics therapy are further complicating the treatment strategies. Consequently, an alternative approach, using probiotics has emerged as a promising solution for treating H. pylori infections. Probiotics have shown considerable potential in increasing the cure rate and reducing the side effects through diverse mechanisms. Among the widely employed probiotics, Lactobacillus spp. has garnered particular attention in this review. After reviewing the studies on effects of Lactobacillus spp. on H. pylori, it is evident that several Lactobacillus spp. have demonstrated their potential efficacy against H. pylori infection, when administered alone or in conjunction with antibiotics, in a strain-specific manner. Furthermore, the inclusion of Lactobacillus spp. in the treatment regimen has also been associated with a reduction in the side effects related to antibiotic-based therapies. Future research may focus on identifying optimal strains and treatment regimens, understanding the long-term impacts of use, and determining their role in preventing H. pylori infection in various populations.
Collapse
Affiliation(s)
- Debabrata Dash
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Vivek Mishra
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Manoj Kumar Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
- Centre of Excellence on Bioprospecting of Ethno-Pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Sushil Kumar Pathak
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India.
- Centre of Excellence on Bioprospecting of Ethno-Pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India.
| |
Collapse
|
2
|
Park SW, Choi YH, Gho JY, Kang GA, Kang SS. Synergistic Inhibitory Effect of Lactobacillus Cell Lysates and Butyrate on Poly I:C-Induced IL-8 Production in Human Intestinal Epithelial Cells. Probiotics Antimicrob Proteins 2024; 16:1-12. [PMID: 36720771 DOI: 10.1007/s12602-023-10042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 02/02/2023]
Abstract
Postbiotics include cell lysates (CLs), enzymes, cell wall fragments, and heat-killed bacteria derived from probiotics. Although postbiotics are increasingly being considered for their potential health-promoting properties, the effects of postbiotics on virus-mediated inflammatory responses in the intestine have not been elucidated. Hence, the present study aimed to examine whether CLs of Lactipantibacillus plantarum (LP CL) and Lacticaseibacillus rhamnosus GG (LR CL) could inhibit virus-mediated inflammatory responses in the human intestinal epithelial cell line HT-29 in vitro. Pretreatment with LP CL and LR CL significantly inhibited interleukin (IL)-8 production, which was induced by poly I:C, a synthetic analog of double-stranded RNA (dsRNA) viruses, at the mRNA and protein levels in HT-29 cells. However, peptidoglycans and heat-killed L. plantarum and L. rhamnosus GG did not effectively inhibit IL-8 production. LP CL and LR CL attenuated the poly I:C-induced phosphorylation of ERK and JNK and the activation of NF-κB, suggesting that these CLs could inhibit poly I:C-induced IL-8 production by regulating intracellular signaling pathways in HT-29 cells. Furthermore, among the short-chain fatty acids, butyrate enhanced the inhibitory effect of CLs on poly I:C-induced IL-8 production at the mRNA and protein levels in HT-29 cells, while acetate and propionate did not. Taken together, these results suggest that both LP CL and LR CL could act as potent effector molecules that can inhibit virus-mediated inflammatory responses and confer synergistic inhibitory effects with butyrate in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Sun Woo Park
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Young Hyeon Choi
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Ju Young Gho
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Gweon Ah Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
3
|
Nia FF, Ghasemi A, Saeidi J, Mohtashami M. Inhibitory activity of Limosilactobacillus reuteri isolated from camel milk against Helicobacter pylori effects in human gastric epithelial cells. Biotechnol Appl Biochem 2023; 70:1941-1953. [PMID: 37475587 DOI: 10.1002/bab.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
This study aimed to evaluate anti-Helicobacter pylori effects of Limosilactobacillus reuteri 2892 (L. reuteri 2892) isolated from camel milk in GC cell lines (AGS and MKN). From 15 camel milk samples, 132 microbial strains were isolated. Based on microbial and biochemical analysis, 11 potential probiotic candidates were selected. The potential probiotic candidates were assayed for anti-H. pylori activity, and the strain with the highest anti-H. pylori activity was identified genotypically. Based on 16S rDNA sequencing, the selected strain with the best activity against H. pylori (inhibition zone = 15.5 ± 0.8) belonged to the Lactobacillus reuteri strain 2892. Cell treatment with H. pylori HC-113 inhibits gene expression of Claudin-4, ZO-1, MUC5AC, and MUC2 in gastric cells, which are attenuated by L. reuteri 2892. The simulative effects of H. pylori HC-113 on the cell migration and invasion of gastric cells were lost when cells were cotreated with L. reuteri 2892. Cell treatment with H. pylori HC-113 promoted cell death, whereas cotreatment with L. reuteri 2892 markedly decreased necrotic and late apoptotic cells. The present study demonstrates that L. reuteri 2892 has potent anti-H. pylori effects and thus can be considered as an alternative protective agent against inflammatory effects of H. pylori in gastric cells.
Collapse
Affiliation(s)
- Fatemeh Forooghi Nia
- Department of Microbiolgy, College of Science, Agricultuer and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Ahmad Ghasemi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
4
|
Kumar S, Ahmad MF, Nath P, Roy R, Bhattacharjee R, Shama E, Gahatraj I, Sehrawat M, Dasriya V, Dhillon HS, Puniya M, Samtiya M, Dhewa T, Aluko RE, Khedkar GD, Raposo A, Puniya AK. Controlling Intestinal Infections and Digestive Disorders Using Probiotics. J Med Food 2023; 26:705-720. [PMID: 37646629 DOI: 10.1089/jmf.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Priyakshi Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, New Delhi, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
5
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Marinelli P, Scalese G, Covelli A, Ruffa A, Bedetti G, Bruno G, Severi C. Lactobacillus rhamnosus GG supplementation on eradication rate and dyspepsia in Helicobacter pylori infection treated with three-in-one bismuth quadruple therapy. Front Microbiol 2022; 13:932331. [PMID: 36545196 PMCID: PMC9760799 DOI: 10.3389/fmicb.2022.932331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Helicobacter pylori (Hp)-related dyspepsia has been related to gastroduodenal dysbiosis. The role of probiotic supplementation in the clinical management of Hp infection has been the object of several studies in terms of improvement of efficacy and tolerability of eradication treatments but data on their effects on the outcomes of post-eradication dyspepsia are lacking. The aim of the present study was to evaluate the influence of Lactobacillus rhamnosus GG (LGG) supplementation on bismuth quadruple therapy (BQT) in the clinical management of Hp-related infection both in terms of efficacy and tolerability and persistence of post-treatment dyspepsia. Methods A total of 164 (121 women) Hp-positive adult patients were enrolled in this pilot study and assigned to two different treatment regimens: group A received BQT for 10 days (three capsules qid, IPP bid) and group B received BQT for 10 days in combination with 6 × 109CFU LGG (ATCC53103) taken for 24 days (7 days before, 10 days during, and 7 days after therapy). Eradication was assessed after 45 days using the 13C-urea breath test (13C-UBT). Dyspepsia, distinguished into postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS), was assessed at the time of enrollment and 6 months after eradication. Results Approximately 98 patients were enrolled in group A and 66 patients in group B. At the enrollment, dyspepsia was present in 76.5% of group A and 86.5% of group B. No significant differences were observed in eradication rate between the 2 groups, both in intention-to-treat (ITT) analysis (82.3 vs. 75.0%) and per-protocol (PP) analysis (95 vs. 96%), and in the presence of side effects during the treatment (70.6 vs. 65.4%). At 6 months after eradication of Hp infection, the persistence of dyspepsia was statistically higher in patients of group A than in group B (38.8 vs. 16.1%; p = 0.032). The positive influence of LGG supplementation in improving post-eradication dyspepsia resulted in statistically more effectiveness in PDS dyspepsia, whose remission was 41.7% in group A and 84% in group B patients (p = 0.011). Conclusion In conclusion, LGG supplementation during Hp eradication therapy, even if not affecting eradication rates and therapy-related side effects, significantly impacts the remission of dyspepsia.
