1
|
Kim J, Gilbert JL, Lv WW, Du P, Pan H. Reduction reactions dominate the interactions between Mg alloys and cells: Understanding the mechanisms. Bioact Mater 2025; 45:363-387. [PMID: 39687558 PMCID: PMC11647666 DOI: 10.1016/j.bioactmat.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Magnesium (Mg) alloys are popular biodegradable metals studied for orthopedic and cardiovascular applications, mainly because Mg ions are essential trace elements known to promote angiogenesis and osteogenesis. However, Mg corrosion consists of oxidation and reduction reactions that produce by-products, such as hydrogen gas, reactive oxygen species, and hydroxides. It is still unclear how all these by-products and Mg ions concomitantly alter the microenvironment and cell behaviors spatially and temporally. This study shows that Mg corrosion can enhance cell proliferation by reducing intracellular ROS. However, Mg cannot decrease ROS and promote cell proliferation in simulated inflammatory conditions, meaning the microenvironment is critical. Furthermore, cells may respond to Mg ions differently in chronic or acute alkaline pH or oxidative stress. Depending on the corrosion rate, Mg modulates HIF1α and many signaling pathways like PI3K/AKT/mTOR, mitophagy, cell cycle, and oxidative phosphorylation. Therefore, this study provides a fundamental insight into the importance of reduction reactions in Mg alloys.
Collapse
Affiliation(s)
- Jua Kim
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse University, Syracuse, NY, 13244, USA
| | - Jeremy L. Gilbert
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse University, Syracuse, NY, 13244, USA
- Clemson- Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, 68 Presidents St, Charleston, SC, 39425, USA
| | - William W. Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, PR China
| | - Ping Du
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
- College of Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, PR China
| |
Collapse
|
2
|
Jang JH, Kim DH, Chun KS. Tumor microenvironment regulation by reactive oxygen species-mediated inflammasome activation. Arch Pharm Res 2025; 48:115-131. [PMID: 39888519 DOI: 10.1007/s12272-025-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME. By releasing cytokines such as IL-1β and IL-18, inflammasomes contribute to immune cell recruitment and sustain a chronic inflammatory state that supports tumor growth. ROS are critical regulators of inflammasome activation, with the impact of ROS-mediated activation differing across cell types, leading to distinct influences on tumor progression and therapeutic responses. This review explores how ROS drive inflammasome activation in various TME-associated cells and the reciprocal ROS generation induced by inflammasomes, examining their multifaceted impact on tumorigenesis and therapeutic efficacy. By elucidating the complex interplay between ROS and inflammasomes in TME, we provide insights into potential therapeutic approaches that could modulate cancer progression and enhance treatment outcomes.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Gyeongbuk, 38430, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
3
|
Hickey TE, Mudunuri U, Hempel HA, Kemp TJ, Roche NV, Talsania K, Sellers BA, Cherry JM, Pinto LA. Proteomic and serologic assessments of responses to mRNA-1273 and BNT162b2 vaccines in human recipient sera. Front Immunol 2025; 15:1502458. [PMID: 39931577 PMCID: PMC11808009 DOI: 10.3389/fimmu.2024.1502458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The first vaccines approved against SARS-CoV-2, mRNA-1273 and BNT162b2, utilized mRNA platforms. However, little is known about the proteomic markers and pathways associated with host immune responses to mRNA vaccination. In this proof-of-concept study, sera from male and female vaccine recipients were evaluated for proteomic and immunologic responses 1-month and 6-months following homologous third vaccination. Methods An aptamer-based (7,289 marker) proteomic assay coupled with traditional serology was leveraged to generate a comprehensive evaluation of systemic responsiveness in 64 and 68 healthy recipients of mRNA-1273 and BNT162b2 vaccines, respectively. Results Sera from female recipients of mRNA-1273 showed upregulated indicators of inflammatory and immunological responses at 1-month post-third vaccination, and sera from female recipients of BNT162b2 demonstrated upregulated negative regulators of RNA sensors at 1-month. Sera from male recipients of mRNA-1273 showed no significant upregulation of pathways at 1-month post-third vaccination, though there were multiple significantly upregulated proteomic markers. Sera from male recipients of BNT162b2 demonstrated upregulated markers of immune response to doublestranded RNA and cell-cycle G(2)/M transition at 1-month. Random Forest analysis of proteomic data from pre-third-dose sera identified 85 markers used to develop a model predictive of robust or weaker IgG responses and antibody levels to SARS-CoV-2 spike protein at 6-months following boost; no specific markers were individually predictive of 6-month IgG response. Thirty markers that contributed most to the model were associated with complement cascade and activation; IL-17, TNFR pro-apoptotic, and PI3K signaling; and cell cycle progression. Discussion These results demonstrate the utility of proteomics to evaluate correlates or predictors of serological responses to SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Thomas E. Hickey
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Uma Mudunuri
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Heidi A. Hempel
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Troy J. Kemp
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Nancy V. Roche
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Keyur Talsania
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Brian A. Sellers
- Center for Human Immunology, Inflammation and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - James M. Cherry
- Center for Human Immunology, Inflammation and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ligia A. Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
4
|
Zhu D, Lin YD, Yao YZ, Qi XJ, Qian K, Lin LZ. Negative association of C-reactive protein-albumin-lymphocyte index (CALLY index) with all-cause and cause-specific mortality in patients with cancer: results from NHANES 1999-2018. BMC Cancer 2024; 24:1499. [PMID: 39639229 PMCID: PMC11619214 DOI: 10.1186/s12885-024-13261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The CALLY index, which is derived from C-reactive protein (CRP) content, serum albumin level, and total lymphocyte count, reflects the immune, nutritional, and inflammatory status of the body. Lack of sufficient evidence on the correlation between the CALLY index and the prognosis of cancer patients with various cancer forms. This study seeks to elucidate the association between the CALLY index and mortality from all causes as well as specific causes in cancer patients within a U.S. POPULATION METHODS This investigation encompassed 3511 cancer-afflicted adults from the National Health and Nutritional Examination Surveys (NHANES) spanning 1999 to 2018. The CALLY index was measured at baseline only. The relationship between the CALLY index and mortality from both all causes and cancer specifically was examined using Cox proportional hazards models. Additionally, restricted cubic spline, piecewise linear regression, and various subgroup and sensitivity analyses were employed. RESULTS Over a median follow-up of 103 months, 1,355 deaths occurred, and the incidence of all-cause mortality for these participants was 38.34%. Our findings indicate that an elevated CALLY index correlates with a diminished risk of all-cause mortality. Upon applying a natural logarithmic transformation to the CALLY index, the comprehensively adjusted model revealed that each one-unit increment in ln CALLY corresponded to a 18% decrease in all-cause mortality risk among cancer patients (HR = 0.82, 95% CI:0.79-0.86). Analyses of mortality due to cardiac and cancer-related causes yielded consistent results, which were robust across various subgroup and sensitivity analyses. CONCLUSION The CALLY index demonstrated a linear and negative association with all-cause mortality, as well as mortality caused by cancer and cardiac conditions, highlighting its significant prognostic value in patients with oncological conditions.
Collapse
Affiliation(s)
- Di Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ye-Ding Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan-Zhu Yao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiang-Jun Qi
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kai Qian
- Shenzhen Bao'an Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Li-Zhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Saha S, Ghosh A, Santra HK, Banerjee D, Chattopadhyay S. Corrective role of endophytic exopolysaccharides from Clerodendrum infortunatum L. on arsenic-induced ovarian steroidogenic dysfunction and associated inflammatory responses. Int J Biol Macromol 2024; 282:136795. [PMID: 39442839 DOI: 10.1016/j.ijbiomac.2024.136795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The present investigation aimed to evaluate the therapeutic potential of exopolysaccharides (EPSs) derived from endophytic fungi against arsenic [As(III)]-mediated metabolic and reproductive ailments. Two endophytic fungi, Diaporthe arengae (CleR1) and Fusarium proliferatum (CleR3), were isolated from Clerodendrum infortunatum (Cle), and used for the extraction of two types of EPSs. GC-MS analysis confirmed the presence of hydroxymethyl furfural (HMF) and α-d-glucopyranose in the EPS1 (CleR1) and EPS2 (CleR3), respectively. FTIR analysis revealed the potential As(III)-chelation properties of both EPSs. EPS1 and EPS2 significantly mitigated As(III)-induced oxidative stress and lipid peroxidation by restoring the activities of antioxidative enzymes. EPSs successfully corrected the gonadotropin imbalance and steroidogenic alterations. The downregulation of proinflammatory (NF-κB and TNF-α) and proapoptotic (BAX) mediators and the upregulation of antiapoptotic (Bcl-2) markers were also detected following the treatment with EPSs. Histomorphological restoration of reproductive and metabolic organs was also observed in both the EPS groups. Moreover, the As(III)-induced increase in the immunoreactivity of the androgen receptor (AR) was successfully reversed by these EPSs. Molecular docking predicted that HMF and α-d-glucopyranose of EPS1 and EPS2 interact with the active site of AR by limiting its activity. Hence, EPS could be effective for developing new therapeutic strategies for managing As(III) toxicity.
