1
|
Meetam T, Angspatt A, Aramwit P. Evidence of Potential Natural Products for the Management of Hypertrophic Scars. J Evid Based Integr Med 2024; 29:2515690X241271948. [PMID: 39196306 PMCID: PMC11359448 DOI: 10.1177/2515690x241271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic scarring is an aberrant wound-healing response to reestablish dermal integrity after an injury and can cause significant abnormalities in physical, aesthetic, functional, and psychological symptoms, impacting the patient's quality of life. There is currently no gold standard for preventing and treating hypertrophic scars. Therefore, many researchers have attempted to search for antihypertrophic scar agents with greater efficacy and fewer side effects. Natural therapeutics are becoming attractive as potential alternative anti-scarring agents because of their high efficacy, safety, biocompatibility, low cost, and easy accessibility. This review demonstrates various kinds of natural product-based therapeutics, including onion, vitamin E, Gotu kola, green tea, resveratrol, emodin, curcumin, and others, in terms of their mechanisms of action, evidence of efficacy and safety, advantages, and disadvantages when used as anti-scarring agents. We reviewed the literature based on data from in vitro, in vivo, and clinical trials. A total of 23 clinical trials were identified in this review; most clinical trials were ranked as having uncertain results (level of evidence 2b; n = 16). Although these natural products showed beneficial effects in both in vitro and in vivo studies of potential anti-scarring agents, there was limited clinical evidence to support their efficacy due to the limited quality of the studies, with individual flaws including small sample sizes, poor randomization, and blinding, and short follow-up durations. More robust and well-designed clinical trials with large-scale and prolonged follow-up durations are required to clarify the benefits and risks of these agents.
Collapse
Affiliation(s)
- Thunyaluk Meetam
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Sirindhorn College of Public Health Trang, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Trang, Thailand
| | - Apichai Angspatt
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok,
Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Li JZ, Chen N, Ma N, Li MR. Mechanism and Progress of Natural Products in the Treatment of NAFLD-Related Fibrosis. Molecules 2023; 28:7936. [PMID: 38067665 PMCID: PMC10707854 DOI: 10.3390/molecules28237936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disorder worldwide, with liver fibrosis (LF) serving as a pivotal juncture in NAFLD progression. Natural products have demonstrated substantial antifibrotic properties, ushering in novel avenues for NAFLD treatment. This study provides a comprehensive review of the potential of natural products as antifibrotic agents, including flavonoids, polyphenol compounds, and terpenoids, with specific emphasis on the role of Baicalin in NAFLD-associated fibrosis. Mechanistically, these natural products have exhibited the capacity to target a multitude of signaling pathways, including Hedgehog, Wnt/β-catenin, TGF-β1, and NF-κB. Moreover, they can augment the activities of antioxidant enzymes, inhibit pro-fibrotic factors, and diminish fibrosis markers. In conclusion, this review underscores the considerable potential of natural products in addressing NAFLD-related liver fibrosis through multifaceted mechanisms. Nonetheless, it underscores the imperative need for further clinical investigation to authenticate their effectiveness, offering invaluable insights for future therapeutic advancements in this domain.
Collapse
Affiliation(s)
- Jin-Zhong Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ning Chen
- General Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min-Ran Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
A comprehensive review of emodin in fibrosis treatment. Fitoterapia 2023; 165:105358. [PMID: 36436587 DOI: 10.1016/j.fitote.2022.105358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Emodin is the main pharmacodynamic components of rhubarb, with significant pharmacological effects and clinical efficacy.Emodin has a variety of therapy effects, such as anti-cancer, anti-fibrosis effects, and is widely used to treat encephalitis, diabetic cataract and organ fibrosis. Several studies have shown that emodin has a good treatment effect on organ fibrosis, but the mechanism is complex. Moreover, the evidence of some studies is conflicting and confusing. This paper reviewed the mechanism, pharmacokinetics and toxicology of emodin in fibrosis treatment, and briefly discussed relevant cutting-edge new formulations to improve the efficacy, the result can provide some reference for future study.
Collapse
|
5
|
Cai MT, Zhou Y, Ding WL, Huang YH, Ren YS, Yang ZY, Zhang L, Sun F, Guo HB, Zhou LY, Gong ZH, Piao XH, Wang SM, Ge YW. Identification and localization of morphological feature-specific metabolites in Reynoutria multiflora roots. PHYTOCHEMISTRY 2023; 206:113527. [PMID: 36460140 DOI: 10.1016/j.phytochem.2022.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Reynoutria multiflora roots are a classical herbal medicine with unique nourishing therapeutic effects. Anomalous vascular bundle (AVB) forming "cloudy brocade patterns" is a typical morphological feature of R. multiflora roots and has been empirically linked to its quality classification. However, scientific evidence, especially for AVB-specific specialised metabolites, has not been comprehensively revealed thus far. Herein, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) analysis was applied to carry out an in situ analysis of specialised metabolites distributed specifically at the AVB and cork of R. multiflora roots. To enlarge the scope of compounds by DESI detection, various solvent systems including acetone, acetonitrile, methanol, and water were used to assist in the discoveries of 40 specialised metabolites with determined localization. A series of bioactive constituents including stilbenes, flavonoids, anthraquinones, alkaloids, and naphthalenes were found specifically around the brocade patterns. Notably, phospholipids were detected from R. multiflora roots by in situ analysis for the first time and were found mainly in the phloem of AVB (PAB). This is the first study to use gradient solvent systems in DESI-MSI analysis to locate the specialised metabolites distribution. The discovery of feature-specific compounds will bridge the empirical identification to precision quality control of R. multiflora roots.
Collapse
Affiliation(s)
- Meng-Ting Cai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Luan Ding
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Hong Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hai-Biao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Liang-Yun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Hong Gong
- Waters Technology (Shanghai) Co. Ltd., Shanghai, 200120, China
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Wu ZG, Song ZY, Wang WX, Xi WN, Jin D, Ai MX, Wu YC, Lan Y, Song SF, Zhang GC, Yao XB, Gao Z, Liu CY, Sun K, Yu DS, Xie BG, Sun SL. Human brucellosis and fever of unknown origin. BMC Infect Dis 2022; 22:868. [PMID: 36411430 PMCID: PMC9680120 DOI: 10.1186/s12879-022-07872-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human brucellosis has become one of the major public health problems in China, and increases atypical manifestations, such as fever of unknown origin (FUO), and misdiagnosis rates has complicated the diagnosis of brucellosis. To date, no relevant study on the relationship between brucellosis and FUO has been conducted. METHODS We retrospectively reviewed the medical charts of 35 patients with confirmed human brucellosis and prospectively recorded their outcomes by telephone interview. The patients were admitted to the Second Affiliated Hospital of Nanchang University between January 01, 2013 and October 31, 2019. Patient data were collected from hospital medical records. RESULTS The percentage of males was significantly higher than that of female in FUO (78.95% vs. 21.05%, P < 0.05), and 80% of the patients had a clear history of exposure to cattle and sheep. Moreover, 19 (54%) cases were hospitalized with FUO, among which the patients with epidemiological histories were significantly more than those without (P < 0.05). The incidence of toxic hepatitis in FUO patients was higher than that in non-FUO patients (89% vs. 50%, P < 0.05). Meanwhile, the misdiagnosis rate was considerably higher in the FUO group than in the non-FUO group (100% vs. 63%; P < 0.05). CONCLUSION Brucellosis is predominantly FUO admission in a non-endemic area of China, accompanied by irregular fever and toxic hepatitis. Careful examination of the epidemiological history and timely improvement of blood and bone marrow cultures can facilitate early diagnosis and prevent misdiagnosis.