Collapse
|
7
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Abbas Yadegar, ;
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xiang L, Ying Z, Xue M, Xiaoxian P, Xiaorong L, Chunyang L, Yu W, Mingcheng L, Binxian L. A novel Lactobacillus bulgaricus isolate can maintain the intestinal health, improve the growth performance and reduce the colonization of E. coli O157:H7 in broilers. Br Poult Sci 2022; 63:621-632. [PMID: 35383527 DOI: 10.1080/00071668.2022.2062220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study aimed at the effects of a novel Lactobacillus bulgaricus (L. bulgaricus) strain and Enterohemorrhagic Escherichia coli (E. coli) O157: H7 on intestinal flora and growth performance of broilers, and the protective effect of L. bulgaricus on broilers in challenged experiment by E. coli O157: H7.2. In vitro bacteriostatic test showed that the cell-free supernatant (CFS) of L. bulgaricus isolate had obvious inhibitory effect on E. coli O157: H7.3. Eighty 1-day-old male broilers were randomly assigned into 4 treatment groups with 4 replicate per treatment. All group received basic diet in addition to the specific treatments: NC group, gavage with normal saline; In LBP group, gavage with L. bulgaricus isolate (1×109 CFU/mL) during the whole process, and challenged with E. coli O157: H7 (3×109 CFU/mL); EC group, gavage with E. coli O157: H7 (3×109 CFU/mL); LB Group, gavage with L. bulgaricus isolate. At the age of 21 days, broilers were weighed and feed conversion ratio (FCR) was calculated. Cecum and cecal contents, ileum and feces samples were taken after slaughter.4. The challenge of E. coli O157: H7 resulted in an increase in TLR-4, NF-κB and IL-8 mRNA in cecal tissue, a decrease in Villus: crypt ratio in ileum, a decrease in overall diversity of intestinal microflora and a poor FCR.5. The L. bulgaricus isolate decreased the mRNA expression of TLR-4, NF-κB and IL-8 induced by E. coli O157: H7, reduced the content of E. coli O157: H7 in the cecum of broilers, increased the Villus: crypt ratio, increased the abundance of beneficial bacteria and overall diversity of intestinal microflora, made good FCR.6. The L. bulgaricus isolate can maintain the intestinal health, improve the growth performance of broilers and reduce the colonization of E. coli O157:H7 in the cecum.
Collapse
Affiliation(s)
- Li Xiang
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Zhang Ying
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Meng Xue
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Pei Xiaoxian
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Liu Xiaorong
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Lan Chunyang
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Wang Yu
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Li Mingcheng
- School of Laboratory Medicine, Beihua University, Jilin, Jilin 132013, China
| | - Li Binxian
- Dept. of Clinical Microbiology, Associated Hospital, Beihua University, Jilin, Jilin 132013, China
| |
Collapse
|
9
|
Isaeva G, Isaeva R. Probiotics in the treatment of Helicobacter pylori infection: reality and perspective. Minerva Gastroenterol (Torino) 2022; 68:277-288. [PMID: 35001603 DOI: 10.23736/s2724-5985.21.02926-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common in the world today, associated with the development of acute or chronic inflammatory diseases of the gastroduodenal tract. In order to eradicate the pathogen, various antibacterial therapy regimens have been proposed, based on the use of several chemotherapeutic drugs and a proton pump inhibitor (PPI). However, recent studies indicate a decrease in antibiotic effectiveness due to both the growth rate of H. pylori resistance and side effects, often due to the development of dysbiosis. One of the promising areas of investigation is the treatment with probiotic therapy of helicobacteriosis. The use of probiotics, in the context of H. pylori infection, has two main reasons. The first is related to the use of certain probiotics to reduce the frequency of undesirable gastrointestinal consequences during H. pylori eradication therapy. The second is associated with the antagonistic effect of individual probiotics on H. pylori and the potentiation of the eradication effect. The purpose of this review was to summarize the latest data on the use of probiotics to enhance H. pylori eradication and to restore the gastrointestinal microbiota. Many unresolved questions, about the choice of the specific composition of the probiotic cocktail, dosage, duration of therapy, mechanisms of the antimicrobial action of probiotics, as well as possible negative consequences of such therapy, remain.