Collapse
Affiliation(s)
- Sangita Saha
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Angshita Ghosh
- Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Debdulal Banerjee
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
6
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
7
|
Show S, Dutta D, Nongthomba U, Prasad A J M. Effective paclitaxel: β-Cyclodextrin-based formulation boosts in vitro anti-tumor potential and lowers toxicity in zebrafish. Toxicol Res (Camb) 2024; 13:tfae150. [PMID: 39319343 PMCID: PMC11417963 DOI: 10.1093/toxres/tfae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Paclitaxel (PCTX) is one of the most prevalently used chemotherapeutic agents. However, its use is currently beset with a host of problems: solubility issue, microplastic leaching, and drug resistance. Since drug discovery is challenging, we decided to focus on repurposing the drug itself by remedying its drawbacks and making it more effective. In this study, we have harnessed the aqueous solubility of sugars, and the high affinity of cancer cells for them, to entrap the hydrophobic PCTX within the hydrophilic shell of the carbohydrate β-cyclodextrin. We have characterized this novel drug formulation by testing its various physical and chemical parameters. Importantly, in all our in vitro assays, the conjugate performed better than the drug alone. We find that the conjugate is internalized by the cancer cells (A549) via caveolin 1-mediated endocytosis. Thereafter, it triggers apoptosis by inducing the formation of reactive oxygen species. Based on experiments on zebrafish larvae, the formulation displays lower toxicity compared to PCTX alone. Thus, our "Trojan Horse" approach, relying on minimal components and relatively faster formulation, enhances the anti-tumor potential of PCTX, while simultaneously making it more innocuous toward non-cancerous cells. The findings of this study have implications in the quest for the most cost-effective chemotherapeutic molecule.
Collapse
Affiliation(s)
- Sautan Show
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Centre, K.R.S. Road, Metagalli, Mysore 570016, India
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
| | - Debanjan Dutta
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
- Life Science Division, AgriVet Life Science, AgriVet Research & Advisory (P) Ltd., Lake Town Rd, Block A, Lake Town, South Dumdum, West Bengal 700089, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
| | - Mahadesh Prasad A J
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Centre, K.R.S. Road, Metagalli, Mysore 570016, India
| |
Collapse
|
8
|
Gong J, Li T, Li Y, Xiong X, Xu J, Chai X, Ma Y. UID-Dual Transcriptome Sequencing Analysis of the Molecular Interactions between Streptococcus agalactiae ATCC 27956 and Mammary Epithelial Cells. Animals (Basel) 2024; 14:2587. [PMID: 39272372 PMCID: PMC11393856 DOI: 10.3390/ani14172587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to treat. However, the molecular interactions between it and mammary epithelial cells remain poorly understood. This study analyzed differential gene expression in mammary epithelial cells with varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses, immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host's innate immune mechanisms by interfering with the alternative splicing processes of mammary epithelial cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes and altering normal molecular regulation.
Collapse
Affiliation(s)
- Jishang Gong
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Taotao Li
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuanfei Li
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Xuewen Chai
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China
| | - Youji Ma
- College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
9
|
Guo N, Chen J, Kong F, Gao Y, Bian J, Liu T, Hong G, Zhao Z. 5-aminolevulinic acid photodynamic therapy for chronic wound infection in rats with diabetes. Biomed Pharmacother 2024; 178:117132. [PMID: 39047418 DOI: 10.1016/j.biopha.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent research indicated that ulcers and peripheral vascular disease resulting from drug-resistant bacterial infections are the main causes of delayed healing in chronic diabetic wounds. 5-Aminolevulinic acid (ALA) is a second-generation endogenous photosensitizer. The therapeutic effect and mechanism of ALA-mediated photodynamic therapy (ALA-PDT) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic rats were investigated in this study. The results revealed the promising antibacterial effects of ALA-PDT MRSA in vitro, with a minimum inhibitory concentration and minimum bactericidal concentration of 250 and 500 μM, respectively. ALA-PDT also changed the permeability and structural integrity of bacterial cell membranes by producing reactive oxygen species. Meanwhile, ALA-PDT accelerated wound healing in MRSA-infected diabetic rats, with 5 % ALA-PDT achieving complete sterilization in 14 days and wound closure in 21 days. Treatment with 5 % ALA-PDT additionally improved the histopathological appearance of skin tissue, as well as fibrosis, inflammatory cytokine release, and angiogenesis-related protein expression. These findings indicated that ALA-PDT significantly promoted the healing of MRSA-infected wounds in diabetic rats by eliminating bacteria, inhibiting inflammation, generating granulation tissues, promoting neovascularization, and restoring damaged nerves. In addition, the healing mechanism was related to the activation of inflammatory and angiogenesis pathways through the regulation of tumor necrosis factor-alpha and interleukin-6 expression and upregulation of CD206, CD31, and VEGF. These findings underscored the potential role of ALA-PDT in promoting the healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Ning Guo
- School of Basic Medical Sciences, Hebei University, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Jingyu Chen
- Tianjin University of Traditional Chinese Medicine, China.
| | - Feiyan Kong
- School of Basic Medical Sciences, Hebei University, China.
| | | | | | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Zhanjuan Zhao
- School of Basic Medical Sciences, Hebei University, China.
| |
Collapse
|
10
|
Xiao Y, Hu L, Duan J, Che H, Wang W, Yuan Y, Xu J, Chen D, Zhao S. Polystyrene microplastics enhance microcystin-LR-induced cardiovascular toxicity and oxidative stress in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124022. [PMID: 38679130 DOI: 10.1016/j.envpol.2024.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The health risks associated with combined exposure to microplastics (MPs) and cyanobacteria toxins have gained increasing attention due to the large-scale prevalence of cyanobacterial blooms and accumulation of MPs in aquatic environments. Therefore, we explored the cardiovascular toxic effects of microcystin-LR (MC-LR, 1, 10, 100 μg/L) in the presence of 5 μm polystyrene microplastics (PS-MPs, 100 μg/L) and 80 nm polystyrene nanoplastics (PS-NPs, 100 μg/L) in zebrafish models. Embryos were exposed to certain PS-MPs and PS-NPs conditions in water between 3 h post-fertilization (hpf) and 168 hpf. Compared to MC-LR alone, a significant decrease in heart rate was observed as well as notable pericardial edema in the MC-LR + PS-MPs/NPs groups. At the same time, sinus venosus and bulbus arteriosus (SV-BA) distances were significantly increased. Furthermore, the addition of PS-MPs/NPs caused thrombosis in the caudal vein and more severe vascular damage in zebrafish larvae compared to MC-LR alone. Our findings revealed that combined exposure to PS-NPs and MC-LR could significantly decreased the expression of genes associated with cardiovascular development (myh6, nkx2.5, tnnt2a, and vegfaa), ATPase (atp1a3b, atp1b2b, atp2a1l, atp2b1a, and atp2b4), and the calcium channel (cacna1ab and ryr2a) compared to exposure to MC-LR alone. In addition, co-exposure with PS-MPs/NPs exacerbated the MC-LR-induced reactive oxygen species (ROS) production, as well as the ROS-stimulated apoptosis and heightened inflammation. We also discovered that astaxanthin (ASTA) treatment partially attenuated these cardiovascular toxic effects. Our findings confirm that exposure to MC-LR and PS-MPs/NPs affects cardiovascular development through calcium signaling interference and ROS-induced cardiovascular cell apoptosis. This study highlights the potential environmental risks of the co-existence of MC-LR and PS-MPs/NPs for fetal health, particularly cardiovascular development.
Collapse
Affiliation(s)
- Yuchun Xiao
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liwen Hu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayao Duan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huimin Che
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wenxin Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuan Yuan
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jiayi Xu
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Daojun Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lin Z, Wei Y, Yang H. Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategies. APL Bioeng 2024; 8:021504. [PMID: 38638143 PMCID: PMC11026114 DOI: 10.1063/5.0191800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.
