1
|
Chen LC, Lin YY, Tsai YS, Chen CC, Chang TC, Chen HT, Hsu CJ, Tang CH. Live and Dead Clostridium butyricum GKB7 Diminish Osteoarthritis Pain and Progression in Preclinical Animal Model. ENVIRONMENTAL TOXICOLOGY 2024; 39:4927-4935. [PMID: 38923690 DOI: 10.1002/tox.24367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease primarily affecting the elderly. It is characterized by the progressive decline of joint cartilage and alterations in the underlying bone. Several probiotic strains have exhibited immunomodulatory and anti-inflammatory properties. Here, we examined the functions of live and dead Clostridium butyricum GKB7 (GKB7-L and GKB7-D) in a preclinical anterior cruciate ligament transection (ACLT)-enhanced OA procedure. Oral administration of GKB7-L and GKB7-D ameliorated ACLT-induced bone pain as assessed by weight-bearing behavioral testing but did not affect body weight. Micro-computed tomography (CT) results showed that GKB7-L and GKB7-D diminished ACLT-induced bone destruction and loss. GKB7-L and GKB7-D-enriched therapies also reduced ACLT-induced production of the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α, as well as the chondrolytic factor matrix metalloproteinase (MMP)-3, leading to inhibition of aggrecan and collagen type II degradation and thereby blocking cartilage breakdown. We therefore suggest that oral supplementation with GKB7-L or GKB7-D can be beneficial in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Li-Chai Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ching Chang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
2
|
Fan Z, Chen J, Wei J, Yang Z, Xiao H, Liu H. Improvement effect of compound Ento-PB on oxazolone-induced ulcerative colitis in rats. Acta Cir Bras 2024; 39:e395524. [PMID: 39230095 PMCID: PMC11368207 DOI: 10.1590/acb395524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE To investigate the impact of the Chinese medicine compound Ento-PB on oxazolone (OXZ)-induced ulcerative colitis (UC) in rats. METHODS UC rats induced by OXZ were treated with Ento-PB. The damage to the colon was assessed using several measures, including the disease activity index (DAI), colon length, colon weight/length ratio, colonic mucosal damage index, and histological score. The levels of interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-13 (IL-13), epidermal growth factor (EGF), inducible nitric oxide synthase, and total nitric oxide synthase (tNOS) in rat serum, as well as the levels of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) in rat colon tissue, were determined using enzyme-linked immunosorbent assay and conventional kits. RESULTS After being treated with Ento-PB, the DAI score and macroscopic lesion score of OXZ-induced UC rats were significantly reduced. Ento-PB prevented the shortening of rat colons, reduced the ratio of colon weight to length, and improved colon tissue lesions. Meanwhile, Ento-PB could significantly inhibit the activities of proinflammatory cytokines TNF-α, IL-13, and MPO, as well as tNOS and iNOS, while upregulating the expression of anti-inflammatory cytokines IL-4 and IL-10. Moreover, a significant increase in the expression level of EGF was observed in UC rats treated with Ento-PB, indicating that Ento-PB could enhance the repair of damaged intestinal epithelial tissue. CONCLUSIONS Ento-PB demonstrates significant anti-UC activities in OXZ-induced UC rats by regulating the expression levels of inflammatory factors and promoting the repair of colon tissue. This study provides scientific evidence to support the further development of Ento-PB.
Collapse
Affiliation(s)
- Zhi Fan
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
| | - Jinhu Chen
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
| | - Jia Wei
- Dali University – National-Local Joint Engineering Research Center of Entomoceutics – Dali – China
| | - ZhiBin Yang
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| | - Huai Xiao
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| | - Heng Liu
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| |
Collapse
|
3
|
Kader L, Willits AB, Meriano S, Christianson JA, La JH, Feng B, Knight B, Kosova G, Deberry JJ, Coates MD, Hyams JS, Baumbauer KM, Young EE. Identification of Arginine-Vasopressin Receptor 1a (Avpr1a/Avpr1a) as a Novel Candidate Gene for Chronic Visceral Pain Sheds Light on the Potential Role of Enteric Neurons in the Development of Visceral Hypersensitivity. THE JOURNAL OF PAIN 2024; 25:104572. [PMID: 38768798 DOI: 10.1016/j.jpain.2024.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of arginine-vasopressin receptor 1A (Avpr1a) as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing 2 C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan instillation, a validated preclinical model for postinflammatory IBS. Using whole-genome sequencing, we identified a single-nucleotide polymorphism differentiating the 2 strains in the 5' intergenic region upstream of Avpr1a, encoding the protein Avpr1a. We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the 2 BL/6 substrains did not differ across other gastrointestinal phenotypes (eg, fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the Avpr1a agonist arginine-vasopressin, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for VH in a mouse model of IBS. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.
Collapse
Affiliation(s)
- Leena Kader
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas
| | - Adam B Willits
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas
| | - Sebastian Meriano
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Julie A Christianson
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Jun-Ho La
- Department of Neurobiology, University of University of Texas Medical Branch, Galveston, Texas
| | - Bin Feng
- Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut
| | - Brittany Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Gulum Kosova
- Division of Statistical Genetics,TenSixteen Bio, Suffolk, Massachusetts
| | - Jennifer J Deberry
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthew D Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jeffrey S Hyams
- Department of Gastroenterology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Kyle M Baumbauer
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Erin E Young
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas.
| |
Collapse
|
4
|
Awad MM, El-Gohary RM, Ibrahim S, Abdel Ghafar MT, Farghal EE, Aboalsoud A, El-Shaer RAA. Potential mitigating impact of a dipeptidyl peptidase-IV inhibitor, vildagliptin, on oxazolone-induced ulcerative colitis: Targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 signaling pathways. Int Immunopharmacol 2024; 133:112110. [PMID: 38652960 DOI: 10.1016/j.intimp.2024.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.
Collapse
Affiliation(s)
- Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine,Tanta University,Tanta, Egypt.
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | - Eman E Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Alshimaa Aboalsoud
- Pharmacology Depatrtment, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
5
|
Yang Q, Zaongo SD, Zhu L, Yan J, Yang J, Ouyang J. The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10227-1. [PMID: 38336953 DOI: 10.1007/s12602-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Lijiao Zhu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
6
|
Kader L, Willits A, Meriano S, Christianson JA, La JH, Feng B, Knight B, Kosova G, Deberry J, Coates M, Hyams J, Baumbauer K, Young EE. Identification of arginine-vasopressin receptor 1a (Avpr1a/AVPR1A) as a novel candidate gene for chronic visceral pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572390. [PMID: 38187732 PMCID: PMC10769202 DOI: 10.1101/2023.12.19.572390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of Avpr1a as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing two C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan (ZYM) instillation, a validated preclinical model for post-inflammatory IBS. Using whole genome sequencing, we identified a SNP differentiating the two strains in the 5' intergenic region upstream of Avpr1a, encoding the protein arginine-vasopressin receptor 1A (AVPR1A). We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression differences and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the two BL/6 substrains did not differ across other gastrointestinal (GI) phenotypes (e.g., GI motility), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. Moreover, neurons of the enteric nervous system were hyperresponsive to the AVPR1A agonist AVP, suggesting a role for enteric neurons in the pathology underlying VH. These results parallel our findings that patients' colonic Avpr1a mRNA expression was higher in patients with higher pain ratings. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH-susceptibility as well as a potential therapeutic target specific to VH.