Collapse
Affiliation(s)
- Guzel Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, Kazan, Russian Federation - .,Microbiology Department, Kazan State Medical University, Kazan, Russian Federation -
| | - Regina Isaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
10
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Gupta T, Kaur H, Kapila S, Kapila R. Lactobacillus fermentum (MTCC-5898) alleviates Escherichia coli-induced inflammatory responses in intestinal epithelial cells by modulating immune genes and NF-κB signalling. J Appl Microbiol 2021; 131:3008-3017. [PMID: 33999475 DOI: 10.1111/jam.15153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
AIM Dietary intervention using probiotic bacteria has emerged as a promising preventive strategy in addressing foodborne infections or gastrointestinal disorders. This study investigated the immunomodulatory effects of Lactobacillus fermentum (MTCC-5898) on Escherichia coli-induced inflammatory responses in intestinal epithelial cells. METHODS AND RESULTS The immune response of intestinal cells (Caco-2) in the presence of probiotic Lact. fermentum was determined during exclusion, competition and displacement of E. coli as the inflammatory agent. To achieve this objective, transcriptional modulation of key immune-related genes (cytokines, pattern recognition receptors and NF-κB), release of cytokines and nuclear translocation of the NF-κB subunit p-65 were studied. Expression of pro-inflammatory cytokines IL-8, TNF-α, IFN-ϒ and IL-23 was high in E. coli-exposed intestinal cells. However, overexpression of these E. coli-induced pro-inflammatory cytokines was prevented by Lact. fermentum during exclusion and competition assays. It also modulated the transcriptional expression of regulatory cytokines (IL-10 and TGF-β), pattern recognition receptors (TLR-2 and TLR-4) and genes associated with master inflammatory regulators (NF-κB and SIGIRR) to reduce E. coli-induced inflammation. The protective effect of Lact. fermentum was further confirmed by suppression of nuclear translocation of cytoplasmic NF-κB subunit (p-65). CONCLUSION Lactobacillus fermentum alleviated E. coli-induced inflammatory responses by modulating the NF-κB signalling besides pro-inflammatory and regulatory cytokines expression. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus fermentum holds significant promise as a potent nutraceutical that prevents and manages inflammatory gut-associated dysfunctions.
Collapse
Affiliation(s)
- T Gupta
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - H Kaur
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - S Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - R Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Effects of a Potential Probiotic Strain Lactobacillus gasseri ATCC 33323 on Helicobacter pylori-Induced Inflammatory Response and Gene Expression in Coinfected Gastric Epithelial Cells. Probiotics Antimicrob Proteins 2020; 13:751-764. [PMID: 33206342 DOI: 10.1007/s12602-020-09721-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
In the present study, we aimed to investigate the modulatory effects of a potential probiotic bacterium Lactobacillus gasseri ATCC 33323 on Helicobacter pylori-induced inflammatory response and gene expression in human gastric adenocarcinoma (AGS) cell line. The gastric epithelial cells were coinfected with a collection of H. pylori clinical strains alone or in combination with L. gasseri at a multiplicity of infection (MOI) of 1:100 for each bacterium, and incubated for different time points of 3, 6, and 12 h. IL-8 secretion from coinfected AGS cells after incubation at each time point was measured by an enzyme-linked immunosorbent assay (ELISA). The mRNA expression of IL-8, Bcl-2, β-catenin, integrin α5, and integrin β1 genes was determined by quantitative RT-PCR amplification of total RNA extracted from coinfected epithelial cells. L. gasseri significantly (P < 0.05 and P < 0.01) decreased the production of IL-8 in AGS cells coinfected with H. pylori strains at 6 h post-infection. We also detected that L. gasseri significantly (P < 0.05) down-regulated the gene expression level of IL-8 in H. pylori-stimulated AGS cells after 6 and 12 h of coinfection. Similarly, L. gasseri caused a significant decrease (P < 0.05) in mRNA expression of Bcl-2, β-catenin, integrin α5, and integrin β1 genes in AGS cells at 3 and 6 h after infection with H. pylori strains as compared with non-infected control cells. In conclusion, our results demonstrated that L. gasseri ameliorates H. pylori-induced inflammation and could be developed as a supplementation to the current treatment regimens administrated against H. pylori infection.
Collapse
|
13
|
Garcia-Castillo V, Marcial G, Albarracín L, Tomokiyo M, Clua P, Takahashi H, Kitazawa H, Garcia-Cancino A, Villena J. The Exopolysaccharide of Lactobacillus fermentum UCO-979C Is Partially Involved in Its Immunomodulatory Effect and Its Ability to Improve the Resistance against Helicobacter pylori Infection. Microorganisms 2020; 8:microorganisms8040479. [PMID: 32230910 PMCID: PMC7232353 DOI: 10.3390/microorganisms8040479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus fermentum UCO-979C (Lf979C) beneficially modulates the cytokine response of gastric epithelial cells and macrophages after Helicobacter pylori infection in vitro. Nevertheless, no in vivo studies were performed with this strain to confirm its beneficial immunomodulatory effects. This work evaluated whether Lf979C improves protection against H. pylori infection in mice by modulating the innate immune response. In addition, we evaluated whether its exopolysaccharide (EPS) was involved in its beneficial effects. Lf979C significantly reduced TNF-α, IL-8, and MCP-1 and augmented IFN-γ and IL-10 in the gastric mucosa of H. pylori-infected mice. The differential cytokine profile induced by Lf979C in H. pylori-infected mice correlated with an improved reduction in the pathogen gastric colonization and protection against inflammatory damage. The purified EPS of Lf979C reduced IL-8 and enhanced IL-10 levels in the gastric mucosa of infected mice, while no effect was observed for IFN-γ. This work demonstrates for the first time the in vivo ability of Lf979C to increase resistance against H. pylori infection by modulating the gastric innate immune response. In addition, we advanced knowledge of the mechanisms involved in the beneficial effects of Lf979C by demonstrating that its EPS is partially responsible for its immunomodulatory effect.
Collapse
Affiliation(s)
- Valeria Garcia-Castillo
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion Bio Bio 4030000, Chile;
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina; (G.M.); (L.A.); (P.C.)
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan;
| | - Guillermo Marcial
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina; (G.M.); (L.A.); (P.C.)
| | - Leonardo Albarracín
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina; (G.M.); (L.A.); (P.C.)
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan;
- Laboratory of Computing Science. Faculty of Exact Sciences and Technology. Tucuman University, Tucuman CP4000, Argentina
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan;
| | - Patricia Clua
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina; (G.M.); (L.A.); (P.C.)
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan;
- Plant Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Correspondence: (H.K.); (A.G.-C.); (J.V.)
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion Bio Bio 4030000, Chile;
- Correspondence: (H.K.); (A.G.-C.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman CP4000, Argentina; (G.M.); (L.A.); (P.C.)