Collapse
Affiliation(s)
- Zhensheng Lin
- Medical Engineering Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yuhe Wei
- Department of Medical Equipment, Tianjin Chest Hospital, Tianjin 300350, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
13
|
Hwan Oh J, Kong CS, Lee J, Kim EH, Seo Y. Isolation of New Diterpenoids from the Halophyte, Vitex rotundifolia, and their Antioxidant and Anti-inflammatory Activities. Chem Biodivers 2024; 21:e202301115. [PMID: 38334224 DOI: 10.1002/cbdv.202301115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024]
Abstract
In this study, three diterpenoids (1-3), including one known compound (1), were isolated from the fruits of Vitex rotundifolia and their structures were determined via spectroscopic analysis. In lipopolysaccharide-stimulated RAW264.7 cells, these compounds dose-dependently decreased the intracellular reactive oxygen species levels and nitric oxide production compared to those in the control cells. At 25 μM/mL, these compounds also diminished the protein expression of the pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-6, with compound 3 exhibiting the most potent inhibitory effect.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, 140 Baegyang-daero, 700 beon-gil, Sasang-Gu, Busan, 46958, Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, Silla University, 140 Baegyang-daero, 700 beon-gil, Sasang-Gu, Busan, 46958, Korea
| | - Jihee Lee
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan, 49112, Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, 162, Yeongudanji-ro, Cheongwon-Gu, Cheongju, Chungbuk, 28119, Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan, 49112, Korea
| |
Collapse
|
14
|
Hesamzadeh P, Seif A, Mahmoudzadeh K, Ganjali Koli M, Mostafazadeh A, Nayeri K, Mirjafary Z, Saeidian H. De novo antioxidant peptide design via machine learning and DFT studies. Sci Rep 2024; 14:6473. [PMID: 38499731 PMCID: PMC10948870 DOI: 10.1038/s41598-024-57247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Antioxidant peptides (AOPs) are highly valued in food and pharmaceutical industries due to their significant role in human function. This study introduces a novel approach to identifying robust AOPs using a deep generative model based on sequence representation. Through filtration with a deep-learning classification model and subsequent clustering via the Butina cluster algorithm, twelve peptides (GP1-GP12) with potential antioxidant capacity were predicted. Density functional theory (DFT) calculations guided the selection of six peptides for synthesis and biological experiments. Molecular orbital representations revealed that the HOMO for these peptides is primarily localized on the indole segment, underscoring its pivotal role in antioxidant activity. All six synthesized peptides exhibited antioxidant activity in the DPPH assay, while the hydroxyl radical test showed suboptimal results. A hemolysis assay confirmed the non-hemolytic nature of the generated peptides. Additionally, an in silico investigation explored the potential inhibitory interaction between the peptides and the Keap1 protein. Analysis revealed that ligands GP3, GP4, and GP12 induced significant structural changes in proteins, affecting their stability and flexibility. These findings highlight the capability of machine learning approaches in generating novel antioxidant peptides.
Collapse
Affiliation(s)
- Parsa Hesamzadeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdolvahab Seif
- Dipartimento di Fisica, Universita' di Padova, Via Marzolo 8, 35131, Padua, Italy
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Kazem Mahmoudzadeh
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nayeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), PO Box: 19395-4697, Tehran, Iran.
| |
Collapse
|
15
|
Jiang Z, He J, Zhang B, Wang L, Long C, Zhao B, Yang Y, Du L, Luo W, Hu J, Hong X. A Potential "Anti-Warburg Effect" in Circulating Tumor Cell-mediated Metastatic Progression? Aging Dis 2024; 16:AD.2023.1227. [PMID: 38300633 PMCID: PMC11745448 DOI: 10.14336/ad.2023.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Metabolic reprogramming is a defining hallmark of cancer metastasis, warranting thorough exploration. The tumor-promoting function of the "Warburg Effect", marked by escalated glycolysis and restrained mitochondrial activity, is widely acknowledged. Yet, the functional significance of mitochondria-mediated oxidative phosphorylation (OXPHOS) during metastasis remains controversial. Circulating tumor cells (CTCs) are considered metastatic precursors that detach from primary or secondary sites and harbor the potential to seed distant metastases through hematogenous dissemination. A comprehensive metabolic characterization of CTCs faces formidable obstacles, including the isolation of these rare cells from billions of blood cells, coupled with the complexities of ex vivo-culturing of CTC lines or the establishment of CTC-derived xenograft models (CDX). This review summarized the role of the "Warburg Effect" in both tumorigenesis and CTC-mediated metastasis. Intriguingly, bioinformatic analysis of single-CTC transcriptomic studies unveils a potential OXPHOS dominance over Glycolysis signature genes across several important cancer types. From these observations, we postulate a potential "Anti-Warburg Effect" (AWE) in CTCs-a metabolic shift bridging primary tumors and metastases. The observed AWE could be clinically important as they are significantly correlated with therapeutic response in melanoma and prostate patients. Thus, unraveling dynamic metabolic regulations within CTC populations might reveal an additional layer of regulatory complexities of cancer metastasis, providing an avenue for innovative anti-metastasis therapies.
Collapse
Affiliation(s)
- Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jiapeng He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Binyu Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Liping Wang
- Department of Oncology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China.
| | - Chunhao Long
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Boxi Zhao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yufan Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Longxiang Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Weiren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China.
| | - Jianyang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
He X, Gou X, Fan D, Yang J, Fu X, Luo Y, Yang T. Repurposing TAK875 as a novel STAT3 inhibitor for treating inflammatory bowel disease. Biochem Pharmacol 2024; 219:115957. [PMID: 38049007 DOI: 10.1016/j.bcp.2023.115957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease associated with a high recurrence rate and an elevated risk of colon cancer. In this study, we screened a bioactive compound library using a luciferase reporter assay and identified the compound TAK875 as a novel inhibitor of signal transducer and activator of transcription 3 (STAT3). Surface plasmon resonance analysis, differential scanning fluorimetry, and isothermal titration calorimetry demonstrated that TAK875 directly bound to recombinant STAT3. TAK875 suppressed the lipopolysaccharide (LPS)-induced release of nitric oxide, inducible nitric oxide synthase, and inflammatory factors in RAW264.7 cells, likely by inhibiting STAT3 phosphorylation. In addition, TAK875 inhibited the differentiation of CD4+ T cells into T-helper 17 cells, which may partially account for its anti-inflammatory effect. TAK875 also alleviated the LPS-induced accumulation of intracellular reactive oxygen species, thus displaying its antioxidant effects. Finally, we demonstrated its satisfactory anti-inflammatory effect in a dextran sulfate sodium-induced mouse model of ulcerative colitis. In conclusion, this study presented TAK875 as a novel STAT3 inhibitor and demonstrated its anti-inflammatory and antioxidant effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Xinlian He
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xupeng Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Fan
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxing Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Fu
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tao Yang
- Department of Gastroenterology and Hepatology, and Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Fu X, Wang Z. DHCR24 in Tumor Diagnosis and Treatment: A Comprehensive Review. Technol Cancer Res Treat 2024; 23:15330338241259780. [PMID: 38847653 PMCID: PMC11162140 DOI: 10.1177/15330338241259780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
As an important nutrient in the human body, cholesterol can not only provide structural components for the body's cells, but also can be transformed into a variety of active substances to regulate cell signaling pathways. As an important cholesterol synthase, DHCR24 participates in important regulatory processes in the body. The application of DHCR24 in tumor clinical diagnosis and treatment also attracts much attention. This article reviews the structure and regulatory characteristics of DHCR24, and the research of DHCR24 on tumor progression. We summarize the possible mechanisms of DHCR24 promoting tumor progression through reactive oxygen species (ROS), p53, Ras and PI3K-AKT pathways. Through our review, we hope to provide more research ideas and reference value for the application of DHCR24 in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xin Fu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaosong Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
18
|
de Morais JMB, Cruz EMS, Concato VM, de Souza MC, Santos YM, Quadreli DH, Inoue FSR, Ferreira FB, Fernandes GSA, Bidóia DL, Machado RRB, Chuffa LGA, Pavanelli WR, Seiva FRF. Unraveling the impact of melatonin treatment: Oxidative stress, metabolic responses, and morphological changes in HuH7.5 hepatocellular carcinoma cells. Pathol Res Pract 2024; 253:155056. [PMID: 38183817 DOI: 10.1016/j.prp.2023.155056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
In addition to its highly aggressive nature and late diagnosis, hepatocellular carcinoma (HCC) does not respond effectively to available chemotherapeutic agents. The search is on for an ideal and effective compound with low cost and minimal side effects that can be used as an adjunct to chemotherapeutic regimens. One of the mechanisms involved in the pathology of HCC is the oxidative stress, which plays a critical role in tumor survival and dissemination. Our group has already demonstrated the antitumor potential of melatonin against HuH 7.5 cells. In the present study, we focused on the effects of melatonin on oxidative stress parameters and their consequences on cell metabolism. HuH 7.5 cells were treated with 2 and 4 mM of melatonin for 24 and 48 h. Oxidative stress biomarkers, antioxidant enzyme, mitochondrial membrane potential, formation of lipid bodies and autophagic vacuoles, cell cycle progression, cell death rate and ultrastructural cell alterations were evaluated. The treatment with melatonin increased oxidative stress biomarkers and reduced antioxidant enzyme activities of HuH 7.5 cells. Additionally, melatonin treatment damaged the mitochondrial membrane and increased lipid bodies and autophagic vacuole formation. Melatonin triggered cell cycle arrest and induced cell death by apoptosis. Our results indicate that the treatment of HuH 7.5 cells with melatonin impaired antioxidant defense systems, inhibited cell cycle progression, and caused metabolic stress, culminating in tumor cell death.