Collapse
Affiliation(s)
- Zhi-guo Wu
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Zhi-ying Song
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Wei-xin Wang
- grid.449868.f0000 0000 9798 3808Department of Infectious Diseases, The Second Affiliated Hospital of Yichun University, Yichun, 336000 China
| | - Wen-na Xi
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Di Jin
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Mao-xing Ai
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Yu-chan Wu
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Yu Lan
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Shu-fen Song
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Gong-chang Zhang
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Xue-bing Yao
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Zhen Gao
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Cui-yun Liu
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Ke Sun
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Dong-shan Yu
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Bao-gang Xie
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China ,grid.411870.b0000 0001 0063 8301Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, 314001 China
| | - Shui-lin Sun
- grid.412455.30000 0004 1756 5980Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| |
Collapse
|
7
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
9
|
McDonald SJ, VanderVeen BN, Velazquez KT, Enos RT, Fairman CM, Cardaci TD, Fan D, Murphy EA. Therapeutic Potential of Emodin for Gastrointestinal Cancers. Integr Cancer Ther 2022; 21:15347354211067469. [PMID: 34984952 PMCID: PMC8738880 DOI: 10.1177/15347354211067469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gastrointestinal (GI) cancers cause one-third of all cancer-related deaths worldwide. Natural compounds are emerging as alternative or adjuvant cancer therapies given their distinct advantage of manipulating multiple pathways to both suppress tumor growth and alleviate cancer comorbidities; however, concerns regarding efficacy, bioavailability, and safety are barriers to their development for clinical use. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a Chinese herb-derived anthraquinone, has been shown to exert anti-tumor effects in colon, liver, and pancreatic cancers. While the mechanisms underlying emodin's tumoricidal effects continue to be unearthed, recent evidence highlights a role for mitochondrial mediated apoptosis, modulated stress and inflammatory signaling pathways, and blunted angiogenesis. The goals of this review are to (1) highlight emodin's anti-cancer properties within GI cancers, (2) discuss the known anti-cancer mechanisms of action of emodin, (3) address emodin's potential as a treatment complementary to standard chemotherapeutics, (4) assess the efficacy and bioavailability of emodin derivatives as they relate to cancer, and (5) evaluate the safety of emodin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daping Fan
- University of South Carolina, Columbia, SC, USA
- AcePre, LLC, Columbia, SC, USA
| | - E. Angela Murphy
- University of South Carolina, Columbia, SC, USA
- AcePre, LLC, Columbia, SC, USA
| |
Collapse
|
10
|
Carver W, Fix E, Fix C, Fan D, Chakrabarti M, Azhar M. Effects of emodin, a plant-derived anthraquinone, on TGF-β1-induced cardiac fibroblast activation and function. J Cell Physiol 2021; 236:7440-7449. [PMID: 34041746 PMCID: PMC8530838 DOI: 10.1002/jcp.30416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis accompanies a number of pathological conditions and results in altered myocardial structure, biomechanical properties and function. The signaling networks leading to fibrosis are complex, contributing to the general lack of progress in identifying effective therapeutic approaches to prevent or reverse this condition. Several studies have shown protective effects of emodin, a plant-derived anthraquinone, in animal models of fibrosis. A number of questions remain regarding the mechanisms whereby emodin impacts fibrosis. Transforming growth factor beta 1 (TGF-β1) is a potent stimulus of fibrosis and fibroblast activation. In the present study, experiments were performed to evaluate the effects of emodin on activation and function of cardiac fibroblasts following treatment with TGF-β1. We demonstrate that emodin attenuates TGF-β1-induced fibroblast activation and collagen accumulation in vitro. Emodin also inhibits activation of several canonical (SMAD2/3) and noncanonical (Erk1/2) TGF-β signaling pathways, while activating the p38 pathway. These results suggest that emodin may provide an effective therapeutic agent for fibrosis that functions via specific TGF-β signaling pathways.
Collapse
Affiliation(s)
- Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Ethan Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| |
Collapse
|
11
|
Semwal RB, Semwal DK, Combrinck S, Viljoen A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. PHYTOCHEMISTRY 2021; 190:112854. [PMID: 34311280 DOI: 10.1016/j.phytochem.2021.112854] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a natural anthraquinone derivative that is present in numerous globally renowned herbal medicines. It is recognised as a protein tyrosine kinase inhibitor and as an anticancer drug, active against various tumour cells, including lung, breast, liver, and ovarian cancer cells. Recently, its role in combination chemotherapy with various allopathic medicines, to minimize their toxicity and to enhance their efficacy, has been studied. The use of emodin in these therapies is gaining popularity, due to fewer associated side effects compared with standard anticancer drugs. Emodin has a broad therapeutic window, and in addition to its antineoplastic activity, it displays anti-ulcer, anti-inflammatory, hepatoprotective, neuroprotective, antimicrobial, muscle relaxant, immunosuppressive and antifibrotic activities, in both in vitro and in vivo models. Although reviews on the anticancer activity of emodin have been published, none coherently unite all the pharmacological properties of emodin, particularly the anti-oxidant, antimicrobial, antidiabetic, immunosuppressive and hepatoprotective activities of the compound. Hence, in this review, all of the available data regarding the pharmacological properties of emodin are explored, with particular emphasis on the modes of action of the molecule. In addition, the manuscript details the occurrence, biosynthesis and chemical synthesis of the compound, as well as its toxic effects on biotic systems.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Chemistry, Pt. Lalit Mohan Sharma Govt. Post Graduate College, Rishikesh, 249201, India
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Department of Phytochemistry, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
12
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
13
|
Liu W, Gu R, Lou Y, He C, Zhang Q, Li D. Emodin-induced autophagic cell death hinders epithelial-mesenchymal transition via regulation of BMP-7/TGF-β1 in renal fibrosis. J Pharmacol Sci 2021; 146:216-225. [PMID: 34116735 DOI: 10.1016/j.jphs.2021.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
We aim to explore the effects of emodin and its mechanisms on renal fibrosis (RF). We firstly modeled adriamycin-induced rat RF with unilateral nephrectomy. In vivo and in vitro pharmacological experiments were performed in this study. The presence of collagen deposition was detected by Masson staining. To verify whether emodin attenuates RF by monitoring autophagy, the immunohistochemistry staining for autophagy protein LC3B was performed. We conducted western blot to detect the expression of the autophagy-related proteins in EMT in vitro model after treating with emotin and BMP-7. In vivo, we demonstrated that emodin could improve renal dysfunction and decrease pathological damage of the kidney by activation of autophagy and inhibition of EMT. Upregulation of BMP-7 was recorded in the RF rats subjected to emodin treatment. In vitro studies, emodin has the capacity of reversing EMT and activating autophagy, and emodin could regulate the expression of BMP-7. The results revealed that the attenuation of EMT by emodin could be blocked after the inhibition of BMP-7 and suppression of autophagy. Our findings demonstrated that emodin alleviates EMT during RF by actuating autophagy through BMP-7, suggesting a role of BMP-7 in RF treatment and prevention.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Renze Gu
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Yujiao Lou
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Chunfeng He
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Qingchuan Zhang
- Department of Urology Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China.