Collapse
Affiliation(s)
- Leena Kader
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
| | - Adam Willits
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
| | - Sebastian Meriano
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Julie A. Christianson
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Jun-Ho La
- Department of Neurobiology, University of University of Texas Medical Branch, Galveston, TX
| | - Bin Feng
- Biomedical Engineering Department, University of Connecticut, Storrs, CT
| | - Brittany Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Jennifer Deberry
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Jeffrey Hyams
- Department of Gastroenterology, Connecticut Children’s Medical Center, Hartford, CT
| | - Kyle Baumbauer
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Pu W, Zhang H, Zhang T, Guo X, Wang X, Tang S. Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Front Immunol 2023; 14:1004756. [PMID: 37081884 PMCID: PMC10111964 DOI: 10.3389/fimmu.2023.1004756] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Clostridium butyricum (CB) is a spore-forming, gram-positive and obligate anaerobic rod bacterium. CB can modulate the composition of the gut microbiome and promote the growth of beneficial microbes in the intestine by generating short-chain fatty acids (SCFAs), which in turn protect against colitis and prevents the formation of inflammatory-associated colorectal cancer (CRC) by ameliorating colon inflammatory processes. Yet, it remains unclear whether the culture and supernatant of CB could directly influence inflammatory CRC in mice. In this study, azoxymethane (AOM)+dextran sodium sulphate (DSS) was used to induce CRC model in C57BL/6 mice. Next, the serum levels of inflammatory cytokines, including interleukin-6 (IL-6), interleukin-10 (IL-10), and cytokines TNF-α, were measured and the pathohistological examination of the large intestine was performed. Both CB culture and supernatant were found to have anti-inflammatory properties. Subsequently, Western blot and Real-Time Quantitative PCR (RT-qPCR) revealed that CB and supernatant regulate the NF-κB/p65 pathway to inhibit the development and progression of inflammatory CRC in AOM+DSS-treated mice, which could be due to the high levels of butyric acid in the supernatant.
Collapse
Affiliation(s)
- Wenfeng Pu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Hong Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
- Department of Gastroenterology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- Department of Gastroenterology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiaoguang Guo
- Department of Pathology, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Xiaoqing Wang
- Department of Nucler Medicine, Nan Chong Central Hospital, the Second Affiliated Hospital of North Sichuan Medical College, Sichuan, Nanchong, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Shaohui Tang,
| |
Collapse
|
8
|
Štofilová J, Kvaková M, Kamlárová A, Hijová E, Bertková I, Guľašová Z. Probiotic-Based Intervention in the Treatment of Ulcerative Colitis: Conventional and New Approaches. Biomedicines 2022; 10:2236. [PMID: 36140337 PMCID: PMC9496552 DOI: 10.3390/biomedicines10092236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Although there are number of available therapies for ulcerative colitis (UC), many patients are unresponsive to these treatments or experience secondary failure during treatment. Thus, the development of new therapies or alternative strategies with minimal side effects is inevitable. Strategies targeting dysbiosis of gut microbiota have been tested in the management of UC due to the unquestionable role of gut microbiota in the etiology of UC. Advanced molecular analyses of gut microbiomes revealed evident dysbiosis in UC patients, characterized by a reduced biodiversity of commensal microbiota. Administration of conventional probiotic strains is a commonly applied approach in the management of the disease to modify the gut microbiome, improve intestinal barrier integrity and function, and maintain a balanced immune response. However, conventional probiotics do not always provide the expected health benefits to a patient. Their benefits vary significantly, depending on the type and stage of the disease and the strain and dose of the probiotics administered. Their mechanism of action is also strain-dependent. Recently, new candidates for potential next-generation probiotics have been discovered. This could bring to light new approaches in the restoration of microbiome homeostasis and in UC treatment in a targeted manner. The aim of this paper is to provide an updated review on the current options of probiotic-based therapies, highlight the effective conventional probiotic strains, and outline the future possibilities of next-generation probiotic and postbiotic supplementation and fecal microbiota transplantation in the management of UC.
Collapse
Affiliation(s)
- Jana Štofilová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia
| | | | | | | | | | | |
Collapse
|
9
|
Chang SLY, Lin YY, Liu SC, Tsai YS, Lin SW, Chen YL, Chen CC, Ko CY, Chen HT, Chen WC, Tang CH. Oral Administration of Clostridium butyricum GKB7 Ameliorates Signs of Osteoarthritis in Rats. Cells 2022; 11:2169. [PMID: 35883610 PMCID: PMC9323988 DOI: 10.3390/cells11142169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative and painful inflammatory joint disease affecting the cartilage, bone, and synovial membranes, without any effective treatment that targets the underlying mechanisms of OA. Our study evaluated the therapeutic effects of a live probiotic strain, Clostridium butyricum GKB7, administered for 6 weeks to rats with knee OA (KOA) induced by anterior cruciate ligament transection (ACLT) of the right knee. All rats underwent weekly weight-bearing behavioral testing and body weight measurements. At 6 weeks, all rats were sacrificed, and the right hind knees were collected for micro-computed tomography imaging and histopathological and immunohistochemical analyses. Compared with rats in the ACLT-only group, ACLT rats administered the probiotic exhibited dramatic improvements in pain-related behavior from postoperative week 2, had significantly less osseous and cartilaginous damage at week 6, and significantly lower levels of the inflammatory markers interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in cartilage and synovium sections. C. butyricum GKB7 appeared to slow or even reverse OA progression and is worth investigating as a novel therapeutic for OA.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (S.L.-Y.C.); (C.-Y.K.)
- School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Shan-Chi Liu
- Department of Medical Education and Research, Beigang Hospital, China Medical University, Yunlin 651012, Taiwan;
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (S.-W.L.); (Y.-L.C.)
| | - Shih-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (S.-W.L.); (Y.-L.C.)
| | - Yen-Lien Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (S.-W.L.); (Y.-L.C.)
| | - Chin-Chu Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106617, Taiwan;
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104036, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (S.L.-Y.C.); (C.-Y.K.)
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404333, Taiwan;
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404333, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404333, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
- Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (S.L.-Y.C.); (C.-Y.K.)
- School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40354, Taiwan
| |
Collapse
|
10
|
Liu L, Ling H, Zhang W, Zhou Y, Li Y, Peng N, Zhao S. Functional Comparison of Clostridium butyricum and Sodium Butyrate Supplementation on Growth, Intestinal Health, and the Anti-inflammatory Response of Broilers. Front Microbiol 2022; 13:914212. [PMID: 35722291 PMCID: PMC9201392 DOI: 10.3389/fmicb.2022.914212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Butyrate has been reported to promote proliferation of colonic epithelial cells and maintain intestinal barrier integrity in broilers. Although supplementation of Clostridium butyricum and sodium butyrate have been shown to confer benefits on broilers, their effects and mechanisms have not been compared. In this study, C. butyricum and sodium butyrate were added into the basal diet of broilers and their effects on growth performance, intestinal health, and anti-inflammatory response were analyzed. It was found that both C. butyricum and sodium butyrate showed good probiotic effects on broilers. Their effects on growth rate and expression of inflammation related genes were superior to that of the antibiotic oxytetracycline. Besides, the two dietary supplements improved intestinal structure integrity and secretion of inflammatory cytokines, whereas the antibiotic had negative effects. Comparison of the two supplements revealed that sodium butyrate more effectively improved the growth and intestinal structure of broilers than C. butyricum. On the contrary, C. butyricum was superior to sodium butyrate in promoting tight junction protein expression and anti-inflammatory response. In summary, this study demonstrates the positive effects of C. butyricum and sodium butyrate on broilers, and will serve as a reference for selection of appropriate butyrate supplementation for broilers in the breeding industry.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huayun Ling
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Wei Zhang
- Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Ying Zhou
- Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Liu Y, Huang W, Ji S, Wang J, Luo J, Lu B. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota. Food Chem 2022; 393:133395. [DOI: 10.1016/j.foodchem.2022.133395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
|
12
|
Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 2022; 13:1-28. [PMID: 33874858 PMCID: PMC8078720 DOI: 10.1080/19490976.2021.1907272] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.
Collapse
Affiliation(s)
- Magdalena K. Stoeva
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Jeewon Garcia-So
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Nicholas Justice
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Julia Myers
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Surabhi Tyagi
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Madeleine Nemchek
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Paul J. McMurdie
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Orville Kolterman
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - John Eid
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA,CONTACT John Eid Pendulum Therapeutics, Inc, San Francisco, California, USA
| |
Collapse
|
13
|
Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. Int J Mol Sci 2022; 23:ijms23020594. [PMID: 35054790 PMCID: PMC8775704 DOI: 10.3390/ijms23020594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.