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan;
- Correspondence: (H.K.); (A.G.-C.); (J.V.)
| |
Collapse
|
14
|
Song H, Zhou L, Liu D, Ge L, Li Y. Probiotic effect on Helicobacter pylori attachment and inhibition of inflammation in human gastric epithelial cells. Exp Ther Med 2019; 18:1551-1562. [PMID: 31410109 PMCID: PMC6676116 DOI: 10.3892/etm.2019.7742] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a major cause of chronic gastritis, gastric ulcers and gastric cancer. Recent studies have identified that probiotics are beneficial to human health due, in part, to their anti-H. pylori activities. Therefore, the present study investigated the antagonistic and local immunoregulatory activities of seven commercial probiotic strains and explored their mechanisms of actions. The human gastric epithelial cell line-1 (GES-1) was used to assess the effects of probiotics on the adhesion ability of H. pylori. GES-1 cells were infected with H. pylori plus lipopolysaccharide (HP-LPS) or the drug-resistant H. pylori strain (HP021) in the presence or absence of live probiotics. Following this, the growth rate and the adhesion ability of GES-1 cells were detected using MTT and urease activity assay. Toll-like receptor 4 (TLR4), NFKB inhibitor-α (IκBα) and nuclear factor (NF)-κB levels were measured by western blot analysis. The amount of interleukin (IL)-8 in the cell culture medium was determined by ELISA. Amongst the seven probiotic strains studied, live Lactobacillus acidophilus (L. acidophilus) and Lactobacillus bulgaricus (L. bulgaricus) inhibited H. pylori adherence to GES-1 cells most significantly. L. bulgaricus inhibited IL-8 production by GES-1 cells through modulation of the TLR4/IκBα/NF-κB pathway. Therefore, the present results suggested that consumption of food containing L. acidophilus and L. bulgaricus may be used as an adjuvant therapy for H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dongyan Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lihui Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
- Correspondence to: Dr Yan Li, Department of Gastroenterology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110004, P.R. China, E-mail:
| |
Collapse
|
15
|
Saccharomyces boulardii CNCM I-745 plus sequential therapy for Helicobacter pylori infections: a randomized, open-label trial. Eur J Clin Pharmacol 2019; 75:639-645. [DOI: 10.1007/s00228-019-02625-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
|
16
|
Qureshi N, Li P, Gu Q. Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Appl Microbiol Biotechnol 2019; 103:1573-1588. [PMID: 30610283 DOI: 10.1007/s00253-018-09580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a highly prevalent human pathogen responsible for chronic inflammation of the gastric tissues, gastroduodenal ulcers, and cancer. The treatment includes a pair of antibiotics with a proton pump inhibitor PPI. Despite the presence of different treatments, the infection rate is still increasing both in developed and developing states. The challenge of treatment failure is greatly due to the resistance of H. pylori to antibiotics and its side effects. Probiotics potential to cure H. pylori infection is well-documented. Probiotics combined with conventional treatment regime appear to have great potential in eradicating H. pylori infection, therefore, provide an excellent alternative approach to manage H. pylori load and its threatening disease outcome. Notably, anti-H. pylori activity of probiotics is strain specific,therefore establishing standard guidelines regarding the dose and formulation of individual strain is inevitable. This review is focused on probiotic's antagonism against H. pylori summarizing their three main potential aspects: their efficiency (i) as an alternative to H. pylori eradication treatment, (ii) as an adjunct to H. pylori eradication treatment and (iii) as a vaccine delivery vehicle.
Collapse
Affiliation(s)
- Nuzhat Qureshi
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
17
|
Kamiya S, Yonezawa H, Osaki T. Role of Probiotics in Eradication Therapy for Helicobacter pylori Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:243-255. [PMID: 31016634 DOI: 10.1007/5584_2019_369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as, "Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host", and have various effects including inhibitory capabilities on pathogens, stimulation of organ functions and activation of immune responses in the human. Probiotics were reported to inhibit Helicobacter pylori not only in vitro, but also in vivo studies. The mechanisms by which probiotics inhibit H. pylori infection include competition for nutrients, production of bactericidal substances, competitive inhibition of adherence and stimulation of host functions and immunity. In addition, probiotics are clinically used for eradication therapy of H. pylori infection, and the effects of probiotics as single treatment and combination use with other drugs including proton pump inhibitors and antibiotics against H. pylori are reported. It has been testified that probiotics increase the eradication rate and prevent adverse events including diarrhea, nausea, vomiting and taste disorder. In the Maastrich V/Florence Consensus Report 2017, it was stated that some probiotics may have a beneficial effect on H. pylori eradication and are effective in reducing side effects of eradication therapy, but more research is needed to answer several questions concerning the mechanisms of probiotics action. In addition, strain specificity, dosages and duration times of probiotics used for H. pylori eradication therapy need to be clarified in future studies.
Collapse
Affiliation(s)
- Shigeru Kamiya
- Faculty of Health Sciences, Kyorin University, Tokyo, Japan. .,Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
What Roles Do Probiotics Play in the Eradication of Helicobacter pylori? Current Knowledge and Ongoing Research. Gastroenterol Res Pract 2018; 2018:9379480. [PMID: 30410538 PMCID: PMC6206577 DOI: 10.1155/2018/9379480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
With the rising global prevalence of antibiotic resistance, the eradication rate of Helicobacter pylori (HP) is continuing to decrease. Probiotics are beneficial to human health and may be an adjunct therapy to increase the eradication rate of HP, lower treatment-associated side effects, and reduce HP-associated gastric inflammation. However, inconsistent test results have prevented conclusions about the therapeutic prowess of probiotics for HP. The mechanisms of actions of probiotics include the production of substances that inhibit or kill HP or compete with HP for the adhesion site on gastric epithelial cells. Probiotics can also reduce the release of inflammatory factors by regulating the local immune response of the host. We searched the available literature for full-length articles focusing on the role of probiotics in HP management. This review presents the latest advances in this area.
Collapse
|
19
|
Influence of Dietary Factors on Helicobacter pylori and CagA Seroprevalence in Bulgaria. Gastroenterol Res Pract 2017; 2017:9212143. [PMID: 28659975 PMCID: PMC5474270 DOI: 10.1155/2017/9212143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to assess the association between some dietary factors and prevalence of H. pylori infection or strain virulence in 294 adult asymptomatic blood donors. Methods. Seroprevalence was evaluated using ELISA. Logistic regression was used. Results. Anti-H. pylori IgG prevalence was 72.4%, and CagA IgG seroprevalence was 49.3%. In the multivariate analyses, the frequent (>5 days per week) honey consumption was associated with both reduced H. pylori seroprevalence OR, 0.68 with 95% confidence interval (CI), 0.473-0.967 and reduced CagA IgG seroprevalence OR, 0.65 with 95% CI, 0.486-0859. Frequent (>5 days per week) yoghurt consumption also was associated with lower H. pylori virulence of the strains (CagA IgG OR, 0.56 with 95% CI, 0.341-0.921). Smoking and consumption of the other dietary factors resulted in no significant differences in the prevalence of H. pylori IgG and CagA IgG within the subject groups. Conclusion. To the best of our knowledge, this is the first report revealing reverse associations between honey or yoghurt consumption and CagA IgG prevalence as well as between frequent honey consumption and lower prevalence of the H. pylori infection. Regular honey and yoghurt consumption can be of value as a supplement in the control of H. pylori therapy.