| | - Dongmei Li
- Department of Pediatrics, Shanghai 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
14
|
Pang X, Shao L, Nie X, Yan H, Li C, Yeo AJ, Lavin MF, Xia Q, Shao H, Yu G, Jia Q, Peng C. Emodin attenuates silica-induced lung injury by inhibition of inflammation, apoptosis and epithelial-mesenchymal transition. Int Immunopharmacol 2021; 91:107277. [PMID: 33352442 DOI: 10.1016/j.intimp.2020.107277] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 01/24/2023]
Abstract
Silicosis is a fatal pulmonary disease caused by the inhalation of silica dust, and characterized by inflammation and fibrosis of the lung, with no effective treatment to date. Here we investigate the effect of emodin, an anthraquinone derivative isolated from rhubarb using a mouse silicosis model and in vitro cultured human macrophages and alveolar epithelial cells. Results from histological examination indicated that emodin reduced the degree of alveolitis and fibrosis in the lungs of mice exposed to silica particles. We also demonstrated that emodin effectively inhibited the phosphorylation of Smad3 and NF-κB and reduced the levels of inflammatory factors in the lung tissue of mice treated with silica particles. In addition, we found that emodin inhibited apoptosis and demonstrated an anti-fibrotic effect by down-regulating the pro-apoptotic protein Bax and up-regulating the anti-apoptotic protein Bcl-2. Furthermore, emodin increased E-cadherin levels, reduced the expression of Vimentin, α-SMA and Col-I, as well as pro-inflammatory factors TGF-β1, TNF-α and IL-1β in vivo and in vitro. These results suggested that emodin can regulate epithelial-mesenchymal transition (EMT) through the inhibition of the TGF-β1/Smad3 signaling pathway and the NF-κB signaling pathway to prevent alveolar inflammation and apoptotic process. Overall, this study showed that emodin can alleviate pulmonary fibrosis in silicosis through regulating the inflammatory response and fibrotic process at multiple levels.
Collapse
Affiliation(s)
- Xinru Pang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Linlin Shao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Xiaojuan Nie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Haiyue Yan
- Shandong Institute of Scientific and Technical Information
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Abrey J Yeo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Queensland, Australia
| | - Martin F Lavin
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Queensland, Australia
| | - Qing Xia
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, Queensland, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
16
|
Adamu BA, Emiru YK, Sintayehu B, Araya EM, Periasamy G, Gebrelibanos Hiben M. In vivo Hepatoprotective and in vitro Radical Scavenging Activities of Extracts of Rumex abyssinicus Jacq. Rhizome. J Exp Pharmacol 2020; 12:221-231. [PMID: 32821176 PMCID: PMC7417928 DOI: 10.2147/jep.s258566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver diseases contribute a prominent global burden of mortality and morbidity. The current therapies of liver diseases have numerous limitations including severe adverse effects. This denotes that new more effective, safer, and cheaper drugs are required and medicinal plants used in traditional medicines often offer ideal opportunities. Accordingly, the present study aimed to evaluate the in vivo hepatoprotective and in vitro radical scavenging activities of dried rhizome extracts of Rumex abyssinicus (R. abyssinicus), which is traditionally claimed to provide hepatoprotection. MATERIALS AND METHODS Hepatoprotective activity of extracts was evaluated using carbon tetrachloride (CCl4)-induced liver injury in mice. Pre- and post-treatment models were employed to test the effect of the extracts and silymarin (standard drug). Serum biochemical markers and liver histopathology were used as parameters to evaluate hepatoprotective activities whereas in vitro radical scavenging activity was tested by 2, 2-diphenyl-2-picrylhydrazyl hydrate (DPPH) assay. RESULTS AND CONCLUSION Oral administration of CCl4 (1 ml/kg) significantly (P<0.001) raised the serum levels of liver enzyme markers compared to the normal control group. Pre-treatment with 125, 250, and 500 mg/kg of R. abyssinicus extract reduced the serum level of CCl4-induced rise in liver enzyme markers with the highest reduction observed at a dose of 500 mg/kg. Likewise, in the post-treatment model, the crude extract and butanol fraction at dose 500 mg/kg reduced levels of liver enzymes. Histopathological examinations revealed lesser liver damage of extract-treated mice compared to the toxic (CCl4-treated) controls. The in vitro radical scavenging activity of the different extracts showed concentration-dependent radical scavenging activity. Thus, the results of this study may justify the traditional use of the plant as a hepatoprotective agent. CONCLUSION Results of serum biochemical markers and histopathological examinations of CCl4-induced mice models, in the present study, show the hepatoprotective potential of extracts from the rhizome of R. abyssinicus.
Collapse
Affiliation(s)
- Betelhem Anteneh Adamu
- Department of Pharmacognosy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yohannes Kelifa Emiru
- Department of Pharmacognosy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Biruk Sintayehu
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Mebrhatu Araya
- Department of Pharmacy, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Gomathi Periasamy
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Mebrahtom Gebrelibanos Hiben
- Department of Pharmacognosy, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
17
|
Hu N, Liu J, Xue X, Li Y. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. Eur J Pharmacol 2020; 882:173269. [PMID: 32553811 DOI: 10.1016/j.ejphar.2020.173269] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Liver injury could be caused by a variety of causes, including alcohol, drug poisoning, autoimmune overreaction, etc. In the period of liver injury, hepatic stellate cells (HSCs) will be activated and produce excessive extracellular matrix (ECM). If injury cannot be suppressed, liver injury will develop into fibrosis, even cirrhosis and liver cancer. It is reported that some monomer components extracted from traditional Chinese medicine have better effects on protecting liver. Emodin, an anthraquinone compound extracted from the traditional Chinese medicine RHEI RADIX ET RHIZOMA, has anti-inflammatory, antioxidant, liver protection and anti-cancer effects, and can prevent liver injury induced by a variety of factors. By searching literatures related to the liver protection of emodin in PUBMED, SINOMED, EBM and CNKI databases, it was found that emodin could inhibit the production and promote the secretion of bile acids, and have a protective effect on intrahepatic cholestasis. Also, emodin reduce collagen synthesis and anti-hepatic fibrosis by inhibiting oxidative stress, TGF-β/Smad pathway and HSCs proliferation, and promoting apoptosis of HSCs. Emodin can also regulate lipid metabolism and regulate the synthesis and oxidation of lipids and cholesterol to protect the nonalcoholic fatty liver. Besides, emodin can induce the apoptosis of hepatocellular carcinoma cells by acting on the death receptor pathway and mitochondrial apoptosis pathway, thus inhibiting the development of hepatocellular carcinoma. Moreover, emodin can modulate immunity and improve immune rejection in liver transplantation animals. In conclusion, emodin has a good effect on liver protection, but further experimental data are needed to verify it.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Jie Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
18
|
Liu D, Qin H, Yang B, Du B, Yun X. Oridonin ameliorates carbon tetrachloride-induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev Res 2020; 81:526-533. [PMID: 32219880 PMCID: PMC7317507 DOI: 10.1002/ddr.21649] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs) and accumulation of the extracellular matrix. There are limitations in the current therapies for liver fibrosis. Recently, oridonin was shown to induce apoptosis in HSCs. Thus, we aimed to determine the roles of oridonin in chronic liver injury and fibrosis. Liver fibrosis was induced by CCl4 in mice injected intraperitoneally with oridonin for 6 weeks. The administration of oridonin significantly attenuated liver injury and reduced ALT levels. In addition, Sirius Red staining and the expression of α-smooth muscle actin (α-SMA) were significantly reduced by oridonin in murine livers with fibrosis. The expression of NLRP3, caspase-1, and IL-1β was downregulated with the oridonin treatment. Furthermore, the expression of F4/80 in liver tissues was also decreased by oridonin treatment. These results demonstrate that oridonin ameliorates chronic liver injury and fibrosis. Mechanically, oridonin may inhibit the activity of the NLRP3 inflammasome and inflammation in the liver. These results highlight the potential of oridonin as a therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Dong Liu
- College of PharmacyGuizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Hailong Qin
- College of PharmacyGuizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| | - Bixian Yang
- College of Food and Pharmacy EngineeringGuiyang UniversityGuiyangGuizhouChina
| | - Bin Du