Collapse
Affiliation(s)
- Juliana M B de Morais
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Ellen M S Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Virgínia M Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Milena C de Souza
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Yasmin M Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Débora H Quadreli
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | - Fabrício S R Inoue
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Francielle B Ferreira
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Glaura S A Fernandes
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | | | | | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil
| | - Wander R Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Fábio R F Seiva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil.
| |
Collapse
|
19
|
Xiang L, Huang Q, Chen T, He Q, Yao H, Gao Y. Ethanol extract of Paridis rhizoma attenuates carrageenan-induced paw swelling in rats by inhibiting the production of inflammatory factors. BMC Complement Med Ther 2023; 23:437. [PMID: 38049800 PMCID: PMC10696755 DOI: 10.1186/s12906-023-04264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
CONTEXT Inflammation has been identified as a key factor contributing to the development of numerous diseases. Several anti-inflammatory drugs have been developed to treat inflammation-related diseases. However, some of such drugs are associated with varying degrees of side effects. Therefore, it is imperative to develop new anti-inflammatory drugs with reducing side effects for the treatment of inflammation-related diseases. Natural anti-inflammatory drugs have emerged as an important area of research in recent years. The study was to determine the anti-inflammatory mechanism of Paridis rhizoma extract (PRE) in rat models of acute inflammation induced by carrageenan and RAW264.7 cells models induced by lipopolysaccharide (LPS). MATERIALS AND METHODS PRE was investigated using the carrageenan-induced paw oedema model on rats in vivo. Histopathology examined the extent of inflammatory infiltration and tissue damage. The effect of PRE on the levels of specific cytokines was determined using enzyme-linked immunosorbent assay (ELISA). The Cell Counting Kit (CCK)-8 assay evaluated the cytotoxic effects of PRE on Raw264.7 cells. The mRNA expression levels of cytokines were quantified using quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Western blot measured TNF-α, IL6, TLR4, p-P65, p-IKB, HO1, SOD1 and SOD2. Fluorescence measured the cellular levels of reactive oxygen species (ROS). RESULTS PRE treatment reduced interstitial edema and structural damage in a dose-dependent manner in vivo. PRE inhibited inflammatory responses in vivo and in vitro, as evidenced by the decreased expression of inflammatory factors, production of ROS, and increased expression of SOD1, SOD2, and HO1. Moreover, PRE inhibited the activity of the nuclear factor kappa B (NF-kB) pathway. CONCLUSION The anti-inflammatory activity and potential mechanism of PRE were demonstrated according to the results. PRE reduced LPS-induced inflammation in RAW264.7 cells by inhibiting the NF-KB signaling pathway and ROS production in vitro. PRE alleviated interstitial edema and structural damage in the carrageenan-induced paw edema model on rats in vivo. This study provided an idea for future development of PR-based anti-inflammatory drugs.
Collapse
Affiliation(s)
- Li Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qinwan Huang
- School of Pharmacy, Cheng du University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Qingman He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Huan Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
- Sichuan Provincial Engineering Research Center of Innovative Re-Development of Famous Classical Formulas, Pengzhou, 611930, Sichuan, China.
| | - Yongxiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
20
|
Ruiz-Yance I, Siguas J, Bardales B, Robles-Castañeda I, Cordova K, Ypushima A, Estela-Villar E, Quintana-Criollo C, Estacio D, Rodríguez JL. Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. TOXICS 2023; 11:839. [PMID: 37888690 PMCID: PMC10610737 DOI: 10.3390/toxics11100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Triazole fungicides are widely used in the world, mainly in agriculture, but their abuse and possible toxic effects are being reported in some in vivo and in vitro studies that have demonstrated their danger to human health. This in vitro study evaluated the cytotoxicity, oxidative stress and proinflammation of EA.hy926 endothelial cells in response to ipconazole exposure. Using the MTT assay, ipconazole was found to produce a dose-dependent reduction (*** p < 0.001; concentrations of 20, 50 and 100 µM) of cell viability in EA.hy926 with an IC50 of 29 µM. Also, ipconazole induced a significant increase in ROS generation (** p < 0.01), caspase 3/7 (** p < 0.01), cell death (BAX, APAF1, BNIP3, CASP3 and AKT1) and proinflammatory (NLRP3, CASP1, IL1β, NFκB, IL6 and TNFα) biomarkers, as well as a reduction in antioxidant (NRF2 and GPx) biomarkers. These results demonstrated that oxidative stress, proinflammatory activity and cell death could be responsible for the cytotoxic effect produced by the fungicide ipconazole, such that this triazole compound should be considered as a possible risk factor in the development of alterations in cellular homeostasis.
Collapse
Affiliation(s)
- Iris Ruiz-Yance
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Junior Siguas
- Animal Physiology Department, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Brandy Bardales
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Ingrid Robles-Castañeda
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Karen Cordova
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Alina Ypushima
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Esteban Estela-Villar
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Carlos Quintana-Criollo
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Darwin Estacio
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - José-Luis Rodríguez
- Pharmacology and Toxicology Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
21
|
Mehmetoglu-Gurbuz T, Lakshmanaswamy R, Perez K, Sandoval M, Jimenez CA, Rocha J, Goldfarb RM, Perry C, Bencomo A, Neela N, Barragan JA, Sanchez R, Swain RM, Subramani R. Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis. Antioxidants (Basel) 2023; 12:1791. [PMID: 37891871 PMCID: PMC10604165 DOI: 10.3390/antiox12101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species are frequently associated with various cancers including pancreatic ductal adenocarcinomas (PDACs). Superoxide dismutase 2 (SOD2) is an enzyme that plays an important role in reactive oxygen species (ROS) signaling. Investigating the molecular function and biological functions of SOD2 can help us develop new therapeutic options and uncover new biomarkers for PDAC diagnosis and prognosis. Here, we show that nimbolide (NB), a triterpene limonoid, effectively blocks the growth and metastasis of PDACs by suppressing the expression and activity of SOD2. To identify the role of SOD2 in NB-induced anticancer activity, we used RNA interference to silence and plasmid transfection to overexpress it. Silencing SOD2 significantly reduced the growth and metastatic characteristics like epithelial-to-mesenchymal transition, invasion, migration, and colony-forming capabilities of PDACs, and NB treatment further reduced these characteristics. Conversely, the overexpression of SOD2 enhanced these metastatic characteristics. ROS signaling has a strong feedback mechanism with the PI3K/Akt signaling pathway, which could be mediated through SOD2. Finally, NB treatment to SOD2-overexpressing PDAC xenografts resulted in significant inhibition of tumor growth and metastasis. Overall, this work suggests that NB, a natural and safe phytochemical that silences SOD2 to induce high levels of ROS generation, results in increased apoptosis and reduced growth and progression of PDACs. The role of SOD2 in regulating NB-induced ROS generation presents itself as a therapeutic option for PDACs.