Collapse
|
20
|
Lactobacillus paracasei strain 06TCa19 suppresses inflammatory chemokine induced by Helicobacter pylori in human gastric epithelial cells. Hum Cell 2017; 30:258-266. [PMID: 28434172 DOI: 10.1007/s13577-017-0172-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
Helicobacter (H.) pylori infection is an important risk factor for gastric cancer that causes gastric inflammation. Inflammatory chemokines such as interleukin (IL)-8 and regulated on activation normal T cell expressed and secreted (RANTES) are elevated in the gastric mucosa by H. pylori. This study aimed to investigate the effects of Lactobacillus paracasei strain 06TCa19, a probiotic strain, on IL-8 and RANTES expression and production induced by H. pylori using human gastric epithelial cell lines. Strain 06TCa19 was shown to suppress H. pylori-mediated elevation of gene expression related to these chemokines in MKN45 cells. The strain also suppressed the increase in IL-8 and RANTES products induced by H. pylori in AGS cells as well as in MKN45 cells. In MKN45 cells inoculated with H. pylori, strain 06TCa19 was shown to downregulate the activation of NF-κB and p38 MAPK signaling pathways. Additionally, the level of the CagA virulence protein of H. pylori in the MKN45 cells and the number of viable H. pylori adhering to MKN45 cells decreased with the addition of strain 06TCa19. Moreover, the strain 06TCa19 notably increased lactic acid in the supernatant of MKN45 cells. Thus, lactic acid released from strain 06TCa19 might have inhibited the adhesion of H. pylori to MKN45 cells and prevented the insertion of H. pylori CagA into the cells, and elevation of IL-8 and RANTES genes and proteins might be suppressed by downregulating the NF-κB and p38 MAPK pathways. Therefore, use of strain 06TCa19 may prevent H. pylori-associated gastric inflammation.
Collapse
|
21
|
Hattar K, Reinert CP, Sibelius U, Gökyildirim MY, Subtil FSB, Wilhelm J, Eul B, Dahlem G, Grimminger F, Seeger W, Grandel U. Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro. Cancer Immunol Immunother 2017; 66:799-809. [PMID: 28314957 PMCID: PMC5445152 DOI: 10.1007/s00262-017-1980-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/24/2017] [Indexed: 12/22/2022]
Abstract
Pulmonary infections are frequent complications in lung cancer and may worsen its outcome and survival. Inflammatory mediators are suspected to promote tumor growth in non-small-cell lung cancer (NSCLC). Hence, bacterial pathogens may affect lung cancer growth by activation of inflammatory signalling. Against this background, we investigated the effect of purified lipoteichoic acids (LTA) of Staphylococcus aureus (S. aureus) on cellular proliferation and liberation of interleukin (IL)-8 in the NSCLC cell lines A549 and H226. A549 as well as H226 cells constitutively expressed TLR-2 mRNA. Even in low concentrations, LTA induced a prominent increase in cellular proliferation of A549 cells as quantified by automatic cell counting. In parallel, metabolic activity of A549 cells was enhanced. The increase in proliferation was accompanied by an increase in IL-8 mRNA expression and a dose- and time-dependent release of IL-8. Cellular proliferation as well as the release of IL-8 was dependent on specific ligation of TLR-2. Interestingly, targeting IL-8 by neutralizing antibodies completely abolished the LTA-induced proliferation of A549 cells. The pro-proliferative effect of LTA could also be reproduced in the squamous NSCLC cell line H226. In summary, LTA of S. aureus induced proliferation of NSCLC cell lines of adeno- and squamous cell carcinoma origin. Ligation of TLR-2 followed by auto- or paracrine signalling by endogenously synthesized IL-8 is centrally involved in LTA-induced tumor cell proliferation. Therefore, pulmonary infections may exert a direct pro-proliferative effect on lung cancer growth.
Collapse
Affiliation(s)
- Katja Hattar
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Christian P Reinert
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Ulf Sibelius
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | | | - Jochen Wilhelm
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Gabriele Dahlem
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulrich Grandel
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany. .,Asklepios Klinik Lich, Lich, Germany.
| |
Collapse
|
22
|
Andreev DN, Dicheva DT, Maev IV. [Possibilities for optimization of eradication therapy for Helicobacter pylori infection in modern clinical practice]. TERAPEVT ARKH 2017; 89:84-90. [PMID: 28393827 DOI: 10.17116/terarkh201789284-90] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
A steady decline in the effectiveness of standard eradication therapy (ET) regimens for Helicobacter pylori infection necessitates a search for ways of their optimization, by enhancing the efficiency of treatment protocols and by improving their safety and tolerability. The review systematizes the data available in the literature on main accessible methods for optimizing ET regimens. Among the optimization methods that can considerably enhance the efficiency of ET regimens, one may identify their addition of a bismuth agent (by 10-20%), the use of rebamipide (by 11.9%), adjuvant therapy with probiotics (by 8.1-13%), or double-dose proton pump inhibitors (by 8%). Only adjuvant therapy with probiotics results in a significant decrease in the incidence of side effects from ET. In posteradication period, rebamipide should be used to potentiate gastric mucosal repair and to regress inflammatory processes.
Collapse
Affiliation(s)
- D N Andreev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow, Russia
| | - D T Dicheva
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow, Russia
| | - I V Maev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
23
|
Yu AQ, Li L. The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutr Cancer 2016; 68:535-44. [PMID: 27144297 DOI: 10.1080/01635581.2016.1158300] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut microbiota has a significant effect on many aspects of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including inflammatory bowel disease, obesity, asthma, psychiatric illnesses, and cancers. As a kind of functional foods, probiotics have been shown to play a protective role against cancer development in animal models. Clinical application of probiotics indicated that some probiotic strains could diminish the incidence of postoperative inflammation in cancer patients. Chemotherapy or radiotherapy-related diarrhea was relieved in patients who were administered oral probiotics. The present review summarizes the up-to-date studies on probiotic effects and the underlying mechanisms related to cancer. At present, it is commonly accepted that most commercial probiotic products are generally safe and can improve the health of the host. By modulating intestinal microbiota and immune response, some strains of probiotics can be used as an adjuvant for cancer prevention or/and treatment.