- College of Food and Pharmacy EngineeringGuiyang UniversityGuiyangGuizhouChina
| | - Xuelin Yun
- College of PharmacyGuizhou University of Traditional Chinese MedicineGuiyangGuizhouChina
| |
Collapse
|
19
|
Zhuang T, Gu X, Zhou N, Ding L, Yang L, Zhou M. Hepatoprotection and hepatotoxicity of Chinese herb Rhubarb (Dahuang): How to properly control the "General (Jiang Jun)" in Chinese medical herb. Biomed Pharmacother 2020; 127:110224. [PMID: 32559851 DOI: 10.1016/j.biopha.2020.110224] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chinese herb Rhubarb (Dahuang), one of the most widely used traditional Chinese medicine in clinical application for over a thousand years and known as the "General (Jiang Jun)" in Chinese medical herb, currently used clinically for long-term treatment of gastrointestinal diseases and chronic liver diseases. Through previous researches, it has been identified that Rhubarb possessed a good hepatoprotective effect, which primarily protected liver from oxidation, fibrosis and cirrhosis, liver failure, hepatocellular carcinoma and various types of hepatitis. Meanwhile, it has been recently reported that long-term administration of Rhubarb preparation may undertake the risk of liver damage, which has aroused worldwide doubts about the safety of Rhubarb. Therefore, how to correctly understand the "two-way" effect of Rhubarb on liver protection and liver toxicity provides a basis for scientific evaluation of Rhubarb's efficacy on liver and side effects, as well as guiding clinical rational drug use. In this review, the mechanisms of Rhubarb how to play a role in hepatoprotection and why it causes hepatotoxic potential will be elaborated in detail and critically. In addition, some positive clinical guidances are also advised on how to reduce its hepatotoxicity in medical treatment.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Gu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Network Pharmacology-Based Prediction of the Active Compounds, Potential Targets, and Signaling Pathways Involved in Danshiliuhao Granule for Treatment of Liver Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2630357. [PMID: 31354851 PMCID: PMC6636523 DOI: 10.1155/2019/2630357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
This study aims to predict the active ingredients, potential targets, signaling pathways and investigate the “ingredient-target-pathway” mechanisms involved in the pharmacological action of Danshiliuhao Granule (DSLHG) on liver fibrosis. Pharmacodynamics studies on rats with liver fibrosis showed that DSLHG generated an obvious anti-liver fibrosis action. On this basis, we explored the possible mechanisms underlying its antifibrosis effect using network pharmacology approach. Information about compounds of herbs in DSLHG was collected from TCMSP public database and literature. Furthermore, the oral bioavailability (OB) and drug-likeness (DL) were screened according to ADME features. Compounds with OB≥30% and DL≥0.18 were selected as active ingredients. Then, the potential targets of the active compounds were predicted by pharmacophore mapping approach and mapped with the target genes of the specific disease. The compound-target network and Protein-Protein Interaction (PPI) network were built by Cytoscape software. The core targets were selected by degree values. Furthermore, GO biological process analysis and KEGG pathway enrichment analysis were carried out to investigate the possible mechanisms involved in the anti-hepatic fibrosis effect of DSLHG. The predicted results showed that there were 108 main active components in the DSLHG formula. Moreover, there were 192 potential targets regulated by DSLHG, of which 86 were related to liver fibrosis, including AKT1, EGFR, and IGF1R. Mechanistically, the anti-liver fibrosis effect of DSLHG was exerted by interfering with 47 signaling pathways, such as PI3K-Akt, FoxO signaling pathway, and Ras signaling pathway. Network analysis showed that DSLHG could generate the antifibrosis action by affecting multiple targets and multiple pathways, which reflects the multicomponent, multitarget, and multichannel characteristics of traditional Chinese medicine and provides novel basis to clarify the mechanisms of anti-liver fibrosis of DSLHG.
Collapse
|
21
|
Ghorbani A, Amiri MS, Hosseini A. Pharmacological properties of Rheum turkestanicum Janisch. Heliyon 2019; 5:e01986. [PMID: 31294125 PMCID: PMC6595136 DOI: 10.1016/j.heliyon.2019.e01986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Medicinal herbs have been increasingly used worldwide for diseases prevention and treatment. Rheum turkestanicum Janisch. is a perennial shrub of the Polygonaceae family. Genus Rheum includes more than 60 species growing around the world which are used in foods and traditional medicines. R. turkestanicum is believed to be able to improve different kinds of disorders including diabetes, hypertension, jaundice and cancer. In recent years, this medicinal plant has been a subject of many experimental studies to document its health-beneficial properties. These studies have revealed antidiabetic, anticancer, nephroprotective, cardioprotective, and hepatoprotective properties of R. turkestanicum. The presence of flavonoids (e.g. epicatechin and quercetin) and anthraquinones (e.g. chrysophanol, physcion, and emodin) in R. turkestanicum justifies its health-beneficial effects. Nevertheless, possible therapeutic applications and safety of this plant still need to be elucidated in further clinical studies.
Collapse
Affiliation(s)
- Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Tsauo J, Song HY, Choi EY, Kim DK, Kim KY, Park JH, Kim MT, Yoon SH, Lim YJ. EW-7197, an oral transforming growth factor β type I receptor kinase inhibitor, for preventing peritoneal adhesion formation in a rat model. Surgery 2018; 164:1100-1108. [DOI: 10.1016/j.surg.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
|
23
|
Ding Y, Liu P, Chen ZL, Zhang SJ, Wang YQ, Cai X, Luo L, Zhou X, Zhao L. Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo. Front Pharmacol 2018; 9:962. [PMID: 30186181 PMCID: PMC6113398 DOI: 10.3389/fphar.2018.00962] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jun Zhang
- National and Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan, China
| | - You-Qin Wang
- Graduate School of Jinzhou Medical University, Department of Pediatrics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xin Cai
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Wang X, Niu C, Zhang X, Dong M. Emodin suppresses activation of hepatic stellate cells through p38 mitogen-activated protein kinase and Smad signaling pathways in vitro. Phytother Res 2018; 32:2436-2446. [PMID: 30117601 DOI: 10.1002/ptr.6182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the hypothesis that emodin inhibits extracellular matrix (ECM)-related gene expression in activated hepatic stellate cells (HSCs) by blocking canonical or/and noncanonical components of transforming growth factor β1 (TGFβ1) intracellular signaling. Here, we demonstrate that emodin suppressed the gene expression of HSCs activation markers type I collagen, fibronectin, and α-smooth muscle actin, as well as HSCs proliferation. Mechanistically, emodin suppresses TGFβ1, TGFβ receptor II, TGFβ receptor I, and Smad4 gene expression, as well as Smad luciferase activity. Simultaneously, emodin reduced p38 mitogen-activated protein kinase (p38MAPK ) activity but not c-Jun N-terminal kinases and extracellular signal-regulated kinases 1 and 2 phosphorylation in HSC-T6 cells. Interestingly, deprivation of TGFβ using a neutralizing antibody abolished emodin-mediated inhibitions of the both Smad transcriptional activity and p38MAPK phosphorylation. Furthermore, emodin-mediated inhibition of HSCs activation could be partially blocked by PD98059 inhibition of p38MAPK or short hairpin RNA-imposed knockdown of Smad4. Conversely, simultaneous inhibition of Smad4 and p38MAPK pathways completely reverses the effects of emodin, suggesting that Smad and p38MAPK locate downstream of TGFβ1 and regulate collagen genes expression in HSCs. Collectively, these data suggest that emodin is a promising candidate for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Chengu Niu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
25
|
Liu F, Zhang J, Qian J, Wu G, Ma Z. Emodin alleviates CCl4‑induced liver fibrosis by suppressing epithelial‑mesenchymal transition and transforming growth factor‑β1 in rats. Mol Med Rep 2018; 18:3262-3270. [PMID: 30066878 PMCID: PMC6102702 DOI: 10.3892/mmr.2018.9324] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Liver fibrosis is a chronic disease that exhibits a complicated pathophysiology. It is characterized by the deposition of the extracellular matrix. Emodin, an active constituent isolated from rhubarb, has antibacterial, immunosuppressive and anti-inflammatory effects. In the present study, the mechanism through which emodin alleviates liver fibrosis in rats was investigated. A rat model of liver fibrosis was generated by administering CCl4 via subcutaneous injection twice a week for 12 weeks. Emodin or sodium carboxymethylcellulose (CMC), as the vehicle, were intragastrically administered daily. After 12 weeks, the liver function index was examined by blood analysis, histopathological scores of fibrosis was determined by hematoxylin and eosin staining and level of collagen deposition was examined by Masson staining. In addition, protein and RNA samples were collected for further analysis. The results of the present study revealed that emodin significantly reduced the liver function index and level of collagen deposition in a dose-dependent manner. Furthermore, emodin reduced the expression of transforming growth factor-β1 (TGF-β1) and the phosphorylation levels of mothers against decapentaplegic homolog 2/3, and inhibited the CCl4-induced downregulation of E-cadherin and upregulation of the mesenchymal markers, fibronectin and vimentin. The expression levels of TGF-β1, Snail family transcriptional repressor (Snail) 2, Snail, twist-related protein 1 and zinc finger E-box-binding homeobox (ZEB)1 and 2 mRNA were significantly decreased in emodin-treated groups compared with the untreated control. Collectively, the results of the present study suggested that emodin may exert antifibrotic effects via the suppression of TGF-β1 signaling and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jing Zhang