Collapse
Affiliation(s)
- Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Karla Perez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Mayra Sandoval
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Casandra A. Jimenez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jackelyn Rocha
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rachel Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Courtney Perry
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Alejandra Bencomo
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Nishkala Neela
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jose A. Barragan
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Raquel Sanchez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Risa Mia Swain
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
22
|
Chen F, Liao J, Wu P, Cheng L, Ma Y, Zhang L, Leng X, Zhu X, Liu Z, Xie F. Oridonin inhibits the occurrence and development of colorectal cancer by reversing the Warburg effect via reducing PKM2 dimer formation and preventing its entry into the nucleus. Eur J Pharmacol 2023; 954:175856. [PMID: 37321470 DOI: 10.1016/j.ejphar.2023.175856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Warburg effect is prevalent in human cancer. Oridonin (ORI) has excellent anticancer effects, but its exact anticancer mechanism is still unclear. METHODS CCK8, EdU, and flow cytometry assay were performed to detect the effect of ORI on cell viability, proliferation and apoptosis, respectively. RNA-seq was carried out to search the underlying mechanisms. Total PKM2, dimeric PKM2, nuclear PKM2 was detected by Western blot. The epidermal growth factor receptor/extracellular signal regulated kinase (EGFR/ERK) signaling was assayed. The binding ability of Importin-α5 to PKM2 was performed by Co-IP experiments. The effect of ORI combined with cysteine (Cys) or fructose-1, 6-diphosphate (FDP) on cancer cells was detected. Mouse xenograft model was established to confirm the molecular mechanisms in vivo. RESULTS ORI inhibited viability, proliferation and promoted apoptosis of CRC cells. RNA-seq revealed ORI attenuated the Warburg effect in cancer cells. ORI reduced dimeric PKM2 and prevented it from entering the nucleus. ORI did not affect the EGFR/ERK signaling, but reduced Importin-α5 binding to the PKM2 dimer. Cys or FDP reversed or enhanced the effect of ORI. Animal model assay confirmed the molecular mechanisms in vivo. CONCLUSIONS Our study first shows that ORI could have anticancer activity by inhibiting the Warburg effect as a novel activator of PKM2.
Collapse
Affiliation(s)
- Fan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
| | - Junnan Liao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
| | - Pinghui Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, China
| | - Li Cheng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yingchao Ma
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Linghan Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaomin Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
23
|
Liu Y, Huang N, Qiao X, Gu Z, Wu Y, Li J, Wu C, Li B, Li L. Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism. Int J Oral Sci 2023; 15:37. [PMID: 37661238 PMCID: PMC10475463 DOI: 10.1038/s41368-023-00242-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.
Collapse
Affiliation(s)
- Yunkun Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nengwen Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiyu Gu
- Department of Preventive and Pediatric Dentistry, Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinjin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhou Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Luo X, Wei M, Li W, Zhao H, Kasim V, Wu S. PBX3 promotes pentose phosphate pathway and colorectal cancer progression by enhancing G6PD expression. Int J Biol Sci 2023; 19:4525-4538. [PMID: 37781025 PMCID: PMC10535713 DOI: 10.7150/ijbs.86279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancers crucial for fulfilling the needs of energy, building blocks, and antioxidants to support tumor cells' rapid proliferation and to cope with the harsh microenvironment. Pre-B-cell leukemia transcription factor 3 (PBX3) is a member of the PBX family whose expression is up-regulated in various tumors, however, whether it is involved in tumor cell metabolic reprogramming remains unclear. Herein, we report that PBX3 is a positive regulator of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway (PPP). PBX3 promoted G6PD transcriptional activity in tumor cells by binding directly to its promoter, leading to PPP stimulation and enhancing the production of nucleotides and NADPH, a crucial reductant, thereby promoting nucleic acid and lipid biosynthesis while decreasing intracellular reactive oxygen species levels. The PBX3/G6PD axis also promoted tumorigenic potential in vitro and in vivo. Collectively, these findings reveal a novel function of PBX3 as a regulator of G6PD, linking its oncogenic activity with tumor cell metabolic reprogramming, especially PPP. Furthermore, our results suggested that PBX3 is a potential target for metabolic-based anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Xinxin Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
25
|
Wuputra K, Tsai MH, Kato K, Ku CC, Pan JB, Yang YH, Saito S, Wu CC, Lin YC, Cheng KH, Kuo KK, Noguchi M, Nakamura Y, Yoshioka T, Wu DC, Lin CS, Yokoyama KK. Jdp2 is a spatiotemporal transcriptional activator of the AhR via the Nrf2 gene battery. Inflamm Regen 2023; 43:42. [PMID: 37596694 PMCID: PMC10436584 DOI: 10.1186/s41232-023-00290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/06/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the "AhR-Nrf2 gene battery", which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood. METHODS Knockdown and forced expression of AhR-Nrf2 battery members were used to examine the molecular interactions between the AhR-Nrf2 axis and AhR promoter activation. Sequential immunoprecipitation, chromatin immunoprecipitation, and histology were used to identify each protein complex recruited to their respective cis-elements in the AhR promoter. Actin fiber distribution, cell spreading, and invasion were examined to identify functional differences in the AhR-Jdp2 axis between wild-type and Jdp2 knockout cells. The possible tumorigenic role of Jdp2 in the AhR-Nrf2 axis was examined in mutant Kras-Trp53-driven pancreatic tumors. RESULTS Crosstalk between AhR and Nrf2 was evident at the transcriptional level. The AhR promoter was activated by phase I ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the AhR-Jdp2-Nrf2 axis in a time- and spatial transcription-dependent manner. Jdp2 was a bifunctional activator of DRE- and ARE-mediated transcription in response to TCDD. After TCDD exposure, Jdp2 activated the AhR promoter at the DRE and then moved to the ARE where it activated the promoter to increase reactive oxygen species (ROS)-mediated functions such as cell spreading and invasion in normal cells, and cancer regression in mutant Kras-Trp53-driven pancreatic tumor cells. CONCLUSIONS Jdp2 plays a critical role in AhR promoter activation through the AhR-Jdp2-Nrf2 axis in a spatiotemporal manner. The AhR functions to maintain ROS balance and cell spreading, invasion, and cancer regression in a mouse model of mutant Kras-Trp53 pancreatic cancer. These findings provide new insights into the roles of Jdp2 in the homeostatic regulation of oxidative stress and in the antioxidation response in detoxification, inflammation, and cancer progression.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Ya-Han Yang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuang-Hung Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Michiya Noguchi
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.
| |
Collapse
|
26
|
Lee WY, Lee R, Park HJ. Tebuconazole Induces ER-Stress-Mediated Cell Death in Bovine Mammary Epithelial Cell Lines. TOXICS 2023; 11:397. [PMID: 37112622 PMCID: PMC10144106 DOI: 10.3390/toxics11040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Tebuconazole (TEB) is a triazole fungicide used to increase crop production by controlling fungi, insects, and weeds. Despite their extensive use, people are concerned about the health risks associated with pesticides and fungicides. Numerous studies have defined the cellular toxicity of triazole groups in pesticides, but the mechanisms of TEB toxicity in bovine mammary gland epithelial cells (MAC-T cells) have not yet been studied. Damage to the mammary glands of dairy cows directly affects milk production. This study investigated the toxicological effects of TEB on MAC-T cells. We found that TEB decreases both cell viability and proliferation and activates apoptotic cell death via the upregulation of pro-apoptotic proteins, such as cleaved caspases 3 and 8 and BAX. TEB also induced endoplasmic reticulum (ER) stress via the upregulation of Bip/GRP78; PDI; ATF4; CHOP; and ERO1-Lα. We found that TEB induced mitochondria-mediated apoptotic MAC-T cell death by activating ER stress. This cell damage eventually led to a dramatic reduction in the expression levels of the milk-protein-synthesis-related genes LGB; LALA; CSN1S1; CSN1S2; and CSNK in MAC-T cells. Our data suggest that the exposure of dairy cows to TEB may negatively affect milk production by damaging the mammary glands.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculure and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Ran Lee
- Department of Livestock, Korea National University of Agriculure and Fisheries, Jeonju-si 54874, Republic of Korea
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
27
|
Zhang Y, Liu W, Wang Q. Positive effects of low-dose photodynamic therapy with aminolevulinic acid or its methyl ester in skin rejuvenation and wound healing: An update. JOURNAL OF BIOPHOTONICS 2023; 16:e202200293. [PMID: 36602479 DOI: 10.1002/jbio.202200293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In dermatology, photodynamic therapy (PDT) is widely used in skin tumors, infections, etc., because of the killing effect triggered by toxic reactive oxygen species (ROS). However, the ROS concentration is determined by various photosensitizer concentrations and formulations, as well as various irradiation parameters. Low-dose PDT leads to sufficiently low ROS level, which results in biological effects that are the exact opposite of the killing potency. Therefore, in recent years, low-dose PDT has been exploited in improving aging and wound. Low-dose ALA/MAL PDT might improve aging through promoting the proliferation of fibroblasts, blocking DNA damage, counteracting oxidative stress, inhibiting melanogenesis, and remodeling lymphatic vessels in aged skin. Promoting fibroblasts and epidermal stem cells proliferation and migration, promoting granulation tissue formation and angiogenesis and regulating the inflammatory process might be the mechanisms of low-dose ALA/MAL PDT in wound healing. Nevertheless, the positive effects of low-dose PDT have not been thoroughly investigated in dermatology, and high-quality studies are still needed to fill the relevant vacancy.