Collapse
Affiliation(s)
- Ai-Qun Yu
- a Institute of Psychology, Chinese Academy of Sciences , Beijing , China.,b Graduate School of Chinese Academy of Sciences , Beijing , China.,c Shanghai Lida Polytechnic Institute , Shanghai , China
| | - Lianqin Li
- d Department of Obstetrics and Gynecology , Yantai Affiliated Hospital of Binzhou Medical University , Yantai , China
| |
Collapse
|
24
|
Kim JW. The Effects of Probiotics on the Treatment ofHelicobacter pyloriEradication. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2016. [DOI: 10.7704/kjhugr.2016.16.3.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ji Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Homan M, Orel R. Are probiotics useful in Helicobacter pylori eradication? World J Gastroenterol 2015; 21:10644-10653. [PMID: 26457024 PMCID: PMC4588086 DOI: 10.3748/wjg.v21.i37.10644] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/25/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is considered an etiologic factor for the development of peptic ulcer disease, gastric adenocarcinoma, and MALT lymphoma. Therapeutic schemes to eradicate the bacteria are based on double antibiotic therapy and proton pump inhibitor. Despite many therapeutic improvements in H. pylori eradication treatment, it is still associated with high infection rate also in developed countries. Bacterial resistance and adverse events occurrence are among most frequent causes for anti- H. pylori treatment failure. Several studies have reported that certain probiotic strains can exhibit inhibitory activity against H. pylori bacteria. In addition, some probiotic strains can reduce the occurrence of side effects due to antibiotic therapy and consequently increase the H. pylori eradication rate. The results of the prospective double-blind placebo-controlled studies suggest that specific probiotics, such as S. boulardii and L. johnsonni La1 probably can diminish the bacterial load, but not completely eradicate the H. pylori bacteria. Furthermore, it seems that supplementation with S. boulardii is a useful concomitant therapy in the standard H. pylori eradication treatment protocol and most probably increases eradication rate. L. reuteri is equally effective, but more positive studies are needed. Finally, probiotic strains, such as S. boulardii, L. reuteri and L. GG, decrease gastrointestinal antibiotic associated adverse effects.
Collapse
|
26
|
Villena J, Aso H, Kitazawa H. Regulation of toll-like receptors-mediated inflammation by immunobiotics in bovine intestinal epitheliocytes: role of signaling pathways and negative regulators. Front Immunol 2014; 5:421. [PMID: 25228903 PMCID: PMC4151153 DOI: 10.3389/fimmu.2014.00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells (IECs) detect bacterial and viral associated molecular patterns via germline-encoded pattern-recognition receptors (PRRs) and are responsible for maintaining immune tolerance to the communities of resident commensal bacteria while being also capable to mount immune responses against pathogens. Toll-like receptors (TLRs) are a major class of PRRs expressed on IECs and immune cells, which are involved in the induction of both tolerance and inflammation. In the last decade, experimental and clinical evidence was generated to support the application of probiotics with immunoregulatory capacities (immunobiotics) for the prevention and treatment of several gastrointestinal inflammatory disorders in which TLRs exert a significant role. The majority of these studies were performed in mouse and human cell lines, and despite the growing interest in the bovine immune system due to the economic importance of cattle as livestock, only few studies have been conducted on cattle. In this regard, our group has established a bovine intestinal epithelial (BIE) cell line originally derived from fetal bovine intestinal epitheliocytes and used this cell line to evaluate the impact of immunobiotics in TLR-mediated inflammation. This review aims to summarize the current knowledge of the beneficial effects of immunobiotics in the regulation of intestinal inflammation/infection in cattle. Especially, we discuss the role of TLRs and their negative regulators in both the inflammatory response and the beneficial effects of immunobiotics in bovine IECs. This review article emphasizes the cellular and molecular interactions of immunobiotics with BIE cells through TLRs and gives the scientific basis for the development of immunomodulatory feed for bovine healthy development.
Collapse
Affiliation(s)
- Julio Villena
- Immunobiotics Research Group , Tucuman , Argentina ; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) , Tucuman , Argentina
| | - Hisashi Aso
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| |
Collapse
|
27
|
Thiraworawong T, Spinler JK, Werawatganon D, Klaikeaw N, Venable SF, Versalovic J, Tumwasorn S. Anti-inflammatory properties of gastric-derived Lactobacillus plantarum XB7 in the context of Helicobacter pylori infection. Helicobacter 2014; 19:144-55. [PMID: 24387083 DOI: 10.1111/hel.12105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Helicobacter pylori colonization of the gastric epithelium induces interleukin-8 (IL-8) production and inflammation leading to host cell damage. We searched for gastric-derived Lactobacillus with the ability to suppress H. pylori-induced inflammation. MATERIALS AND METHODS Conditioned media from gastric-derived Lactobacillus spp. were tested for the ability to suppress H. pylori-induced IL-8 production in AGS gastric epithelial cells. IL-8 protein and mRNA levels were measured by ELISA and qPCR, respectively. The changes on host cell signaling pathway were analyzed by Western blotting and the anti-inflammatory effect was tested in a Sprague-Dawley rat model. RESULTS Conditioned media from L. salivarius B101, L. rhamnosus B103, and L. plantarum XB7 suppressed IL-8 production and IL-8 mRNA expression in H. pylori-induced AGS cells without inhibiting H. pylori growth. Conditioned media from LS-B101, LR-B103, and LP-XB7 suppressed the activation of NF-κB in AGS cells, while strain LP-XB7 also suppressed c-Jun activation. The anti-inflammatory effect of LP-XB7 was further assessed in vivo using a H. pylori-infected Sprague-Dawley rat model. Strain LP-XB7 contributed to a delay in the detection and colonization of H. pylori in rat stomachs, attenuated gastric inflammation, and ameliorated gastric histopathology. Additionally, the administration of LP-XB7 correlated with the suppression of TNF-α and CINC-1 in sera, and suppression of CINC-1 in the gastric mucosa of H. pylori-infected rats. CONCLUSIONS These results suggest that L. plantarum XB7 produces secreted factors capable of modulating inflammation during H. pylori infection, and this probiotic Lactobacillus strain shows promise as an adjunctive therapy for treating H. pylori-associated disease.