Collapse
|
14
|
An Update of Research Animal Models of Inflammatory Bowel Disease. ScientificWorldJournal 2021; 2021:7479540. [PMID: 34938152 PMCID: PMC8687830 DOI: 10.1155/2021/7479540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders that includes two main disease forms, Crohn's disease, and ulcerative colitis. The understanding of the intestinal inflammation occurring in IBD has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD arises from a convergence of underlying genetic susceptibility, immune system dysfunction, environmental factors, and shifts in gut microbiota. Due to the multifactorial feature of these diseases, different animal models have been used to investigate the underlying mechanisms and develop potential therapeutic strategies. The results of preclinical efficacy studies often inform the progression of therapeutic strategies. This review describes the distinct feature and limitations of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
|
15
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH, Abu-Risha SES. Metformin alleviates inflammation in oxazolone induced ulcerative colitis in rats: plausible role of sphingosine kinase 1/sphingosine 1 phosphate signaling pathway. Immunopharmacol Immunotoxicol 2021; 43:192-202. [PMID: 33504231 DOI: 10.1080/08923973.2021.1878214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Ulcerative colitis (UC) is a chronic inflammatory bowel disease that is associated with high sphingosine kinase 1(SPHK1) expression in the colon, however its role in pathogenesis of UC is not clearly understood so, the aim of the present study was to clarify the role of SPHK1 and investigate whether the anti-inflammatory effects of metformin in UC is mediated by Sphingosine kinase 1/sphingosine 1 phosphate (S1P) signaling pathway. MATERIAL AND METHODS Colitis was induced in adult male wistar rats by intra rectal administration of oxazolone in the fifth and seventh days from initial presensitization. Oxazolone treated rats were divided into untreated oxazolone group, metformin and mesalazine treated groups both in a dose of 100 mg/kg/day orally for 21 days. Along with these groups normal control and saline groups were used .Colitis was assessed by colon length, disease activity index (DAI) and histological examination of colontissue. Plasma samples were used to measure S1P.SPHK1 activity, signal transducer and activator of transcription -3(STAT-3), interleukin-6 (IL-6), nitric oxide (NO), myeloperoxidase activity (MPO), reduced glutathione (GSH) and tissue expression of intracellular cell adhesion molecule -1(ICAM-1) and caspase-3 genes were measured in tissue. RESULTS Metformin successfully attenuated oxazolone colitis by increasing colon length, decreasing DAI and improved colon histologic picture. Metformin also induced a significant decrease in Plasma SIP, SPHK1 activity, inflammatory, oxidative stress markers, ICAM-1 and Caspase-3 genes expression compared to oxazolone group. CONCLUSION It is revealed that metformin alleviated inflammation and underlying mechanism may result from inhibition of SPHK1/S1P signaling pathway.
Collapse
Affiliation(s)
- Nageh Ahmed El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Magda El-Sayed El-Sayad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya Hassan El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | |
Collapse
|
16
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH, Abu-Risha SES. Targeting IL-10, ZO-1 gene expression and IL-6/STAT-3 trans-signaling by a combination of atorvastatin and mesalazine to enhance anti-inflammatory effects and attenuates progression of oxazolone-induced colitis. Fundam Clin Pharmacol 2020; 35:143-155. [PMID: 32383169 DOI: 10.1111/fcp.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease characterized by diffused inflammation of the colon and rectum mucosa. The pathogenesis of UC is multifactorial, and the exact underlying mechanisms remain poorly understood. This study aims to investigate the effect of mesalazine and atorvastatin combination in enhancing anti-inflammatory effects and attenuates progression of oxazolone colitis in rats. In the present study, male albino rats (N = 60) were divided into six groups (10 rats each), the first two groups served as normal control and a control saline group. Colitis was induced by intra-rectal administration of oxazolone in the 5th and 7th days after pre-sensitization. Then, rats were divided into untreated group, groups treated with mesalazine or atorvastatin or their combination. Colitis was assessed by colon length, body weight, and incidence of diarrhea, rectal bleeding, and histopathology of colon tissue. Colon tissues were used for measuring interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), IL-13, signal transducer and activator of transcription-3 (STAT-3), myeloperoxidase activity (MPO), reduced glutathione(GSH), and tissue expression of IL-10, tight junction protein zonula occludens (ZO-1), and caspase-3 genes. The combination therapy significantly attenuated progression of UC by decreasing incidence of diarrhea, rectal bleeding, weight loss, IL-13, IL-6, TNF-α, STAT-3, caspase-3, and MPO activity and significantly increased IL-10, ZO-1, colon length, and GSH content, and these effects were more superior to single drugs. These findings showed that combination therapy was able to ameliorate progression of UC and enhance anti-inflammatory effects possibly by restoring IL-10 and ZO-1 levels and limiting IL-6/STAT-3 trans-signaling.
Collapse
Affiliation(s)
- Nageh Ahmed El-Mahdy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Magda El-Sayed El-Sayad
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Aya Hassan El-Kadem
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| | - Sally El-Sayed Abu-Risha
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
17
|
Seven-day Green Tea Supplementation Revamps Gut Microbiome and Caecum/Skin Metabolome in Mice from Stress. Sci Rep 2019; 9:18418. [PMID: 31804534 PMCID: PMC6895175 DOI: 10.1038/s41598-019-54808-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
Green tea supplementation has beneficial health effects. However, its underlying mechanisms, such as effects on modulating the intestinal microbiome and endogenous metabolome, particularly following short-term supplementation, are largely unclear. We conducted an integrative metabolomics study to evaluate the effects of short-term (7-day) supplementation of green tea extract (GTE) or its components, epigallocatechin gallate, caffeine, and theanine, on the caecum microbiota and caecum/skin metabolome in mice. Further, we established an integrative metabolome-microbiome model for correlating gut and skin findings. The effects of short-term supplementation with dietary compounds were evaluated with respect to UV stress response, with GTE showing the most remarkable effects. Biplot analysis revealed that Bifidobacteria and Lactobacillus spp. were considerably influenced by short-term GTE supplementation, while Clostridium butyricum was significantly increased by UV stress without supplementation. GTE supplementation helped the skin metabolome defend against UV stress. Interestingly, a significant positive correlation was observed between caecum bacteria (Bifidobacteria, Lactobacillus spp.) and metabolites including skin barrier function-related skin metabolites, caecal fatty acids, and caecal amino acids. Overall, 7-day GTE supplementation was sufficient to alter the gut microbiota and endogenous caecum/skin metabolome, with positive effects on UV stress response, providing insight into the mechanism of the prebiotic effects of GTE supplementation.
Collapse
|
18
|
Combination of probiotics with different functions alleviate DSS-induced colitis by regulating intestinal microbiota, IL-10, and barrier function. Appl Microbiol Biotechnol 2019; 104:335-349. [PMID: 31758237 DOI: 10.1007/s00253-019-10259-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
The potential of probiotics for treating ulcerative colitis (UC) has attracted increasing attention. However, more studies are still needed to guide physicians on the proper selection and use of probiotics. Here, we propose that combination of multiple probiotics with different functions can reduce intestinal inflammation. In this study, the effects of probiotics (Lactobacillus reuteri, Bacillus coagulans, Bifidobacterium longum, and Clostridium butyricum) on the physiology and histopathology of colon were evaluated in a dextran sulfate sodium (DSS)-induced colitis mouse model. The combined species, as well as the species individually, were tested and compared with sulfasalazine (SASP) and two Chinese herbal therapies. Results show that the functions of the four probiotic strains were different in regulating intestinal immunity and barrier function. The four-species probiotic cocktail was more effective than the species individually and anti-inflammatory drugs in repairing the dysbiosis of mucosal microbial ecology and reducing intestinal inflammation. The multi-strain probiotic mixture increased the proportion of beneficial bacteria and decreased the proportion of pro-inflammatory bacteria in the colonic mucosa. In addition, probiotic mixture significantly enhanced the expression of IL-10 and intestinal barrier function. These results suggest that a combination of multiple probiotics with different functions has synergistic effects and can restore the balance of interactions between microorganisms and immunological niches.