Collapse
Affiliation(s)
- YuWei Zhang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liu
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qian Wang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
28
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
29
|
Sleep Fragmentation Accelerates Carcinogenesis in a Chemical-Induced Colon Cancer Model. Int J Mol Sci 2023; 24:ijms24054547. [PMID: 36901981 PMCID: PMC10003038 DOI: 10.3390/ijms24054547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Aims of this study were to test whether sleep fragmentation (SF) increased carcinogenesis and to investigate the possible mechanisms of carcinogenesis in a chemical-induced colon cancer model. In this study, eight-week-old C57BL/6 mice were divided into Home cage (HC) and SF groups. After the azoxymethane (AOM) injection, the mice in the SF group were subjected to SF for 77 days. SF was accomplished in a sleep fragmentation chamber. In the second protocol, mice were divided into 2% dextran sodium sulfate (DSS)-treated, HC, and SF groups and were exposed to the HC or SF procedures. Immunohistochemical and immunofluorescent stainings were conducted to determine the level of 8-OHdG and reactive oxygen species (ROS), respectively. Quantitative real-time polymerase chain reaction was used to assess the relative expression of inflammatory and ROS-generating genes. The number of tumors and average tumor size were significantly higher in the SF group than in the HC group. The intensity (%) of the 8-OHdG stained area was significantly higher in the SF group than in the HC group. The fluorescence intensity of ROS was significantly higher in the SF group than the HC group. SF accelerated cancer development in a murine AOM/DSS-induced model of colon cancer, and the increased carcinogenesis was associated with ROS- and oxidative stress-induced DNA damage.
Collapse
|
30
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
31
|
Crotalaria medicaginea Lamk.: an unexplored source of anticancer, antimicrobial and antioxidant agents. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN, Lee AYL. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J Biomed Sci 2022; 29:74. [PMID: 36154922 PMCID: PMC9511749 DOI: 10.1186/s12929-022-00859-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022] Open
Abstract
The major concept of "oxidative stress" is an excess elevated level of reactive oxygen species (ROS) which are generated from vigorous metabolism and consumption of oxygen. The precise harmonization of oxidative stresses between mitochondria and other organelles in the cell is absolutely vital to cell survival. Under oxidative stress, ROS produced from mitochondria and are the major mediator for tumorigenesis in different aspects, such as proliferation, migration/invasion, angiogenesis, inflammation, and immunoescape to allow cancer cells to adapt to the rigorous environment. Accordingly, the dynamic balance of oxidative stresses not only orchestrate complex cell signaling events in cancer cells but also affect other components in the tumor microenvironment (TME). Immune cells, such as M2 macrophages, dendritic cells, and T cells are the major components of the immunosuppressive TME from the ROS-induced inflammation. Based on this notion, numerous strategies to mitigate oxidative stresses in tumors have been tested for cancer prevention or therapies; however, these manipulations are devised from different sources and mechanisms without established effectiveness. Herein, we integrate current progress regarding the impact of mitochondrial ROS in the TME, not only in cancer cells but also in immune cells, and discuss the combination of emerging ROS-modulating strategies with immunotherapies to achieve antitumor effects.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Ananth Ponneri Babuharisankar
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan
| | - Vidhya Tangeda
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan.,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - An Ning Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, 35053, Taiwan. .,Joint PhD Program in Molecular Medicine, NHRI & NCU, Zhunan, Miaoli, 35053, Taiwan. .,Department of Life Sciences, College of Health Sciences and Technology, National Central University, Zhongli, Taoyuan, 32001, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
33
|
Melatonin Attenuates Cisplatin-Induced Ototoxicity via Regulating the Cell Apoptosis of the Inner Ear. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7160816. [PMID: 36092781 PMCID: PMC9458396 DOI: 10.1155/2022/7160816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Objective The mechanism of ototoxicity caused by cisplatin is currently unclear, and the induced apoptosis may play an important role in inner ear injury. Melatonin has high antioxidant and antiapoptotic effects. This study is aimed at clarifying the protective effect on the inner ear and the underlying mechanism of melatonin. Design The mice and HEI-OC1 cells were randomly separated into four groups: control group, cisplatin group, melatonin group, and cisplatin exposure after melatonin pretreatment group. Place and Duration of the Study. From September 2018 to September 2021, all experiments were completed at the Second Hospital of Shandong University. And the study was approved by the Ethics Committee of the Second Hospital of Shandong University (KYLL-2020 (KJ) A-0191). Methodology. Mice were pretreated with peritoneal injection of melatonin prior to the application of cisplatin. Auditory Brainstem Response (ABR) test was performed before and after treatment, then the temporal bones were collected for histology investigation. HEI-OC1 cells were pretreated with melatonin before adding cisplatin. The apoptosis of HEI-OC1 cells was observed by MTS, TUNEL, and flow cytometry, respectively. Moreover, the mRNA expression of apoptosis-related factors was detected by qRT-PCR. Results ABR and morphological analysis showed that cisplatin caused damage to the function and structure of the inner ear. MTS, TUNEL, and flow cytometry showed that the application of cisplatin caused a significant increase in the apoptosis level of HEI-OC1 cells, and melatonin pretreatment reduced this damage. Moreover, melatonin pretreatment reversed the mRNA expression changes of apoptosis-related factors induced by cisplatin. Conclusions Apoptosis is involved in the inner ear dysfunction caused by cisplatin. Melatonin reduces the ototoxicity of cisplatin by regulating the induced apoptosis response.
Collapse
|
34
|
Fan G, Li Y, Liu Y, Suo X, Jia Y, Yang X. Gondoic acid alleviates LPS‑induced Kupffer cells inflammation by inhibiting ROS production and PKCθ/ERK/STAT3 signaling pathway. Int Immunopharmacol 2022; 111:109171. [PMID: 35998508 DOI: 10.1016/j.intimp.2022.109171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022]
Abstract
Kupffer cells (KCs) is the main macrophage in liver, and its inflammation is related to liver diseases. It has been shown that inflammatory macrophages are accompanied by changes in monounsaturated fatty acid (MUFA) content. However, the effect of gondoic acid (GA) on inflammation and its underlying mechanism have not been described. In the current study, we demonstrated that GA significantly inhibited the expression of pro-inflammatory factors in LPS-exposed KCs. Further research found that GA reduced lipopolysaccharide (LPS)-stimulated reactive oxygen species (ROS) levels and enhanced the expression of antioxidant genes. Meanwhile, GA obviously blocked the LPS-stimulated PKCθ/ERK/STAT3 signaling pathways to alleviate the inflammatory responses. These results demonstrated for the first time that GA improves KCs inflammation through the inhibition of ROS production and PKCθ/ERK/STAT3 signaling pathway, the results assist in the potential development of functional foods or prodrugs based on the GA rich plant oils.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaxin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoyi Suo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
35
|
Ju C, Wang Y, Zang C, Liu H, Yuan F, Ning J, Shang M, Ma J, Li G, Yang Y, Bao X, Zhang D. Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway. Inflammation 2022; 45:2375-2387. [PMID: 35917097 DOI: 10.1007/s10753-022-01699-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) is a highly conserved protein kinase, playing a key role in the regulation of physiological brain functions and pathological processes. In Alzheimer's disease (AD), Dyrk1A promotes hyperphosphorylation of tau protein and abnormal aggregation of amyloid-β protein (Aβ). This study investigated the role of Dyrk1A in regulating neuroinflammation, another critical factor that contributes to AD. In the present study, we used an immortalized murine BV2 microglia cell line induced by lipopolysaccharide (LPS) to study neuroinflammation. The expression and activity of Dyrk1A kinase were both increased by inflammation. Dyrk1A inhibition using harmine or siRNA silencing significantly reduced the production of proinflammatory factors in LPS-stimulated BV2 cells. Reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the expression of the inflammatory proteins, cyclooxygenase 2 (COX2), and inducible nitric synthase (iNOS), were attenuated. In vivo, in ICR mice injected with LPS into the left lateral cerebral ventricle, harmine (20 mg/kg) administration decreased the expression of inflammatory proteins in the cortex and hippocampus of mice brain. In addition, immunohistochemical detection of ionized calcium-binding adapter molecule 1 (Iba1) and Nissl staining showed that harmine significantly attenuated microglia activation and neuronal damage in the CA1 region of hippocampus. Further mechanistic studies indicated that Dyrk1A suppression may be related to inhibition of the TLR4/NF-κB signaling pathway in LPS-induced neuroinflammation. Taken together, our studies suggest that Dyrk1A may be a novel target for the treatment of neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yue Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
36
|
Genovese C, Garozzo A, D’Angeli F, Malfa GA, Bellia F, Tomasello B, Nicolosi D, Malaguarnera R, Ronsisvalle S, Guadagni F, Acquaviva R. Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells 2022; 11:1696. [PMID: 35626733 PMCID: PMC9139723 DOI: 10.3390/cells11101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and β-Coronavirus by the plaque reduction assay. RESULTS The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.