- Department of Nursing Center, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianmin Qian
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Gang Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyu Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
26
|
Huang J, Guo L, Tan R, Wei M, Zhang J, Zhao Y, Gong L, Huang Z, Qiu X. Interactions Between Emodin and Efflux Transporters on Rat Enterocyte by a Validated Ussing Chamber Technique. Front Pharmacol 2018; 9:646. [PMID: 29988367 PMCID: PMC6023986 DOI: 10.3389/fphar.2018.00646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/30/2018] [Indexed: 01/06/2023] Open
Abstract
Emodin, a major active anthraquinone, frequently interacts with other drugs. As changes of efflux transporters on intestine are one of the essential reasons why the drugs interact with each other, a validated Ussing chamber technique was established to detect the interactions between emodin and efflux transporters, including P-glycoprotein (P-gp), multidrug-resistant associated protein 2 (MRP2), and multidrug-resistant associated protein 3 (MRP3). Digoxin, pravastatin, and teniposide were selected as the test substrates of P-gp, MRP2, and MRP3. Verapamil, MK571, and benzbromarone were their special inhibitors. The results showed that verapamil, MK571, and benzbromarone could increase digoxin, pravastatin, and teniposide absorption, and decrease their Er values, respectively. Verapamil (220 μM) could significantly increase emodin absorption at 9.25 μM. In the presence of MK571 (186 μM), the Papp values of emodin from M-S were significantly increased and the efflux ratio decreased. With the treatment of emodin (185, 370, and 740 μM), digoxin absorption was significantly decreased while teniposide increased. These results indicated that emodin might be the substrate of P-gp and MRP2. Besides, it might be a P-gp inducer and MRP3 inhibitor on enterocyte, which are reported for the first time. These results will be helpful to explain the drug–drug interaction mechanisms between emodin and other drugs and provide basic data for clinical combination therapy.
Collapse
Affiliation(s)
- Juan Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lan Guo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruixiang Tan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Meijin Wei
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ya Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu Gong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
27
|
Emodin Alleviates Liver Fibrosis of Mice by Reducing Infiltration of Gr1 hi Monocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5738101. [PMID: 29743924 PMCID: PMC5884281 DOI: 10.1155/2018/5738101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 12/23/2022]
Abstract
Emodin, as a major active component of Rheum palmatum L. and Polygonum cuspidatum, has been reported to have antifibrotic effect. However, the mechanism of emodin on antifibrotic effect for liver fibrosis was still obscure. In the present study, we aimed to investigate whether emodin can alleviate carbon tetrachloride- (CCl4-) induced liver fibrosis through reducing infiltration of Gr1hi monocytes. Liver fibrosis was induced by intraperitoneal CCl4 injection in mice. Mice in the emodin group received emodin treatment by gavage. Pretreatment with emodin significantly protected mice from liver inflammation and fibrosis revealed by the decreased elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as reduced hepatic necrosis and fibrosis by analysis of hematoxylin-eosin (HE) staining, Masson staining, α-smooth muscle actin (α-SMA), and collagen-I immunohistochemistry staining. Further, compared to CCl4 group, mice in the emodin group showed significantly less intrahepatic infiltration of Gr1hi monocytes. Moreover, emodin significantly inhibited hepatic expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), granulin (GRN), monocyte chemoattractant protein 1 (MCP-1), and chemokine ligand 7 (CCL7), which was in line with the decreased numbers of intrahepatic Gr1hi monocytes. In conclusion, emodin can alleviate the degree of liver fibrosis by reducing infiltration of Gr1hi monocytes. These results suggest that emodin is a promising candidate to prevent and treat liver fibrosis.
Collapse
|
28
|
Islam MS, Akhtar MM, Segars JH, Castellucci M, Ciarmela P. Molecular targets of dietary phytochemicals for possible prevention and therapy of uterine fibroids: Focus on fibrosis. Crit Rev Food Sci Nutr 2018; 57:3583-3600. [PMID: 28609115 DOI: 10.1080/10408398.2016.1245649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uterine fibroids (myomas or leiomyomas) are common benign tumors of reproductive aged women. Fibroids are clinically apparent in 20-50% of women, and cause abnormal uterine bleeding, abdominal pain and discomfort, pregnancy complications and infertility. Unfortunately, limited numbers of medical treatment are available but no effective preventive strategies exist. Moreover, the benefits of medical treatments are tempered by lack of efficacy or serious adverse side effects. Fibrosis has recently been recognized as a key pathological event in leiomyoma development and growth. It is defined by the excessive deposition of extracellular matrix (ECM). ECM plays important role in making bulk structure of leiomyoma, and ECM-rich rigid structure is believed to be a cause of abnormal bleeding and pelvic pain/pressure. Dietary phytochemicals are known to regulate fibrotic process in different biological systems, and being considered as potential tool to manage human health. At present, very few dietary phytochemicals have been studied in uterine leiomyoma, and they are mostly known for their antiproliferative effects. Therefore, in this review, our aim was to introduce some dietary phytochemicals that could target fibrotic processes in leiomyoma. Thus, this review could serve as useful resource to develop antifibrotic drugs for possible prevention and treatment of uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,b Biotechnology and Microbiology Laboratory, Department of Botany , University of Rajshahi , Rajshahi , Bangladesh
| | - Most Mauluda Akhtar
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,c Department of Clinical and Molecular Sciences , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - James H Segars
- d Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences, Department of Gynecology and Obstetrics , Johns Hopkins School of Medicine , Baltimore , Maryland , USA
| | - Mario Castellucci
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - Pasquapina Ciarmela
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,e Department of Information Engineering , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
29
|
Effect of Emodin on Preventing Postoperative Intra-Abdominal Adhesion Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1740317. [PMID: 28831292 PMCID: PMC5558648 DOI: 10.1155/2017/1740317] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Postoperative intra-abdominal adhesions are a major complication after abdominal surgery. Although various methods have been used to prevent and treat adhesions, the effects have not been satisfactory. Emodin, a naturally occurring anthraquinone derivative and an active ingredient in traditional Chinese herbs, exhibits a variety of pharmacological effects. In our study, we demonstrated the effect of emodin treatment on preventing postoperative adhesion formation. MATERIALS AND METHODS A total of 48 rats were divided into six groups. Abdominal adhesions were created by abrasion of the cecum and its opposite abdominal wall. In the experimental groups, the rats were administered daily oral doses of emodin. On the seventh day after operation, the rats were euthanized, and blood and pathological specimens were collected. Abdominal adhesion formation was evaluated by necropsy, pathology, immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay analyses. RESULTS Abdominal adhesions were markedly reduced by emodin treatment. Compared with the control group, collagen deposition was reduced and the peritoneal mesothelial completeness rate was higher in the emodin-treated groups. Emodin had anti-inflammatory effects, reduced oxidative stress, and promoted the movement of the intestinal tract (P < 0.05). CONCLUSION Emodin significantly reduced intra-abdominal adhesion formation in a rat model.