Collapse
|
19
|
Fang W, Zhu S, Niu Z, Yin Y. The protective effect of syringic acid on dextran sulfate sodium‐induced experimental colitis in BALB/c mice. Drug Dev Res 2019; 80:731-740. [PMID: 31313354 DOI: 10.1002/ddr.21524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Wenhui Fang
- Anorectal of Traditional Chinese MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan Shandong Province China
| | - Shihong Zhu
- Department of Obstetrics and GynecologyFeicheng People's Hospital Taian Shandong Province China
| | - Zhongbao Niu
- Department of Traditional Chinese MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan Shandong Province China
| | - Yuti Yin
- Anorectal of Traditional Chinese MedicineShandong Provincial Hospital Affiliated to Shandong University Jinan Shandong Province China
| |
Collapse
|
20
|
Li H, Gong Y, Xie Y, Sun Q, Li Y. Clostridium butyricum protects the epithelial barrier by maintaining tight junction protein expression and regulating microflora in a murine model of dextran sodium sulfate-induced colitis. Scand J Gastroenterol 2018; 53:1031-1042. [PMID: 30141701 DOI: 10.1080/00365521.2016.1192678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the protective effects of Clostridium butyricum on the epithelial barrier in dextran sodium sulfate (DSS)-induced colitis. METHODS Eight-week-old BALB/c mice were divided into a healthy control group and DSS-induced groups, including negative control (normal saline), 5-aminosalicylic acid (5-ASA), C. butyricum group, and 5-ASA + C. butyricum groups. Colitis was induced by 5% DSS ad libitum for 7 d. We assessed the disease activity index (DAI), histological grading, and ultrastructural changes by transmission electron microscopy. Stools were collected for bacterial microflora analysis. Tight junction (TJ) proteins, including claudin-1, claudin-2, occluding, and zonula occludens-1, were detected by immunohistochemical staining and western blot. We also assessed NF-κB and cytokines, including IL-1β, IL-13, and IL-10, by western blot. RESULTS C. butyricum decreased DAI and histological injury scores in DSS-induced mice, and repaired the damaged structure of TJs. Moreover, C. butyricum exerted its regulatory effect on fecal microflora by increasing and decreasing the growth of Lactobacillus spp. and Enterococcus spp., respectively, in the colon lumen. Expression levels of claudin-1, occludin and zonula occludens-1 were also elevated by the administration of C. butyricum. In addition, C. butyricum increased the expression of the anti-inflammatory cytokine, IL-10, and decreased levels of pro-inflammatory cytokines, including IL-1β, TNF, and IL-13, as well as NF-κB. Moreover, the beneficial effects of C. butyricum combined with 5-ASA were superior to treatment with C. butyricum only. CONCLUSION In a mouse model of ulcerative colitis (UC), C. butyricum exerted a protective effect on the epithelial barrier by regulating microflora, maintaining the expression of TJ proteins and exerting immunoregulatory effects.
Collapse
Affiliation(s)
- Hui Li
- a Department of Gastroenterology , Shengjing Hospital Affiliated to China Medical University , Sanhao Street 36 , Shenyang , Liaoning , PR China
| | - Yi Gong
- a Department of Gastroenterology , Shengjing Hospital Affiliated to China Medical University , Sanhao Street 36 , Shenyang , Liaoning , PR China
| | - Ying Xie
- a Department of Gastroenterology , Shengjing Hospital Affiliated to China Medical University , Sanhao Street 36 , Shenyang , Liaoning , PR China
| | - Qian Sun
- a Department of Gastroenterology , Shengjing Hospital Affiliated to China Medical University , Sanhao Street 36 , Shenyang , Liaoning , PR China
| | - Yan Li
- a Department of Gastroenterology , Shengjing Hospital Affiliated to China Medical University , Sanhao Street 36 , Shenyang , Liaoning , PR China
| |
Collapse
|
21
|
Liu J, Fu Y, Zhang H, Wang J, Zhu J, Wang Y, Guo Y, Wang G, Xu T, Chu M, Wang F. The hepatoprotective effect of the probiotic Clostridium butyricum against carbon tetrachloride-induced acute liver damage in mice. Food Funct 2018; 8:4042-4052. [PMID: 28933492 DOI: 10.1039/c7fo00355b] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies have revealed that the probiotic Clostridium butyricum (C. butyricum) can attenuate cirrhosis in chronic non-alcoholic liver disease. However, the effects of C. butyricum on acute liver injury (ALI) remain unclear. Therefore, the present study aims to examine the hepatoprotective effects and the underlying mechanisms employed by C. butyricum in a carbon tetrachloride (CCl4)-induced ALI murine model. Here, we evaluated the survival rate and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), anti-oxidants, cytokines and the gut microbiota to elucidate the potential mechanisms by which C. butyricum is hepatoprotective. Our results show that five days of prophylactic C. butyricum treatment significantly reduced mortality by 40% and decreased the CCl4-induced levels of ALT and AST in the serum of these mice. Additionally, prophylactic treatment with C. butyricum increased the activity of both superoxide dismutase (SOD) and catalase (CAT), and substantially reduced malondialdehyde (MDA) levels, which were deteriorated in the untreated ALI mice compared to normal control mice. Furthermore, C. butyricum up-regulated the nuclear factor (erythroid-derived 2)-like 2 (NRF2) content. CCl4-induced mice also exhibited considerable increases of phosphorylation of nuclear factor-kappa B (NF-κB) p65 and pro-inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). However, the inflammatory responses of the liver induced by CCl4 were significantly alleviated by C. butyricum pretreatment. Additionally, we found that interleukin-10 (IL-10), an anti-inflammatory mediator, was increased in the C. butyricum-pretreated group. Microbiota analysis in these mice revealed crosstalk between the gut microbial metabolites and ALI. The intestinal flora was changed by CCl4 administration and was shifted by the probiotic C. butyricum toward more beneficial bacteria, particularly the Clostridia orders, which are the known producers of the anti-inflammatory and anti-oxidative metabolite butyrate. In conclusion, we found that the intestinal flora changes after the intraperitoneal injection of CCl4. We also offer novel insights into the mechanism by which probiotic C. butyricum pretreatment alleviates the CCl4-induced inflammation and oxidative stress of the liver via the modulation of NRF2, NF-κB p65, IL-10 and the intestinal microbiota in mice.
Collapse
Affiliation(s)
- Jiaming Liu
- School of Environmental Science and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kutsuna R, Tomida J, Morita Y, Kawamura Y. Paraclostridium bifermentans exacerbates pathosis in a mouse model of ulcerative colitis. PLoS One 2018; 13:e0197668. [PMID: 29782507 PMCID: PMC5962066 DOI: 10.1371/journal.pone.0197668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Although it has been recognized that intestinal bacteria play an important role in the pathology of human ulcerative colitis (UC), specific pathogenic bacteria for UC have not been identified. We investigated the influence of Paraclostridium bifermentans PAGU1678 strain on the pathology of a UC mouse model and found it increased UC pathosis scores such as loose and bloody stools, reduced diversity of fecal flora, disappearance of the crypt structure of distal colon tissue, destruction of intestinal epithelial cells, and atrophy of the colon. Furthermore, we observed an increase in COX-2, TNF-α, IL-6, IL-1, and IL-17 expression and a decrease in Foxp3 and SOCS3 expression, as inflammation-related factors and inflammatory cytokines, a decrease in the concentration of short chain fatty acids (acetic acid, propionic acid, and butyric acid) in feces, and an increase of intestinal mucosal myeloperoxidase activity. These results suggest that P. bifermentans PAGU1678 is a pathology-exacerbating factor in a mouse model of UC. This study is the first to demonstrate exacerbation of the pathological condition in a mouse model of UC by a single bacterial strain.