Collapse
Affiliation(s)
- Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography, National Research Council (CNR), 95126 Catania, Italy;
| | - Barbara Tomasello
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Daria Nicolosi
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Microbiology Section, University of Catania, 95125 Catania, Italy
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
| | - Simone Ronsisvalle
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Rosaria Acquaviva
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| |
Collapse
|
37
|
Liu Y, Meng Y, Bian J, Liu B, Li X, Guan Q, Li Z, Zhang W, Wu Y, Zuo D. 2-Methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol causes G2/M cell cycle arrest and apoptosis in NSCLC cells through mitochondrial apoptotic pathway and MDM2 inhibition. J Biochem Mol Toxicol 2022; 36:e23066. [PMID: 35384151 DOI: 10.1002/jbt.23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/15/2021] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is one of the most common malignancies and needs novel and effective chemotherapy. In this study, our purpose is to explore the anticancer effects of 2-methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol (SQ) on human NSCLC (A549 and H460) cells. We found that SQ suppressed the proliferation of NSCLC cells in time- and dose-dependent manners, and blocked the cells at G2/M phase, which was relevant to microtubule depolymerization. Additionally, SQ induced A549 and H460 cell apoptosis by activating the mitochondrial apoptotic pathway. Further, we demonstrated that SQ enhanced the generation of reactive oxygen species (ROS), and pretreatment with N-acetyl- L-cysteine (NAC) attenuated SQ-induced cell apoptosis. Meanwhile, SQ mediated-ROS generation caused DNA damage in A549 and H460 cells. Our data also revealed that SQ-induced apoptosis was correlated with the inhibition of mouse double minute 2 (MDM2) in A549 and H460 cells. In summary, our research indicates that the novel compound SQ has great potential for therapeutic treatment of NSCLC in future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Bolin Liu
- College of Pharmacy, China Medical University, Shenyang, China
| | - Xuefen Li
- Department of Pharmacy, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
38
|
Yuan Z, Wang J, Che R, God’spower BO, Zhou Y, Dong C, Li L, Chen M, Eliphaz N, Liu X, Li Y. Relationship between L-lactate dehydrogenase and multidrug resistance in Staphylococcus xylosus. Arch Microbiol 2021; 204:91. [DOI: 10.1007/s00203-021-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
39
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
40
|
Singh D, Yadav A, Singh C. Autonomous regulation of inducible nitric oxide synthase and cytochrome P450 2E1-mediated oxidative stress in maneb- and paraquat-treated rat polymorphs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104944. [PMID: 34446210 DOI: 10.1016/j.pestbp.2021.104944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Maneb (MB)- and paraquat (PQ)-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) is regulated in parallel by cytochrome P450 2E1 (CYP2E1) and inducible nitric oxide synthase (iNOS). However, mechanism underlying their regulation is not yet understood. The study investigated the role of nuclear factor- kappa B (NF-κB) and mitogen-activated protein kinase/extracellular signal regulated kinase/protein kinase C (MEK/ERK/PKC) pathway in the regulation of iNOS- and CYP2E1-induced oxidative stress in PMNs. MB + PQ-induced changes in nitrite content, lipid peroxidation (LPO), iNOS expression/activity and inflammatory mediators were alleviated by aminoguanidine (AG), an iNOS inhibitor, without any change in CYP2E1. Alternatively, diallyl sulphide (DAS), a CYP2E1 inhibitor, rescued from MB + PQ-induced changes in CYP2E1 activity/expression, free radical generation, superoxide dismutase (SOD) activity, LPO and pro-inflammatory cytokines without any alterations in nitrite content and iNOS activity/expression. Pyrrolidine dithiocarbamate (PDTC), NF-κB inhibitor, did not alter CYP2E1 but mitigated free radical generation, SOD activity, LPO, nitrite content, iNOS activity/expression and levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukine-1β and interleukine-4). Ex-vivo treatment with MEK inhibitor (PD98059), ERK1/2 inhibitor (AG126) or PKC inhibitor (rottlerin) ameliorated MB + PQ-induced increase in free radical generation and CYP2E1 activity/expression in PMNs. While PD98059 and AG126 abated MB + PQ-induced increase in ERK1/2, PKC-α/δ and CYP2E1 levels, rottlerin restored PKC-α/δ and CYP2E1 towards normalcy without affecting ERK1/2 level in MB + PQ-treated group. The results suggest that iNOS and CYP2E1 contributing to MB + PQ-induced oxidative stress in rat PMNs exhibit differential regulatory mechanisms. The inflammatory mediators regulate iNOS expression while CYP2E1 expression is triggered via MEK-ERK1/2-PKC pathway.
Collapse
Affiliation(s)
- Deepali Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Archana Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Chetna Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
41
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
42
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
43
|
Du Z, Li M, Ren J, Qu X. Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents. Acc Chem Res 2021; 54:2172-2184. [PMID: 33881820 DOI: 10.1021/acs.accounts.1c00055] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), as the primary cause of dementia, has seriously affected millions of people worldwide and brought a very heavy financial and social burden. With the growth of population and aging, the situation will worsen unless efficacious drugs are found to reverse, stop, or even slow down disease progression. More and more evidence has demonstrated that amyloid-β (Aβ) aggregation is an upstream causative factor in AD pathogenesis and then triggers a slew of pathological events. Furthermore, the concentrated redox metal ions in the AD brain, especially Cu(II), can significantly exacerbate Aβ aggregation and contribute to the formation of neurotoxic reactive oxygen species (ROS). Therefore, the inhibition of Aβ aggregation and relief of amyloidosis-initiated neurotoxicity play a critical role in AD treatment. Until now, several methods have been proposed to modulate Aβ aggregation, such as developing aggregation inhibitors to interfere with Aβ assembly via noncovalent interactions, copper chelators to cut off metal-accelerated Aβ aggregation and concomitant cytotoxicity, photooxidation to reduce the hydrophobicity and aggregation tendency of Aβ, thermal dissociation to disrupt amyloid aggregates susceptible to temperature, degradation with artificial protease to fracture the Aβ peptide into small fragments, and the clearance of peripheral Aβ to bypass the obstruction of the BBB and reduce the Aβ burden.In this Account, we focus on our contributions to the development of Aβ-targeted multifunctional molecules and nanoparticles, emphasizing the diversified strategies and synergistic therapeutic effects. These therapeutic agents possess the following multifunctionalities: (1) compared with frequently used aggregation inhibitors restricted by intrinsically feeble and sensitive noncovalent interactions, multifunctional agents can efficiently block Aβ aggregation by exploiting two or more Aβ-specific inhibition strategies simultaneously; (2) apart from regulating Aβ aggregation, multipronged agents can also target and modulate other pathological factors in AD pathogenesis, such as increased oxidative stress, abnormal copper accumulation, and irreversible neuron loss; (3) multifunctional platforms with both diagnostic and therapeutic modalities through integrating in situ imaging, real-time diagnostics, a multitarget direction, stimuli-responsive drug release, and the blood-brain barrier (BBB) translocation features are instrumental in improving drug levels at trouble sites, diminishing off-target adverse reactions, evaluating therapeutic effects, and averting overtreatment.Given the fact that amyloid aggregation, local inflammation, and metal dyshomeostasis are universal biomarkers shared by various neurodegenerative disorders, this Account provides a perspective for the evolution of customized therapeutic agents with multiple reactivities for other neurodegenerative diseases. In addition, recent studies have indicated that Aβ aggregates can enter the nucleus and induce DNA damage and anomalous conformational transition. We also explore the influences of DNA on the biological effects of Aβ aggregates.