Collapse
|
30
|
Li JY, Cao HY, Sun L, Sun RF, Wu C, Bian YQ, Dong S, Liu P, Sun MY. Therapeutic mechanism of Yīn-Chén-Hāo decoction in hepatic diseases. World J Gastroenterol 2017; 23:1125-1138. [PMID: 28275293 PMCID: PMC5323438 DOI: 10.3748/wjg.v23.i7.1125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Yīn-Chén-Hāo decoction (YCHD) is a traditional Chinese medicine formula composed of capillaris (Artemisia capillaris), gardenia (Gardenia jasminoides), and rhubarb (Rheum rhabarbarum) that is used for the treatment of damp-heat jaundice. In modern clinics, YCHD is mostly used for hepatic diseases. This review summarizes the biological activities of YCHD and its medical applications. The main active compounds of YCHD are chlorogenic acid, rhein, geniposide, emodin, and scoparone. The pharmacological actions of YCHD include inhibition of hepatic steatosis, apoptosis, necrosis, anti-inflammation, and immune regulation. YCHD could be developed as a new therapeutic strategy for the treatment of hepatic diseases.
Collapse
|
31
|
Li N, Wang JB, Zhao YL, Zhang L, Ma XB, Li XF, Song J, Yang X, Xiao XH, Tian J, Kang TG. Liver Protective and Reactive Oxygen Species Scavenging
Effects of Emodin in Lipopolysaccharide/Bacillus Calmette
Guerin-injured Mice by Optical Molecular Imaging. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.175.182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Ni J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother Res 2016; 30:1207-18. [PMID: 27188216 PMCID: PMC7168079 DOI: 10.1002/ptr.5631] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/17/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022]
Abstract
Emodin is a natural anthraquinone derivative that occurs in many widely used Chinese medicinal herbs, such as Rheum palmatum, Polygonum cuspidatum and Polygonum multiflorum. Emodin has been used as a traditional Chinese medicine for over 2000 years and is still present in various herbal preparations. Emerging evidence indicates that emodin possesses a wide spectrum of pharmacological properties, including anticancer, hepatoprotective, antiinflammatory, antioxidant and antimicrobial activities. However, emodin could also lead to hepatotoxicity, kidney toxicity and reproductive toxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that emodin has poor oral bioavailability in rats because of its extensive glucuronidation. This review aims to comprehensively summarize the pharmacology, toxicity and pharmacokinetics of emodin reported to date with an emphasis on its biological properties and mechanisms of action. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Jing Fu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Xingbin Yin
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Sali Cao
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Xuechun Li
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Longfei Lin
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Huyiligeqi
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
- Affiliated Hospital, Inner Mongolia University for NationalitiesTongliao028000PR China
| | - Jian Ni
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| |
Collapse
|
34
|
Mehta M, Branford OA, Rolfe KJ. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring. BURNS & TRAUMA 2016; 4:15. [PMID: 27574685 PMCID: PMC4964041 DOI: 10.1186/s41038-016-0040-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.
Collapse
Affiliation(s)
- M. Mehta
- British College of Osteopathic Medicine (BCOM), Finchley Road, London, NW3 5HR UK
| | - O. A. Branford
- The Royal Marsden Hospital, Fulham Rd, London, SW3 6JJ UK
| | - K. J. Rolfe
- British College of Osteopathic Medicine (BCOM), Finchley Road, London, NW3 5HR UK
| |
Collapse
|
35
|
Singh N, Khullar N, Kakkar V, Kaur IP. Hepatoprotective effects of sesamol loaded solid lipid nanoparticles in carbon tetrachloride induced sub-chronic hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:520-532. [PMID: 25410024 DOI: 10.1002/tox.22064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4 ) induced sub-chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its hepatoprotective bioactivity. S-SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub-chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor-alpha).
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Neeraj Khullar
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
36
|
Gao D, Zeng LN, Zhang P, Ma ZJ, Li RS, Zhao YL, Zhang YM, Guo YM, Niu M, Bai ZF, Xiao XH, Gao WW, Wang JB. Rhubarb Anthraquinones Protect Rats against Mercuric Chloride (HgCl₂)-Induced Acute Renal Failure. Molecules 2016; 21:298. [PMID: 27005597 PMCID: PMC6272827 DOI: 10.3390/molecules21030298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022] Open
Abstract
Mercury (Hg) causes severe nephrotoxicity in subjects with excess exposure. This work attempted to identify whether a natural medicine—rhubarb—has protective effects against mercuric chloride (HgCl2)-induced acute renal failure (ARF), and which of its components contributed most to the treatment. Total rhubarb extract (TR) were separated to the total anthraquinones (TA), the total tannins (TT) and remaining component extract (RC). Each extract was orally pre-administered to rats for five successive days followed by HgCl2 injection to induce kidney injury. Subsequently, renal histopathology and biochemical examinations were performed in vitro to evaluate the protective effects. Pharmacological studies showed that TR and TA, but not TT or RC manifested significant protection activity against HgCl2-induced ARF. There were also significant declines of serum creatine, urea nitrogen values and increases of total protein albumin levels in TR and TA treated groups compared to HgCl2 alone (p < 0.05). At last, the major components in TA extract were further identified as anthraquinones by liquid chromatography coupled mass spectroscopy. This study thus provides observational evidences that rhubarb could ameliorate HgCl2-induced ARF and its anthraquinones in particular are the effective components responsible for this activity in rhubarb extract.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China.
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Ling-Na Zeng
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Pin Zhang
- Integrative Medicine Center, 302 Military Hospital, Beijing 100039, China.
| | - Zhi-Jie Ma
- Beijing Friendship Hospital Attached of Capital Medical University, Beijing 100050, China.
| | - Rui-Sheng Li
- Experimental Animal Center, 302 Military Hospital, Beijing 100039, China.
| | - Yan-Ling Zhao
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Ya-Ming Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Yu-Min Guo
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Zhao-Fang Bai
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| | - Xiao-He Xiao
- Integrative Medicine Center, 302 Military Hospital, Beijing 100039, China.
| | - Wei-Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China.