Collapse
Affiliation(s)
- Ryo Kutsuna
- Department of Microbiology, Aichi Gakuin University Graduate School of Pharmaceutical Science, Nagoya, Aichi, Japan
| | - Junko Tomida
- Department of Microbiology, Aichi Gakuin University Graduate School of Pharmaceutical Science, Nagoya, Aichi, Japan
| | - Yuji Morita
- Department of Microbiology, Aichi Gakuin University Graduate School of Pharmaceutical Science, Nagoya, Aichi, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, Aichi Gakuin University Graduate School of Pharmaceutical Science, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
Martín R, Chain F, Miquel S, Motta JP, Vergnolle N, Sokol H, Langella P. Using murine colitis models to analyze probiotics-host interactions. FEMS Microbiol Rev 2018; 41:S49-S70. [PMID: 28830096 DOI: 10.1093/femsre/fux035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Probiotics are defined as 'live microorganisms which when administered in adequate amounts confer a health benefit on the host'. So, to consider a microorganism as a probiotic, a demonstrable beneficial effect on the health host should be shown as well as an adequate defined safety status and the capacity to survive transit through the gastrointestinal tract and to storage conditions. In this review, we present an overview of the murine colitis models currently employed to test the beneficial effect of the probiotic strains as well as an overview of the probiotics already tested. Our aim is to highlight both the importance of the adequate selection of the animal model to test the potential probiotic strains and of the value of the knowledge generated by these in vivo tests.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Chain
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Miquel
- Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Jean-Paul Motta
- Department of Biological Science, Inflammation Research Network, University of Calgary, AB T3E 4N1, Canada.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, F-31300 Toulouse, France
| | - Harry Sokol
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,Sorbonne University - Université Pierre et Marie Curie (UPMC), 75252 Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Equipe de Recherche Labélisée (ERL) 1157, Avenir Team Gut Microbiota and Immunity, 75012 Paris, France.,Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique - Hopitaux de Paris, UPMC, 75012 Paris, France
| | - Philippe Langella
- INRA, Commensals and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
24
|
Antonioli L, El-Tayeb A, Pellegrini C, Fornai M, Awwad O, Giustarini G, Natale G, Ryskalin L, Németh ZH, Müller CE, Blandizzi C, Colucci R. Anti-inflammatory effect of a novel locally acting A 2A receptor agonist in a rat model of oxazolone-induced colitis. Purinergic Signal 2017; 14:27-36. [PMID: 29116551 DOI: 10.1007/s11302-017-9591-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
Abstract
Adenosine represents a powerful modulating factor, which has been shown to orchestrate the scope, duration, and remission of the inflammatory response through the activation of four specific receptors, classified as A1, A2A, A2B, and A3, all being widely expressed in a variety of immune cells. Several selective A2A receptor agonists have displayed anti-inflammatory effects, through the suppression of IL-12, TNF, and IFN-γ production by monocytes and lymphocytes, in the setting of chronic intestinal inflammation. However, the therapeutic application of A2A receptor agonists remains hindered by the risk of serious cardiovascular adverse effects arising from the wide systemic distribution of A2A receptors. The present study focused on evaluating the anti-inflammatory effects of the novel poorly absorbed A2A receptor agonist PSB-0777 in a rat model of oxazolone-induced colitis as well as to evaluate its cardiovascular adverse effects, paying particular attention to the onset of hypotension, one of the main adverse effects associated with the systemic pharmacological activation of A2A receptors. Colitis was associated with decreased body weight, an enhanced microscopic damage score and increased levels of colonic myeloperoxidase (MPO). PSB-0777, but not dexamethasone, improved body weight. PSB-0777 and dexamethasone ameliorated microscopic indexes of inflammation and reduced MPO levels. The beneficial effects of PSB-0777 on inflammatory parameters were prevented by the pharmacological blockade of A2A receptors. No adverse cardiovascular events were observed upon PSB-0777 administration. The novel A2A receptor agonist PSB-0777 could represent the base for the development of innovative pharmacological entities able to act in an event-specific and site-specific manner.
Collapse
Affiliation(s)
- L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - A El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - O Awwad
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - G Giustarini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - G Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - L Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Z H Németh
- Department of Surgery, Morristown Medical Center, Morristown, NJ, USA
| | - C E Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - R Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Jia L, Shan K, Pan LL, Feng N, Lv Z, Sun Y, Li J, Wu C, Zhang H, Chen W, Diana J, Sun J, Chen YQ. Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells. Front Immunol 2017; 8:1345. [PMID: 29097999 PMCID: PMC5654235 DOI: 10.3389/fimmu.2017.01345] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Recent evidence indicates that indigenous Clostridium species induce colonic regulatory T cells (Tregs), and gut lymphocytes are able to migrate to pancreatic islets in an inflammatory environment. Thus, we speculate that supplementation with the well-characterized probiotics Clostridium butyricum CGMCC0313.1 (CB0313.1) may induce pancreatic Tregs and consequently inhibit the diabetes incidence in non-obese diabetic (NOD) mice. CB0313.1 was administered daily to female NOD mice from 3 to 45 weeks of age. The control group received an equal volume of sterile water. Fasting glucose was measured twice a week. Pyrosequencing of the gut microbiota and flow cytometry of mesenteric lymph node (MLN), pancreatic lymph node (PLN), pancreatic and splenic immune cells were performed to investigate the effect of CB0313.1 treatment. Early oral administration of CB0313.1 mitigated insulitis, delayed the onset of diabetes, and improved energy metabolic dysfunction. Protection may involve increased Tregs, rebalanced Th1/Th2/Th17 cells and changes to a less proinflammatory immunological milieu in the gut, PLN, and pancreas. An increase of α4β7+ (the gut homing receptor) Tregs in the PLN suggests that the mechanism may involve increased migration of gut-primed Tregs to the pancreas. Furthermore, 16S rRNA gene sequencing revealed that CB0313.1 enhanced the Firmicutes/Bacteroidetes ratio, enriched Clostridium-subgroups and butyrate-producing bacteria subgroups. Our results provide the basis for future clinical investigations in preventing type 1 diabetes by oral CB0313.1 administration.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi No. 2 Hospital, Wuxi, China
| | - Zhuwu Lv
- Department of Obstetrics, Nanjing Medical University Affiliated Wuxi Renmin Hospital, Wuxi, China
| | - Yajun Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jia Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yong Q. Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
26
|
Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L, Zhang H, Chen W, Sun J, Chen YQ. Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Sci Rep 2017; 7:7046. [PMID: 28765642 PMCID: PMC5539151 DOI: 10.1038/s41598-017-07335-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Patients with type 2 diabetes (T2D) have decreased butyrate-producing bacteria. We hypothesized that supplementation with butyrate-producing bacteria may exert beneficial effects on T2D. The current study investigated the effects of well-characterized butyrate-producing bacteria Clostridium butyricum CGMCC0313.1 (CB0313.1) on hyperglycemia and associated metabolic dysfunction in two diabetic mouse models. CB0313.1 was administered daily by oral gavage to leptindb/db mice for 5 weeks starting from 3 weeks of age, and to HF diabetic mice induced by high fat diet (HFD) plus streptozotocin (STZ) in C57BL/6J mice for 13 weeks starting from 4 weeks of age. CB0313.1 improved diabetic markers (fasting glucose, glucose tolerance, insulin tolerance, GLP-1 and insulin secretion), and decreased blood lipids and inflammatory tone. Furthermore, CB0313.1 reversed hypohepatias and reduced glucose output. We also found that CB0313.1 modulated gut microbiota composition, characterized by a decreased ratio of Firmicutes to Bacteroidetes, reduced Allobaculum bacteria that were abundant in HF diabetic mice and increased butyrate-producing bacteria. Changes in gut microbiota following CB0313.1 treatment were associated with enhanced peroxisome proliferator–activated receptor-γ (PPARγ), insulin signaling molecules and mitochondrial function markers. Together, our study suggests that CB0313.1 may act as a beneficial probiotic for the prevention and treatment of hyperglycemia and associated metabolic dysfunction.