Collapse
Affiliation(s)
- Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Meng Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
c-Src facilitates tumorigenesis by phosphorylating and activating G6PD. Oncogene 2021; 40:2567-2580. [PMID: 33686238 DOI: 10.1038/s41388-021-01673-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme in pentose phosphate pathway (PPP), excessive activation of which has been considered to be involved in tumorigenesis. Here, we show that tyrosine kinase c-Src interacts with and phosphorylates G6PD at Tyr 112. This phosphorylation enhances catalytic activity of G6PD by dramatically decreasing its Km value and increasing its Kcat value for substrate glucose-6-phosphate. Activated G6PD therefore augments the PPP flux for NADPH and ribose-5-phosphate production which is required for detoxification of intracellular reactive oxygen species (ROS) and biosynthesis of cancer cells, and eventually contributes to tumorigenesis. Consistently, c-Src activation is closely correlated with tyrosine phosphorylation and activity of G6PD in clinical colorectal cancer samples. We thus uncover another aspect of c-Src in promoting cell proliferation and tumorigenesis, deepening our understanding of c-Src as a proto-oncogene.
Collapse
|
46
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|
47
|
Akter Z, Ahmed FR, Tania M, Khan MA. Targeting Inflammatory Mediators: An Anticancer Mechanism of Thymoquinone Action. Curr Med Chem 2021; 28:80-92. [PMID: 31604405 DOI: 10.2174/0929867326666191011143642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thymoquinone is a promising anticancer molecule, the chemopreventive role of which is well-known at least in vitro and in the animal model. In this review article, we focused on the anti-inflammatory activities of thymoquinone in cancer cells. METHOD Research data on inflammation, cancer and thymoquinone were acquired from PubMed, Scopus, Web of Science and Google Scholar. We reviewed papers published since the mid of the last century, and the most cited papers of the last ten years. RESULTS Studies indicate that thymoquinone possesses immunomodulatory activities, in addition to its chemopreventive role, as thymoquinone can target and modulate inflammatory molecules, like nuclear factor kappa B (NF-κβ), interleukins, tumor necrosis factor-α (TNF-α), and certain growth factors. As chronic inflammation plays an important role in cancer development, controlling inflammatory pathways is an important mechanism of an anticancer molecule, and modulation of inflammatory pathways might be one of the key mechanisms of thymoquinone's anticancer activities. CONCLUSION This article reviewed the role of inflammation on cancer development, and the action of thymoquinone on inflammatory molecules, which have been proved in vitro and in vivo. Much attention is required for studying the role of thymoquinone in immunotherapeutics and developing this molecule as a future anticancer drug.
Collapse
Affiliation(s)
- Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Faiza Rafa Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
49
|
Chatterjee R, Ghosh B, Mandal M, Nawn D, Banerjee S, Pal M, Paul RR, Banerjee S, Chatterjee J. Pathophysiological relationship between hypoxia associated oxidative stress, Epithelial-mesenchymal transition, stemness acquisition and alteration of Shh/ Gli-1 axis during oral sub-mucous fibrosis and oral squamous cell carcinoma. Eur J Cell Biol 2020; 100:151146. [PMID: 33418093 DOI: 10.1016/j.ejcb.2020.151146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Oral sub-mucous fibrosis (OSF) is a pathophysiological state of oral cavity or oropharynx having a high chance of conversion to oral squamous cell carcinoma (OSCC). It involves fibrotic transformation of sub-epithelial matrix along with epithelial abnormalities. The present work aims to unveil the mechanistic domain regarding OSF to OSCC conversion exploring the scenario of hypoxia associated oxidative stress, epithelial-mesenchymal transition (EMT), metastasis and stemness acquisition. The study involves histopathological analysis of the diseased condition along with the exploration of oxidative stress status, assessment of mitochondrial condition, immunohistochemical analysis of HIF-1α, E-cadherin, vimentin, ERK, ALDH-1, CD133, Shh, Gli-1 and survivin expressions in the oral epithelial region together with the quantitative approach towards collagen deposition in the sub-epithelial matrix. Oxidative stress was found to be associated with type-II EMT in case of OSF attributing the development of sub-epithelial fibrosis and type-III EMT in case of OSCC favoring malignancy associated metastasis. Moreover, the acquisition of stemness during OSCC can also be correlated with EMT. Alteration of Shh and Gli-1 expression pattern revealed the mechanistic association of hypoxia with the phenotypic plasticity and disease manifestation in case of OSF as well as OSCC. Shh/ Gli-1 signaling can also be correlated with survivin mediated cytoprotective phenomenon under oxidative stress. Overall, the study established the correlative network of hypoxia associated oxidative stress, EMT and manifestation of oral pre-cancerous and cancerous condition in a holistic approach that may throw rays of hope in the therapeutic domain of the concerned diseases.
Collapse
Affiliation(s)
- Ritam Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Mousumi Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Debaleena Nawn
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Satarupa Banerjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - Mousumi Pal
- Guru Nanak Institute of Dental Sciences and Research, Kolkata 700114 West Bengal, India
| | - Ranjan Rashmi Paul
- Guru Nanak Institute of Dental Sciences and Research, Kolkata 700114 West Bengal, India
| | | | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
50
|
Wang C, Hu J, Chen Z, Wang Y, Lu S, Zhang Y, Li Y, Xiang Y, Ji Y, Zeng C, Ding Y, Wang W. Reversibility of hAT-MSCs phenotypic and metabolic changes after exposure to and withdrawal from HCC-conditioned medium through regulation of the ROS/MAPK/HIF-1α signaling pathway. Stem Cell Res Ther 2020; 11:506. [PMID: 33246501 PMCID: PMC7694319 DOI: 10.1186/s13287-020-02010-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/03/2020] [Indexed: 01/14/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) play an important role in tumor progression; concomitantly, MSCs also undergo profound changes in the tumor microenvironment (TME). These changes can directly impact the application and efficacy of MSC-based anti-tumor therapy. However, few studies have focused on the regulation of MSC fate in TME, which will limit the progress of MSC-based anti-tumor therapy. Herein, we investigated the effects of conditioned medium from human hepatocellular carcinoma cells (HCC-CM) on the phenotype and glucose metabolism of human adipose tissue-derived MSCs (hAT-MSCs). Methods The passage 2 (P2) to passage 3 (P3) hAT-MSCs were exposed to conditioned medium from Hep3B, Huh7 and HCCLM3 cells for 4–8 weeks in vitro. Then, immunofluorescent, CCK-8 assay, EdU assay, Transwell assay, and flow cytometry were used to assess the alterations in cell phenotype in terms of cell morphology, secretory profiles, proliferation, migration, invasion, cell cycle, and apoptosis. In addition, glucose metabolism was evaluated by related kits. Next, the treated hAT-MSCs were subjected to withdrawal from HCC-CM for 2–4 weeks, and alterations in phenotype and glucose metabolism were reevaluated. Finally, the molecular mechanism was clarified by Western blotting. Results The results revealed that after exposure to HCC-CM, hAT-MSCs developed a stellate-shaped morphology. In association with cytoskeleton remodeling, hAT-MSCs showed enhanced capacities for migration and invasion, while cell proliferation was inhibited by regulating the cell cycle by downregulating cyclins and cyclin-dependent kinases and activating the mitochondrial apoptosis pathway. In terms of glucose metabolism, our results showed mitochondrial dysfunction and elevated glycolysis of hAT-MSCs. However, interestingly, when the treated hAT-MSCs were subjected to withdrawal from HCC-CM, the alterations in phenotype and glucose metabolism could be reversed, but secretory phenotype and tumor-promoting properties appear to be permanent. Further studies showed that these changes in hAT-MSCs may be regulated by the ROS/MAPK/HIF-1α signaling pathway. Conclusion Taken together, the effects of long-term HCC-CM treatment on phenotype and glucose metabolism in hAT-MSCs are modest and largely reversible after withdrawal, but HCC-CM endow hAT-MSCs with permanent secretory phenotype and tumor-promoting properties. This is the first report on the reversal of phenotype and glucose metabolism in tumor-associated MSCs (TA-MSCs), it is anticipated that new insights into TA-MSCs will lead to the development of novel strategies for MSC-based anti-tumor therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02010-0.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Jie Hu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yifan Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Sinan Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yufeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yucheng Xiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yutian Ji
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Cheng Zeng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Diseases of Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Diseases of Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|