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China.
| |
Collapse
|
37
|
Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res 2016; 105:108-20. [DOI: 10.1016/j.phrs.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023]
|
38
|
Dong LC, Fan YX, Yu Q, Ma J, Dong X, Li P, Li HJ. Synergistic effects of rhubarb-gardenia herb pair in cholestatic rats at pharmacodynamic and pharmacokinetic levels. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:67-74. [PMID: 26376237 DOI: 10.1016/j.jep.2015.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb pair serves as the basic building block of a traditional Chinese medicine (TCM) formula. The rhubarb-gardenia herb pair (RGHP), composed of rhubarb and gardenia, has meaningful clinical effects to cure cholestasis diseases. This study was designed to confirm the expected synergistic effects of RGHP at pharmacodynamic and pharmacokinetic levels. MATERIALS AND METHODS Thirty male Sprague-Dawley rats were divided into control, model and drug-treated groups. After intragastrically administrated with α-naphthylisothiocyanate (ANIT) to induce cholestasis, rats were treated with rhubarb, gardenia or RGHP. For pharmacodynamic study, biochemical and histopathological tests were performed to assess the hepatoprotective effects. While for pharmacokinetic study, a LC-MS method was developed for determination of five main chemical markers, namely genipin, rhein, aloe emodin, emodin and chrysophanol in rat plasma. RESULTS The biochemical and histopathological tests suggested that RGHP exerted enhanced hepatoprotective effects against the ANIT-induced cholestasis compared with single herbs. The pharmacokinetic study indicated RGHP could significantly elevate systemic exposure level and prolong retention time of five markers in comparison with rhubarb or gardenia alone. CONCLUSIONS The present study demonstrated the synergistic effects of RGHP in ANIT-induced cholestatic rats at pharmacodynamic and pharmacokinetic levels, and has significant enlightenments for the rational use of the related TCM formulas containing RGHP.
Collapse
Affiliation(s)
- Lei-Chi Dong
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ya-Xi Fan
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Qiong Yu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jiang Ma
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin Dong
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
39
|
Xu T, Ni MM, Xing-Li, Li XF, Meng XM, Huang C, Li J. NLRC5 regulates TGF-β1-induced proliferation and activation of hepatic stellate cells during hepatic fibrosis. Int J Biochem Cell Biol 2015; 70:92-104. [PMID: 26592197 DOI: 10.1016/j.biocel.2015.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/18/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
Abstract
Therapeutic management of liver fibrosis remains an unsolved clinical problem. Hepatic accumulation of extracellular matrix, mainly collagen, is mediated by the production of transforming growth factor-β1 (TGF-β1) in hepatic stellate cells (HSCs). NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. Novel evidence shows that NLRC5 is an important negative modulator of inflammatory pathways. Herein, we determined the regulation of NLRC5 in liver fibrogenesis and its underlying mechanisms. We have shown that NLRC5 was upregulated in human liver fibrotic tissues. Overexpression of NLRC5 resulted in an upregulation of collagen 1 and α-smooth muscle actin expression in HSC LX-2 cells, which was inhibited by NLRC5 knockdown with its siRNA. Furthermore, NLRC5 deficiency significantly suppressed TGF-β1-induced proliferation but increased apoptosis (i.e., increased caspases-3, DR4 and DR5) in LX-2 cells. In addition, knockdown of NLRC5 promoted the activation of NF-κB signaling pathways but abrogated phosphorylation of Smad2 and Smad3 proteins in response to TGF-β1. These results indicate that NLRC5 is a potent pro-fibrogenic molecule for HSC activation through TGF-β1/Smad and NF-κB signaling pathways. NLRC5 inhibition would be a promising therapeutic avenue for treating hepatic fibrosis.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Ming-ming Ni
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xing-Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiao-feng Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiao-ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
40
|
Tu C, Gao D, Li XF, Li CY, Li RS, Zhao YL, Li N, Jia GLC, Pang JY, Cui HR, Ma ZJ, Xiao XH, Wang JB. Inflammatory stress potentiates emodin-induced liver injury in rats. Front Pharmacol 2015; 6:233. [PMID: 26557087 PMCID: PMC4615941 DOI: 10.3389/fphar.2015.00233] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023] Open
Abstract
Herbal medicines containing emodin, widely used for the treatment of hepatitis in clinic, have been reported with hepatotoxicity in individuals. A modest inflammatory stress potentiating liver injury has been linked to the idiosyncratic drug-induced liver injury (IDILI). In this study, we investigated the hypothesis that lipopolysaccharide (LPS) interacts with emodin could synergize to cause liver injury in rats. Emodin (ranging from 20, 40, to 80 mg/kg), which is in the range of liver protection, was administered to rats, before LPS (2.8 mg/kg) or saline vehicle treatment. The biochemical tests showed that non-toxic dosage of LPS coupled with emodin caused significant increases of plasma ALT and AST activities as compared to emodin alone treated groups (P < 0.05). In addition, with LPS or emodin alone could not induce any changes in ALT and AST activity, as compared with the control group (0.5% CMC-Na treatment). Meanwhile, the plasma proinflammatory cytokines, TNF-α, IL-1β, and IL-6 increased significantly in the emodin/LPS groups compared to either emodin groups or the LPS (P < 0.05). Histological analysis showed that liver damage was only found in emodin/LPS cotreatmented rat livers samples. These results indicate that non-toxic dosage of LPS potentiates the hepatotoxicity of emodin. This discovery raises the possibility that emodin and herbal medicines containing it may induce liver injury in the inflammatory stress even in their therapeutic dosages.
Collapse
Affiliation(s)
- Can Tu
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| | - Dan Gao
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China ; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences , Beijing, China
| | - Xiao-Fei Li
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China ; School of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan, China
| | - Chun-Yu Li
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China ; School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu, China
| | - Rui-Sheng Li
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| | - Yan-Ling Zhao
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| | - Na Li
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| | - Ge-Liu-Chang Jia
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China ; Department of Traditional Chinese Medicine, Beijing Friendship Hospital of Capital Medical University , Beijing, China
| | - Jing-Yao Pang
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China ; Department of Traditional Chinese Medicine, Beijing Friendship Hospital of Capital Medical University , Beijing, China
| | - He-Rong Cui
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| | - Zhi-Jie Ma
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital of Capital Medical University , Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital , Beijing, China
| |
Collapse
|
41
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
42
|
Lin Z, Zheng LC, Zhang HJ, Tsang SW, Bian ZX. Anti-fibrotic effects of phenolic compounds on pancreatic stellate cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:259. [PMID: 26223780 PMCID: PMC4520255 DOI: 10.1186/s12906-015-0789-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pancreatic fibrosis is a prominent histopathological characteristic of chronic pancreatitis and plausibly a dynamic process of transition to the development of pancreatic ductal adenocarcinoma. Conversely, the activation of pancreatic stellate cells (PSCs) has been recently suggested as the key initiating step in pancreatic fibrosis. As natural polyphenols had been largely applied in complementary therapies in the past decade, in this study, we aimed to investigate which groups of phenolic compounds exert promising inhibitory actions on fibrogenesis as there are few effective strategies for the treatment of pancreatic fibrosis to date. METHODS We examined the anti-fibrotic effects of a variety of herbal constituents using a cellular platform, the LTC-14 cells, which retained essential characteristics and morphologies of primary PSCs, by means of various biochemical assays including cell viability test, real-time polymerase chain reaction and Western blotting analysis. RESULTS Among a number of commonly used herbal constituents, we found that the application of rhein, emodin, curcumin and resveratrol significantly suppressed the mRNA and protein levels of several fibrotic mediators namely alpha-smooth muscle actin, type I collagen and fibronectin in LTC-14 cells against transforming growth factor-beta stimulation. Though the values of cytotoxicity varied, the mechanism of the anti-fibrotic action of these four phenolic compounds was principally associated with a decrease in the activation of the nuclear factor-kappaB signaling pathway. CONCLUSIONS Our findings suggest that the mentioned phenolic compounds may serve as anti-fibrotic agents in PSC-relating disorders and pathologies, particularly pancreatic fibrosis.