Collapse
Affiliation(s)
- Lingling Jia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Dongyao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,Wuxi No. 2 Hospital, Jiangsu, P. R. China
| | - Muhammad Shamoon
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenghua Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lei Ding
- Department of Biology and Chemistry, University Bremen. Leobener Str., NW 2, 28359, Bremen, Germany
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
27
|
Zhang J, Su H, Li Q, Wu H, Liu M, Huang J, Zeng M, Zheng Y, Sun X. Oral administration of Clostridium butyricum CGMCC0313-1 inhibits β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathog 2017; 9:11. [PMID: 28250847 PMCID: PMC5322677 DOI: 10.1186/s13099-017-0160-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/16/2017] [Indexed: 01/14/2023] Open
Abstract
Background Probiotic bacteria can induce immune regulation or immune tolerance in patients with allergic diseases, but the underlying mechanisms are still unclear. There has been a growing interest in the use of beneficial bacteria for allergic diseases recently. This study aimed at exploring whether Clostridium butyricum CGMCC0313-1 (C. butyricum) can reduce β-lactoglobulin(BLG)-induced intestinal anaphylaxis in a murine model of food allergy. Methods The preventive and therapeutic effects of oral C. butyricum on anaphylactic symptoms induced via BLG in food allergy mice were investigated. Intestinal anaphylaxis, T helper (Th)-specific cytokines and transcription factors, secretory IgA (sIgA), CD4+ CD25+ Foxp3Treg cell and histopathological alterations were examined. Results Clostridium butyricum significantly ameliorated intestinal anaphylaxis symptoms in the food allergy mice. sIgA and CD4+ CD25+ Foxp3Treg cell were increased by oral C. butyricum. It also reversed the imbalance of Th1/Th2 andTh17/Treg. Conclusions Clostridium butyricum reduces BLG-induced intestinal anaphylaxis in mice and might be an additional or supplementary therapy for food allergy.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Hui Su
- Department of Geratology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Haixia Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Mengyun Liu
- Respiratory Department, Shenzhen Children's Hospital, Shenzhen, 518036 China
| | - Jianqiong Huang
- Respiratory Department, Shenzhen Children's Hospital, Shenzhen, 518036 China
| | - Minghua Zeng
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Yuejie Zheng
- Respiratory Department, Shenzhen Children's Hospital, Shenzhen, 518036 China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| |
Collapse
|
28
|
Abstract
BACKGROUND Imbalance of the intestinal microbiota is associated with gastrointestinal disease and autoimmune disease and metabolic syndrome. Analysis of the intestinal microbiota has recently progressed, and the association with inflammatory bowel disease has been reported at the species level. Such findings suggest that the recovery of homeostasis in the intestinal microbiota could cure inflammatory bowel disease. We aimed to search new probiotic candidates for inflammatory bowel disease through translational research by analysis of ulcerative colitis (UC) patients' intestinal microbiota and clarify the effects of them on inflammation. Here, we focused on Fusicatenibacter saccharivorans, which belongs to Clostridium subcluster XIVa and was successfully isolated and cultured in 2013. We analyzed the association of F. saccharivorans to UC patients' activity and inflammation for the first time. METHODS Feces from UC patients and healthy controls were analyzed by 16S ribosomal RNA gene sequences. F. saccharivorans was administered to murine colitis model. Colitic lamina propria mononuclear cells from UC patients and mice were stimulated with F. saccharivorans. RESULTS The whole fecal bacteria in active UC patients were less than that in quiescent UC patients. Furthermore, F. saccharivorans was decreased in active UC patients and increased in quiescent. The administration of F. saccharivorans improved murine colitis. F. saccharivorans induced interleukin 10 production by lamina propria mononuclear cells from not only colitis model mice but also UC patients. CONCLUSIONS F. saccharivorans decreased in correlation to UC activity and suppresses intestinal inflammation. These results suggest that F. saccharivorans could lead to a novel UC treatment.
Collapse
|
29
|
Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E. The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond) 2016; 11:9-15. [PMID: 27656280 PMCID: PMC5021709 DOI: 10.1016/j.amsu.2016.07.019] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Background Despite recent advances the pathogenesis of Crohn's disease remains incompletely understood. A variety of animal models have been utilized in an effort to provide further insights and develop more therapeutic options. In order to simulate, to an extent, the pathogenesis and the clinical course of the disease, TNBS induced colitis is often used. Various approaches for inducing TNBS -colitis have been described in the literature. Methods/results In this review, we sought to present the animal model of TNBS induced colitis and outline the pathogenesis, pathophysiology, clinical course and pathological characteristics of the model. Furthermore, we describe the differences among those protocols regarding types of animals and colitis induction. Data sources The MEDLINE database was thoroughly searched using the keywords: TNBS, colitis, Crohn's disease, animal model. Two investigators independently reviewed the abstracts and appropriate articles were included in this review. Additional articles were gathered and evaluated. Conclusion The aim of this study was to thoroughly present an updated review of the TNBS-induced colitis protocols that are implemented by researchers. We sought to present the animal model of TNBS induced colitis and outline the pathogenesis, pathophysiology, clinical course and pathological characteristics of the model. Furthermore, we describe the differences among those protocols regarding types of animals and colitis induction. The MEDLINE database was thoroughly searched using the keywords: TNBS, colitis, Crohn's disease, animal model. Two investigators independently reviewed the abstracts and appropriate articles were included in this review. The aim of this study was to thoroughly present an updated review of the TNBS-induced colitis protocols that are implemented by researchers.
Collapse
Affiliation(s)
- Efstathios Antoniou
- 2nd Department of Propaedeutic Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece
| | - Georgios Antonios Margonis
- 2nd Department of Propaedeutic Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece
| | - Anastasios Angelou
- 1st Department of Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece
| | - Anastasia Pikouli
- 1st Department of Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece
| | - Paraskevi Argiri
- CT-MRI Department, Larissa General Hospital, Larissa, 41221, Greece
| | - Ioannis Karavokyros
- 1st Department of Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece
| | | | - Emmanouil Pikoulis
- 1st Department of Surgery, Laiko Hospital, University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
30
|
Chu HQ, Li J, Huang HP, Hao WD, Duan LP, Wei XT. Protective effects of tranilast on oxazolone-induced rat colitis through a mast cell-dependent pathway. Dig Liver Dis 2016; 48:162-71. [PMID: 26455295 DOI: 10.1016/j.dld.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mast cells in the gut play an important role in the innate and adaptive immune responses that are relevant to human inflammatory bowel disease. However, the contribution of mast cells to the development of inflammatory bowel disease is not well understood. This study aimed to determine the role of mast cells in oxazolone-induced colitis and to explore whether the mast cell membrane stabiliser tranilast could ameliorate colonic inflammation. METHODS Wild-type rats and mast cell-deficient rats were sensitised and challenged with oxazolone, then treated with tranilast after challenge. Controls were treated with saline. RESULTS Mast cell-deficient rats presented a weak response to oxazolone, while wild-type rats showed severe ulcerative colitis after stimulation with oxazolone. The mast cell-deficient rats model had a significantly lower disease activity index score than wild-type rats model (1.8±1.64 vs. 8.3±0.58 respectively; P<0.01). Tranilast could reduce the secretion of cytokines, immunoglobulins and myeloperoxidase activity in tranilast treatment groups compared with the model group. The number of mast cells in the wild-type model was higher than in the other groups. There was no significant change in mast cell-deficient rats. CONCLUSION Mast cells play an important role in oxazolone-induced colitis. The mast cell membrane stabiliser tranilast can ameliorate oxazolone-induced colitis via a mast cell-dependent pathway.
Collapse
Affiliation(s)
- Hong-Qian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, PR China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, PR China
| | - Hong-Peng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, PR China
| | - Wei-Dong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, PR China
| | - Li-Ping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, PR China.
| | - Xue-Tao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, PR China.
| |
Collapse
|
31
|
Zhang L, Zhang L, Zhan X, Zeng X, Zhou L, Cao G, Chen A, Yang C. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. J Anim Sci Biotechnol 2016; 7:3. [PMID: 26819705 PMCID: PMC4728939 DOI: 10.1186/s40104-016-0061-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/11/2016] [Indexed: 01/27/2023] Open
Abstract
Background Colibacillosis caused by enterotoxigenic Escherichia coli (E. coli) results in economic losses in the poultry industry. Antibiotics are usually used to control colibacillosis, however, E. coli has varying degrees of resistance to different antibiotics. Therefore the use of probiotics is becoming accepted as an alternative to antibiotics. In this study, we evaluated the effects of Clostridium butyricum (C. butyricum) on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli (E. coli) K88. Methods The chickens were randomly divided into four treatment groups for 28 days. Negative control treatment (NC) consisted of birds fed a basal diet without E. coli K88 challenge and positive control treatment (PC) consisted of birds fed a basal diet and challenged with E. coli K88. C. butyricum probiotic treatment (CB) consisted of birds fed a diet containing 2 × 107 cfu C. butyricum/kg of diet and challenged with E. coli K88. Colistin sulfate antibiotic treatment (CS) consisted of birds fed a diet containing 20 mg colistin sulfate/kg of diet and challenged with E. coli K88. Results The body weight (BW) and average day gain (ADG) in the broilers of CB group were higher (P < 0.05) than the broilers in the PC group overall except the ADG in the 14-21 d post-challenge. The birds in CB treatment had higher (P < 0.05) concentration of tumor necrosis factor-α (TNF-α) at 3 and 7 d post-challenge, and higher (P < 0.05) concentration of interleukin-4 (IL-4) at 14 d post-challenge than those in the PC treatment group. The concentration of serum endotoxin in CB birds was lower (P < 0.05) at 21 d post-challenge, and the concentrations of serum diamine oxidase in CB birds were lower (P < 0.05) at 14 and 21 d post-challenge than in PC birds. Birds in CB treatment group had higher (P < 0.05) jejunum villi height than those in PC, NC, or CS treatment at 7, 14, and 21 d post-challenge. In comparison to PC birds, the CB birds had lower (P < 0.05) jejunum crypt depth during the whole experiment. The birds in CB or CS treatment group had higher (P < 0.05) activities of amylase and protease at 3, 7, and 14 d post-challenge, and higher (P < 0.05) activity of lipase at 3, 7 d post-challenge than PC birds. Conclusions In all, these results indicate that dietary supplementation with C. butyricum promotes immune response, improves intestinal barrier function, and digestive enzyme activities in broiler chickens challenged with E. coli K88. There is no significant difference between the C. butyricum probiotic treatment and the colistin sulfate antibiotic treatment. Therefore, the C. butyricum probiotic may be an alternative to antibiotic for broiler chickens.