Collapse
Affiliation(s)
- Thien Thiraworawong
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
28
|
Navarro-Rodriguez T, Silva FM, Barbuti RC, Mattar R, Moraes-Filho JP, de Oliveira MN, Bogsan CS, Chinzon D, Eisig JN. Association of a probiotic to a Helicobacter pylori eradication regimen does not increase efficacy or decreases the adverse effects of the treatment: a prospective, randomized, double-blind, placebo-controlled study. BMC Gastroenterol 2013; 13:56. [PMID: 23530767 PMCID: PMC3614530 DOI: 10.1186/1471-230x-13-56] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 03/19/2013] [Indexed: 12/12/2022] Open
Abstract
Background The treatment for the eradication of Helicobacter pylori (H. pylori) is complex; full effectiveness is rarely achieved and it has many adverse effects. In developing countries, increased resistance to antibiotics and its cost make eradication more difficult. Probiotics can reduce adverse effects and improve the infection treatment efficacy. If the first-line therapy fails a second-line treatment using tetracycline, furazolidone and proton-pump inhibitors has been effective and low cost in Brazil; however it implies in a lot of adverse effects. The aim of this study was to minimize the adverse effects and increase the eradication rate applying the association of a probiotic compound to second-line therapy regimen. Methods Patients with peptic ulcer or functional dyspepsia infected by H. pylori were randomized to treatment with the furazolidone, tetracycline and lansoprazole regimen, twice a day for 7 days. In a double-blind study, patients received placebo or a probiotic compound (Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum and Streptococcus faecium) in capsules, twice a day for 30 days. A symptom questionnaire was administered in day zero, after completion of antibiotic therapy, after the probiotic use and eight weeks after the end of the treatment. Upper digestive endoscopy, histological assessment, rapid urease test and breath test were performed before and eight weeks after eradication treatment. Results One hundred and seven patients were enrolled: 21 men with active probiotic and 19 with placebo plus 34 women with active probiotic and 33 with placebo comprising a total of 55 patients with active probiotic and 52 with placebo. Fifty-one patients had peptic ulcer and 56 were diagnosed as functional dyspepsia. The per-protocol eradication rate with active probiotic was 89.8% and with placebo, 85.1% (p = 0.49); per intention to treat, 81.8% and 79.6%, respectively (p = 0.53). The rate of adverse effects at 7 days with the active probiotic was 59.3% and 71.2% with placebo (p = 0.20). At 30 days, it was 44.9% and 60.4%, respectively (p = 0.08). Conclusions The use of this probiotic compound compared to placebo in the proposed regimen in Brazilian patients with peptic ulcer or functional dyspepsia showed no significant difference in efficacy or adverse effects. Trial registration Current Controlled Trials ISRCTN04714018
Collapse
Affiliation(s)
- Tomás Navarro-Rodriguez
- Serviço de Gastroenterologia Clínica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av, Dr, Enéas de Carvalho Aguiar, 255-Cerqueira Cezar, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Navarro-Rodriguez T, Silva FM, Barbuti RC, Mattar R, Moraes-Filho JP, de Oliveira MN, Bogsan CS, Chinzon D, Eisig JN. Association of a probiotic to a Helicobacter pylori eradication regimen does not increase efficacy or decreases the adverse effects of the treatment: a prospective, randomized, double-blind, placebo-controlled study. BMC Gastroenterol 2013; 13:5. [PMID: 23311418 PMCID: PMC3558380 DOI: 10.1186/1471-230x-13-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/28/2012] [Indexed: 12/17/2022] Open
Abstract
Internet websites are a resource for patients seeking information about probiotics. We examined a sample of 71 websites presenting probiotic information. We found that descriptions of benefits far outnumbered descriptions of risks and commercial websites presented significantly fewer risks than noncommercial websites. The bias towards the presentation of therapeutic benefits in online content suggests that patients are likely interested in using probiotics and may have unrealistic expectations for therapeutic benefit. Gastroenterologists may find it useful to initiate conversations about probiotics within the context of a comprehensive health management plan and should seek to establish realistic therapeutic expectations with their patients.
Collapse
Affiliation(s)
- Tomás Navarro-Rodriguez
- Serviço de Gastroenterologia Clínica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av, Dr, Enéas de Carvalho Aguiar, 255-Cerqueira Cezar, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, Matencio E, Bernal MJ, Romero F, Gil A. Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation. PLoS One 2012; 7:e43197. [PMID: 22905233 PMCID: PMC3419202 DOI: 10.1371/journal.pone.0043197] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/20/2012] [Indexed: 02/07/2023] Open
Abstract
Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, little is known about the signalling pathways that are engaged by probiotics. Dendritic cells (DCs) are antigen-presenting cells that are involved in immunity and tolerance. Monocyte-derived dendritic cells (MoDCs) and murine DCs are different from human gut DCs; therefore, in this study, we used human DCs generated from CD34+ progenitor cells (hematopoietic stem cells) harvested from umbilical cord blood; those DCs exhibited surface antigens of dendritic Langerhans cells, similar to the lamina propria DCs in the gut. We report that both a novel probiotic strain isolated from faeces of exclusively breast-fed newborn infants, Lactobacillus paracasei CNCM I-4034, and its cell-free culture supernatant (CFS) decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with Salmonella. Interestingly, the supernatant was as effective as the bacteria in reducing pro-inflammatory cytokine expression. In contrast, the bacterium was a potent inducer of TGF-β2 secretion, whereas the supernatant increased the secretion of TGF-β1 in response to Salmonella. We also showed that both the bacteria and its supernatant enhanced innate immunity through the activation of Toll-like receptor (TLR) signalling. These treatments strongly induced the transcription of the TLR9 gene. In addition, upregulation of the CASP8 and TOLLIP genes was observed. This work demonstrates that L. paracasei CNCM I-4034 enhanced innate immune responses, as evidenced by the activation of TLR signalling and the downregulation of a broad array of pro-inflammatory cytokines. The use of supernatants like the one described in this paper could be an effective and safe alternative to using live bacteria in functional foods.
Collapse
Affiliation(s)
- Miriam Bermudez-Brito
- Institute of Nutrition and Food Technology José Mataix, Biomedical Research Centre, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Sergio Muñoz-Quezada
- Institute of Nutrition and Food Technology José Mataix, Biomedical Research Centre, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Carolina Gomez-Llorente
- Institute of Nutrition and Food Technology José Mataix, Biomedical Research Centre, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Esther Matencio
- Hero Institute for Infant Nutrition, Hero Spain, Alcantarilla, Murcia, Spain
| | - María J. Bernal
- Hero Institute for Infant Nutrition, Hero Spain, Alcantarilla, Murcia, Spain
| | - Fernando Romero
- Hero Institute for Infant Nutrition, Hero Spain, Alcantarilla, Murcia, Spain
| | - Angel Gil
- Institute of Nutrition and Food Technology José Mataix, Biomedical Research Centre, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
31
|
Pera T, Atmaj C, van der Vegt M, Halayko AJ, Zaagsma J, Meurs H. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L272-8. [PMID: 22523282 DOI: 10.1152/ajplung.00291.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia. In various cell types, transforming growth factor-β-activated kinase 1 (TAK1) plays a crucial role in MAP kinase and NF-κB activation, as well as IL-8 release induced by IL-1β, TNF-α, and lipopolysaccharide. The role of TAK1 in CS-induced IL-8 release is not known. The aim of this study was to investigate the role of TAK1 in CS-induced NF-κB and MAP kinase signaling and IL-8 release by human ASM cells. Stimulation of these cells with CS extract (CSE) increased IL-8 release and ERK-1/2 phosphorylation, as well as Iκ-Bα degradation and p65 NF-κB subunit phosphorylation. CSE-induced ERK-1/2 phosphorylation and Iκ-Bα degradation were both inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). Similarly, expression of dominant-negative TAK1 inhibited CSE-induced ERK-1/2 phosphorylation. In addition, inhibitors of TAK1 and the NF-κB (SC-514; 50 μM) and ERK-1/2 (U-0126; 3 μM) signaling inhibited the CSE-induced IL-8 release by ASM cells. These data indicate that TAK1 plays a major role in CSE-induced ERK-1/2 and NF-κB signaling and in IL-8 release by human ASM cells. Furthermore, they identify TAK1 as a novel target for the inhibition of CS-induced inflammatory responses involved in the development and progression of COPD.