Collapse
Affiliation(s)
- Ling Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China ; College of Animal Science and Technology, Zhejiang A & F University, 88 North Huancheng Road, Lin'an, Zhejiang 311300 China
| | - Lingling Zhang
- College of Animal Science and Technology, Zhejiang A & F University, 88 North Huancheng Road, Lin'an, Zhejiang 311300 China
| | - Xiu'an Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xinfu Zeng
- Zhejiang Huijia Biological Technology Ltd., Anji, 313307 China
| | - Lin Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Guangtian Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - An'guo Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Caimei Yang
- College of Animal Science and Technology, Zhejiang A & F University, 88 North Huancheng Road, Lin'an, Zhejiang 311300 China
| |
Collapse
|
32
|
Chen ZF, Ai LY, Wang JL, Ren LL, Yu YN, Xu J, Chen HY, Yu J, Li M, Qin WX, Ma X, Shen N, Chen YX, Hong J, Fang JY. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol 2015; 10:1433-45. [PMID: 26346930 DOI: 10.2217/fmb.15.66] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aims: To investigate the antitumor effects of probiotics Clostridium butyricum and Bacillus subtilis on colorectal cancer (CRC) progression. Materials & methods: The effects of C. butyricum and B. subtilis on CRC cells were studied. Male C57BL/6 mice with 1,2-dimethylhydrazine dihydrochloride (DMH)-induced CRC were intervened by these two probiotics and the antitumor effects were examined by comparing the tumor incidence and detecting the inflammatory and immune-related markers. Results & conclusions: C. butyricum and B. subtilis inhibited the proliferation of CRC cells, caused cell cycle arrest and promoted apoptosis. In vivo, these two probiotics inhibited the development of DMH-induced CRC. The molecular mechanism involved reduced inflammation and improved immune homeostasis. This work establishes a basis for the protective role of probiotics B. subtilis and C. butyricum in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Zhao-Fei Chen
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Luo-Yan Ai
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ji-Lin Wang
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Lin-Lin Ren
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ya-Nan Yu
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jie Xu
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Hao-Yan Chen
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jun Yu
- Department of Medicine & Therapeutics, Institute of Digestive Disease & LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Min Li
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Wen-Xin Qin
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Nan Shen
- Division of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Ying-Xuan Chen
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jie Hong
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology & Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| |
Collapse
|
33
|
Wang FY, Liu JM, Luo HH, Liu AH, Jiang Y. Potential protective effects of Clostridium butyricum on experimental gastric ulcers in mice. World J Gastroenterol 2015; 21:8340-8351. [PMID: 26217085 PMCID: PMC4507103 DOI: 10.3748/wjg.v21.i27.8340] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of Clostridium butyricum (C. butyricum) on experimental gastric ulcers (GUs) induced by alcohol, restraint cold stress, or pyloric ligation in mice, respectively.
METHODS: One hundred and twenty mice were randomly allocated into three types of gastric ulcer models (n = 40 each), induced by alcohol, restraint cold stress, or pyloric ligation. In each GU model, 40 mice were allocated into four groups (n = 10 each): the sham control group; model group (GU induction without pretreatment); C. butyricum group (GU induction with C. butyricum pretreatment); and Omeprazole group (GU induction with Omeprazole pretreatment). The effects of C. butyricum were evaluated by examining the histological changes in the gastric mucosal erosion area, the activities of superoxide dismutase (SOD) and catalase (CAT), the level of malondialdehyde (MDA), and the contents of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, leukotriene B4 (LTB4) and 6-keto-PGF-1α (degradation product of PGI2) in the gastric tissue.
RESULTS: Our data showed that C. butyricum significantly reduced the gastric mucosal injury area and ameliorated the pathological conditions of the gastric mucosa. C. butyricum not only minimized the decreases in activity of SOD and CAT, but also reduced the level of MDA in all three GU models used in this study. The accumulation of IL1-β, TNF-α and LBT4 decreased, while 6-keto-PGF-1α increased with pretreatment by C. butyricum in all three GU models.
CONCLUSION: Our data demonstrated the protective effects of pretreatment with C. butyricum on anti-oxidation and anti-inflammation in different types of GU models in mice. Further studies are needed to explore its potential clinical benefits.
Collapse
|
34
|
Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:279-88. [PMID: 25177159 PMCID: PMC4146629 DOI: 10.4196/kjpp.2014.18.4.279] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Kavinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
35
|
Zhang L, Cao GT, Zeng XF, Zhou L, Ferket PR, Xiao YP, Chen AG, Yang CM. Effects of Clostridium butyricum on growth performance, immune function, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 2014; 93:46-53. [PMID: 24570422 DOI: 10.3382/ps.2013-03412] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was conducted to investigate the effects of Clostridium butyricumon growth performance, immune function, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Three hundred sixty 1-d-old broiler chickens were randomly divided into 4 treatments: negative control (NC) birds were fed a basal diet and not challenged with E. coli K88; positive control (PC) birds were fed a basal diet and challenged with E. coli K88; C. butyricum treatment (CB) birds were fed a diet containing 2 × 10(7) cfu C. butyricum/kg of diet and challenged with E. coli K88; and colistin sulfate treatment (CS) birds were fed a diet containing 20 mg of colistin sulfate/kg of diet and challenged with E. coli K88. Birds fed CB had greater (P < 0.05) BW than the PC birds from 3 to 21 d postchallenge. Birds fed CB had greater (P < 0.05) serum IgA and IgY at 14 d postchallenge, greater (P < 0.05) serum IgM at 21 d postchallenge, and greater (P < 0.05) mucosal secreted IgA at 3 and 7 d postchallenge than the PC birds. Birds fed CB had greater concentrations of serum complement component 3 at 14 d postchallenge, and greater (P < 0.05) concentrations of serum complement component 4 at 3, 7, and 14 d postchallenge than the PC birds. Birds in the CS or CB treatments had less cecal E. coli population at 3, 7, and 21 d postchallenge, and less cecal Clostridium perfringens counts at 21 d postchallenge compared with the PC birds. The CB treatment increased (P < 0.05) the population of cecal Lactobacillus at 3 d postchallenge and the number of cecal Bifidobacterium at 3, 14, and 21 d postchallenge in comparison with the PC treatment. The results indicate that dietary supplementation of CB promotes growth performance, improves immune function, and benefits the cecal microflora in Escherichia coli K88-challenged chickens.
Collapse
Affiliation(s)
- L Zhang
- College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pathobiology and potential therapeutic value of intestinal short-chain fatty acids in gut inflammation and obesity. Dig Dis Sci 2013; 58:2756-66. [PMID: 23839339 PMCID: PMC4317286 DOI: 10.1007/s10620-013-2744-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND The lumen of the gastrointestinal tract contains many substances produced from the breakdown of foodstuffs, from salivary, esophageal, intestinal, hepatic, and pancreatic secretions, and from sloughed cells present in the gastrointestinal lumen. Although these substances were traditionally regarded as waste products, there is increasing realization that many can be biologically active, either as signalling compounds or as nutrients. For example, proteins are broken down into amino acids, which are then sensed by nutrient receptors. The gut microbiome, which is at highest abundance in the ileocecum, has powerful metabolic activity, digesting and breaking down unabsorbed carbohydrates, proteins, and other ingested nutrients into phenols, amines, volatile organic compounds, methane, carbon dioxide, hydrogen, and hydrogen sulfide into volatile fatty acids, also called short-chain fatty acids (SCFAs). CONCLUSION These latter substances are the topic of this review. In this review, we will briefly discuss recent advances in the understanding SCFA production, signalling, and absorption, followed by a detailed description and discussion of trials of SCFAs, probiotics, and prebiotics in the treatment of gastrointestinal disease, in particular ulcerative colitis (UC), pouchitis, short bowel syndrome, and obesity.
Collapse
|
37
|
Bader J, Albin A, Stahl U. Spore-forming bacteria and their utilisation as probiotics. Benef Microbes 2012; 3:67-75. [PMID: 22348911 DOI: 10.3920/bm2011.0039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review article, the beneficial application of bacterial spore formers as probiotics in the food industry is discussed based on the knowledge gleaned from current publications. The summary of new scientific results provides evidence of the advantages of the utilisation of Bacillus or Clostridium strains in the food industry. Both bacteria are able to produce a very stable duration form: the endospore. Compared to the widely used lactic acid bacteria, bacterial spores offer the advantage of a higher survival rate during the acidic stomach passage and better stability during the processing and storage of the food product. In many food products, germination of the spores does not occur. Hence the product quality of the food is not affected because of their inactive metabolism. Besides the possible utilisation and functional properties, an overview of the fast-developing knowledge about the mechanisms of the beneficial health effects of spore-forming bacteria is provided.
Collapse
Affiliation(s)
- J Bader
- Technische Universität Berlin, Fachgebiet für Angewandte und Molekulare Mikrobiologie, Germany.
| | | | | |
Collapse
|
38
|
Genc Z, Yarat A, Tunali-Akbay T, Sener G, Cetinel S, Pisiriciler R, Caliskan-Ak E, Altıntas A, Demirci B. The Effect of Stinging Nettle (Urtica dioica) Seed Oil on Experimental Colitis in Rats. J Med Food 2011; 14:1554-61. [DOI: 10.1089/jmf.2011.0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Zeynep Genc
- Department of Biochemistry, Marmara University, Istanbul, Turkey
| | - Aysen Yarat
- Department of Biochemistry, Marmara University, Istanbul, Turkey
| | | | - Goksel Sener
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Sule Cetinel
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Rabia Pisiriciler
- Department of Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Esin Caliskan-Ak
- Department of Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ayhan Altıntas
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
39
|
Liu CJ, Jin JD, Lv TD, Wu ZZ, Ha XQ. Keratinocyte growth factor gene therapy ameliorates ulcerative colitis in rats. World J Gastroenterol 2011; 17:2632-40. [PMID: 21677832 PMCID: PMC3110926 DOI: 10.3748/wjg.v17.i21.2632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of keratinocyte growth factor (KGF) gene therapy in acetic acid-induced ulcerative colitis in rat model.
METHODS: The colitis of Sprague-Dawley rats was induced by intrarectal infusion of 1 mL 5% (v/v) acetic acid. Twenty-four hours after exposed to acetic acid, rats were divided into three experimental groups: control group, attenuated Salmonella typhimurium Ty21a strain (SP) group and SP strain carrying human KGF gene (SPK) group, and they were separately administered orally with 10% NaHCO3, SP or SPK. Animals were sacrificed and colonic tissues were harvested respectively on day 3, 5, 7 and 10 after administration. Weights of rats, colonic weight/length ratio and stool score were evaluated. Histological changes of colonic tissues were examined by hematoxylin and eosin (HE) staining method. The expression of KGF, KGF receptor (KGFR) and TNF-α were measured either by enzyme-linked immunosorbent assay or Western blotting. Immunohistochemistry was used to detect the cellular localization of KGFR and Ki67. In addition, superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in the homogenate were measured.
RESULTS: Body weight and colonic weight/length ratio were declined in SPK group compared with SP and control groups (body weight: 272.78 ± 17.92 g vs 243.72 ± 14.02 g and 240.68 ± 12.63 g, P < 0.01; colonic weight/length ratio: 115.76 ± 7.47 vs 150.32 ± 5.99 and 153.67 ± 5.50 mg/cm, P < 0.01). Moreover, pathological changes of damaged colon were improved in SPK group as well. After administration of SPK strain, KGF expression increased markedly from the 3rd d, and remained at a high level till the 10th d. Furthermore, KGFR expression and Ki67 expression elevated, whereas TNF-α expression was inhibited in SPK group. In the group administered with SPK, SOD activity increased significantly (d 5: 26.18 ± 5.84 vs 18.12 ± 3.30 and 18.79 ± 4.74 U/mg, P < 0.01; d 7: 35.48 ± 3.35 vs 22.57 ± 3.44 and 21.69 ± 3.94 U/mg, P < 0.01; d 10: 46.10 ± 6.23 vs 25.35 ± 4.76 and 27.82 ± 6.42 U/mg, P < 0.01) and MDA contents decreased accordingly (d 7: 7.40 ± 0.88 vs 9.81 ± 1.21 and 10.45 ± 1.40 nmol/mg, P < 0.01; d 10: 4.36 ± 0.62 vs 8.41 ± 0.92 and 8.71 ± 1.27 nmol/mg, P < 0.01), compared with SP and control groups.
CONCLUSION: KGF gene therapy mediated by attenuated Salmonella ameliorates ulcerative colitis induced by acetic acids, and it may be a safe and effective treatment for ulcerative colitis.
Collapse
|
40
|
Isik F, Tunali Akbay T, Yarat A, Genc Z, Pisiriciler R, Caliskan-Ak E, Cetinel S, Altıntas A, Sener G. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Dig Dis Sci 2011; 56:721-30. [PMID: 20658190 DOI: 10.1007/s10620-010-1333-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis. METHODS Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo "100% natural Black Cumin Seed Oil," Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. RESULTS We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. CONCLUSIONS BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.
Collapse
Affiliation(s)
- F Isik
- Faculty of Dentistry, Department of Biochemistry, Marmara University, Nisantası, 34365, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Larrosa M, Tomé-Carneiro J, Yáñez-Gascón MJ, Alcántara D, Selma MV, Beltrán D, García-Conesa MT, Urbán C, Lucas R, Tomás-Barberán F, Morales JC, Espín JC. Preventive oral treatment with resveratrol pro-prodrugs drastically reduce colon inflammation in rodents. J Med Chem 2010; 53:7365-76. [PMID: 20866032 DOI: 10.1021/jm1007006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is no pharmaceutical or definitive surgical cure for inflammatory bowel diseases (IBDs). The naturally occurring polyphenol resveratrol exerts anti-inflammatory properties. However, its rapid metabolism diminishes its effectiveness in the colon. The design of prodrugs to targeting active molecules to the colon provides an opportunity for therapy of IBDs. Herein we explore the efficacy of different resveratrol prodrugs and pro-prodrugs to ameliorate colon inflammation in the murine dextran sulfate sodium (DSS) model. Mice fed with a very low dose (equivalent to 10 mg for a 70 kg-person) of either resveratrol-3-O-(6'-O-butanoyl)-β-D-glucopyranoside (6) or resveratrol-3-O-(6'-O-octanoyl)-β-D-glucopyranoside (7) did not develop colitis symptoms and improved 6-fold the disease activity index (DAI) compared to resveratrol. Our results indicate that these pro-prodrugs exerted a dual effect: (1) they prevented the rapid metabolism of resveratrol and delivered higher quantities of resveratrol to the colon and (2) they reduced mucosal barrier imbalance and prevented diarrhea, which consequently facilitated the action of the delivered resveratrol in the colon mucosa.
Collapse
Affiliation(s)
- Mar Larrosa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ge T, Tang ZP, Wang L, Zhang YL. Relationship between Th17/Treg imbalance and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2010; 18:689-694. [DOI: 10.11569/wcjd.v18.i7.689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiology and pathogenesis of inflammatory bowel disease (IBD) remain incompletely understood. Inflammatory process caused by abnormal intestinal mucosal immune responses plays an important role in the pathogenesis of IBD. T helper 17 (Th17) cells mediate chronic inflammation and autoimmune diseases, while regulatory T (Treg) cells suppress autoimmunity. There is an interrelationship between Th17 cells and Treg cells. Some studies have shown that Th17/Treg balance is critical in maintaining intestinal immune homeostasis. Th17/Treg imbalance may be a cause of human IBD. Recent studies have also shown that transforming growth factor-β, interleukin-6 and retinoic acid may be key factors regulating Th17/Treg balance. As intestinal flora is closely related with the occurrence of IBD, probiotic treatment of IBD has attracted wide attention. Elucidation of the regulation of Th17/Treg balance is key to understanding IBD.
Collapse
|