Collapse
Affiliation(s)
- Tonio Pera
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Ye HH, Zhang YM. Advances in understanding the relationship between Toll-like receptors and digestive system injury. Shijie Huaren Xiaohua Zazhi 2010; 18:2339-2345. [DOI: 10.11569/wcjd.v18.i22.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are cell-surface molecules that play an important role in the host immune response. More and more evidence indicates that TLRs can recognize special pattern molecules to activate certain signal transduction pathways and result in the release of numerous inflammatory mediators and active substances to induce digestive system injury, such as Helicobacter pylori infection-induced gastric mucosal injury, alcohol-induced gastritis, alcohol-induced liver injury, acute hemorrhagic necrotizing pancreatitis, hepatic ischemia-reperfusion injury (I/RI), and dextran sodium sulfate (DSS)-induced colitis. Here, we review the advances in understanding the relationship between TLRs and digestive system injury and explore the clinical value of TLRs in the diagnosis and treatment of digestive system diseases.
Collapse
|
33
|
Takemura N, Okubo T, Sonoyama K. Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet. Exp Biol Med (Maywood) 2010; 235:849-56. [PMID: 20558839 DOI: 10.1258/ebm.2010.009377] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because gut microbiota has recently attracted much attention as an environmental factor involved in the development of obesity, probiotics may be useful in preventing and/or improving obesity and its related disorders. The present study aimed to investigate the effects of Lactobacillus plantarum strain No. 14 (LP14), a bacterial strain reported to decrease body fat percentage in healthy volunteers, on adipocyte size in mice. Female C57BL/6 mice were fed either normal- or high-fat diet and administered intragastrically with LP14 (1 x 10(8) colony-forming units/mouse) or vehicle daily for 11 weeks. High dietary fat intake increased body weight gain, white adipose tissue weight, mean adipocyte size and serum total cholesterol and leptin concentrations, and decreased serum adiponectin concentration. In mice fed the high-fat diet, LP14 administration significantly reduced the mean adipocyte size and tended to reduce the white adipose tissue weight and serum total cholesterol and leptin concentrations as compared with the vehicle-administered mice. All mice had undetectable serum levels of conjugated linoleic acids that reportedly exert antiobesity action. In a separate experiment, LP14 ingestion had no influence on serum triacylglycerol accumulation following olive oil administration in Triton WR1339-treated mice, suggesting that dietary fat absorption is unaffected by LP14. In conclusion, we propose that LP14 may exert a beneficial effect on the onset of diet-induced obesity by reducing the cell size of white adipose tissues, and it seems unlikely that previously reported mechanisms for other bacterial strains are involved in the action of LP14.
Collapse
Affiliation(s)
- Naoki Takemura
- Graduate School of Life Science, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|
34
|
Patel RM, Lin PW, Kater CE, Arnhold IJ, Rocha A, Nicolau W, Bloise W. Developmental biology of gut-probiotic interaction. Gut Microbes 2010; 1:186-95. [PMID: 21327024 PMCID: PMC3023598 DOI: 10.4161/gmic.1.3.12484] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 02/06/2023] Open
Abstract
While our current knowledge of probiotic interaction in the developing gut remains poorly understood, emerging science is providing greater biological insight into their mechanism of action and therapeutic potential for human disease. Given their beneficial effects, probiotics remain promising agents in neonatal gastrointestinal disorders. Probiotics may restore or supply essential bacterial strains needed for gut maturation and homeostasis, particularly in hosts where this process has been disrupted. Here we highlight the unique characteristics of developing intestinal epithelia with a focus on gut development and colonization as well as the inflammatory propensity of immature epithelia. Additionally, we review potential mechanisms of beneficial probiotic interaction with immature intestinal epithelia including immunomodulation, upregulation of cytoprotective genes, prevention and regulation of apoptosis and maintenance of barrier function. Improved knowledge of gut-probiotic interaction in developing epithelia will allow for a better understanding of how probiotics exert their beneficial effects and help guide their therapeutic use.
Collapse
|
35
|
Ryan KA, O'Hara AM, van Pijkeren JP, Douillard FP, O'Toole PW. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol 2009; 58:996-1005. [PMID: 19528183 DOI: 10.1099/jmm.0.009407-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human infection by the gastric pathogen Helicobacter pylori is characterized by a robust immune response which rarely prevents persistent H. pylori colonization. Emerging evidence suggests that lactobacilli may reduce H. pylori infection rates and associated inflammation. In this study, we measured the ability of two model strains of Lactobacillus salivarius (UCC118 and UCC119) to modulate gastric epithelial cell chemokine responses to H. pylori infection. Pre-treatment of AGS cells with either L. salivarius strain significantly decreased interleukin-8 (IL-8) production upon exposure to H. pylori, but not in cells stimulated with TNF-alpha. The production of the chemokines CCL20 and IP-10 by AGS cells infected with H. pylori was also altered following pre-treatment with UCC118 and UCC119. We showed that a greater reduction in IL-8 production with UCC119 was due to the production of more acid by this strain. Furthermore, UV-killed cells of both lactobacillus strains were still able to reduce H. pylori-induced IL-8 in the absence of acid production, indicating the action of a second anti-inflammatory mechanism. This immunomodulatory activity was not dependent on adhesion to epithelial cells or bacteriocin production. Real-time RT-PCR analysis showed that expression of eight of twelve Cag pathogenicity island genes tested was downregulated by exposure to L. salivarius, but not by cells of four other lactobacillus species. CagA accumulated in H. pylori cells following exposure to L. salivarius presumably as a result of loss of functionality of the Cag secretion system. These data identified a new mechanism whereby some probiotic bacteria have a positive effect on H. pylori-associated inflammation without clearing the infection.
Collapse
Affiliation(s)
- Kieran A Ryan
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Ann M O'Hara
- Department of Medicine, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Jan-Peter van Pijkeren
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | - Paul W O'Toole
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|