Collapse
Affiliation(s)
- Zesi Lin
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu-Cong Zheng
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China
| | - Siu Wai Tsang
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China.
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 3/F, SCM Building, 7 Baptist University Road, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
43
|
Singh N, Khullar N, Kakkar V, Kaur IP. Attenuation of carbon tetrachloride-induced hepatic injury with curcumin-loaded solid lipid nanoparticles. BioDrugs 2015; 28:297-312. [PMID: 24567262 DOI: 10.1007/s40259-014-0086-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Curcumin, an established pleiotropic agent, has potential for hepatoprotection owing to its powerful antioxidant, anti-inflammatory, and antifibrogenic properties. However, its poor bioavailability limits its use in therapeutics. In this study, we aimed to package curcumin into solid lipid nanoparticles (C-SLNs) to improve its bioavailability and compare the efficacy of C-SLNs with that of free curcumin and silymarin, a well-established hepatoprotectant in clinical use, against carbon tetrachloride (CCl4)-induced hepatic injury in rats, post-induction. A self-recovery group to which no treatment was given was also employed for quantifying self-healing of hepatic tissue, if any. MATERIAL AND METHODS C-SLNs (particle size 147.6 nm), prepared using a microemulsification technique, were administered to rats post-treatment with CCl4 (1 ml/kg body weight [BW] twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). The extent of liver damage and repair in terms of histopathology and levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), oxidative stress markers (malondialdehyde, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker, tumor necrosis factor (TNF)-α, were determined in both the CCl4 group and the treatment groups. RESULTS C-SLNs (12.5 mg/kg) significantly (p < 0.001-0.005) attenuated histopathological changes and oxidative stress, and also decreased induction of ALT, AST, and TNF-α in comparison with free curcumin (100 mg/kg), silymarin (25 mg/kg), and self-recovery groups. CONCLUSION Curcumin could be used as a therapeutic agent for hepatic disorders, provided it is loaded into a suitable delivery system.
Collapse
Affiliation(s)
- Neha Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
44
|
Singh N, Khullar N, Kakkar V, Kaur IP. Sesamol loaded solid lipid nanoparticles: a promising intervention for control of carbon tetrachloride induced hepatotoxicity. Altern Ther Health Med 2015; 15:142. [PMID: 25935744 PMCID: PMC4456697 DOI: 10.1186/s12906-015-0655-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/17/2015] [Indexed: 02/08/2023]
Abstract
Background Sesamol, a component of sesame seed oil, exhibited significant antioxidant activity in a battery of in vitro and ex vivo tests including lipid peroxidation induced in rat liver homogenates. Latter established its potential for hepatoprotection. However, limited oral bioavailability, fast elimination (as conjugates) and tendency towards gastric irritation/toxicity (especially forestomach of rodents) may limit its usefulness. Presently, we packaged sesamol into solid lipid nanoparticles (S-SLNs) to enhance its biopharmaceutical performance and compared the efficacy with that of free sesamol and silymarin, a well established hepatoprotectant, against carbon tetrachloride induced hepatic injury in rats, post induction. A self recovery group in which no treatment was given was used to observe the self-healing capacity of liver. Methods S-SLNs prepared by microemulsification method were administered to rats post-treatment with CCl4 (1 ml/kg body weight (BW) twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). Liver damage and recovery on treatment was assessed in terms of histopathology, serum injury markers (alanine aminotransferase, aspartate aminotransferase), oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker (tumor necrosis factor alpha). Result S-SLNs (120.30 nm) at a dose of 8 mg/kg BW showed significantly better hepatoprotection than corresponding dose of free sesamol (FS; p < 0.001). Effects achieved with S-SLNs were comparable with silymarin (SILY), administered at a dose of 25 mg/kg BW. Self recovery group confirmed absence of regenerative capacity of hepatic tissue, post injury. Conclusion Use of lipidic nanocarrier system for sesamol improved its efficiency to control hepatic injury. Enhanced effect is probably due to: a) improved oral bioavailability, b) controlled and prolonged effect of entrapped sesamol and iii) reduction in irritation and toxicity, if any, upon oral administration. S-SLNs may be considered as a therapeutic option for hepatic ailments as effectiveness post induction of liver injury, is demonstrated presently.
Collapse
|
45
|
Li Y, Wang W, Jia X, Zhai S, Wang X, Wang Y, Dang S. A Targeted Multiple Antigenic Peptide Vaccine Augments the Immune Response to Self TGF-β1 and Suppresses Ongoing Hepatic Fibrosis. Arch Immunol Ther Exp (Warsz) 2015; 63:305-15. [PMID: 25740471 DOI: 10.1007/s00005-015-0333-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
Abstract
Transforming growth factor (TGF)-β1 expression is induced upon liver injury, and plays a critical role in hepatic fibrosis. Antibodies against TGF-β1 represent a novel approach in the treatment of hepatic fibrosis. However, TGF-β1 is not a suitable antigen due to immunological tolerance. In the current study, we synthesized a multiple antigenic peptide (MAP) vaccine against the dominant B-cell epitope of TGF-β1. The immunogenicity and potential therapeutic effects of this vaccine were examined using a rat model of hepatic fibrosis. Dominant B-cell epitopes of TGF-β1 were identified using bioinformatic program. An MAP vaccine corresponding to the 90-98 amino acid domain of TGF-β1 and containing four dendritic arms was synthesized using a 9-fluorenylmethoxycarbonyl solid phase method. Hepatic fibrosis which was induced in male Sprague-Dawley rats received a high-fat diet and ethanol (1.8 g/kg). Starting from the third week, rats were exposed to 40 % carbon tetrachloride (CCl4; 150 μl/100 g body weight twice weekly, initially 200 μl/100 g) treatment for a duration of 8 weeks. Rats received the MAP vaccine (100 μg) or Freund's adjuvant at weeks 1, 3, 5. A group of rats receiving the fibrosis-inducing regimen alone and a group of healthy rats (receiving an olive oil vehicle alone) were included as controls. At the conclusion of the experiment, serum titre of TGF-β1 antibody was measured using ELISA and a standard liver functional test panel was examined. The extent of hepatic fibrosis was determined by measuring hydroxyproline content in the liver as well as hematoxylin-eosin (HE) and van Gieson (VG) staining. The expression of TGF-β1 and alpha-smooth muscle actin (α-SMA) was examined using immunohistochemistry, and presented as positive staining cells. The MAP purity was >90 % upon reverse phase high-performance liquid chromatography, with apparent molecular weight at 4.77 kDa. Serum TGF-β1 antibody titre was 1:256. The fibrosis-inducing treatment produced significant liver damage, as reflected by increases in liver functional test, HE and VG staining. The MAP vaccine attenuated such damage, as reflected by decreased alanine aminotransferase, aspartate aminotransferase, total bilirubin, and hepatic hydroxyproline (116.78 ± 23.76 vs. 282.71 ± 136.94 IU/L; 319.78 ± 82.48 vs. 495.29 ± 137.13 IU/L; 2.02 ± 0.27 vs. 4.01 ± 0.52 μmol/L; 263.67 ± 41.18 vs. 439.14 ± 43.29 μg/g vs. in model rats, respectively; p < 0.01), as well as fibrosis extent by HE and VG staining. The MAP vaccine reduced TGF-β1 and α-SMA expression in rats (0.325 ± 0.059 vs. 0.507 ± 0.044 IOD/area; 0.318 ± 0.058 vs. 0.489 ± 0.029 IOD/area vs. model rats, respectively; p < 0.05). The TGF-β1 MAP vaccine could generate sufficient antibody that suppresses the development of hepatic fibrosis.
Collapse
Affiliation(s)
- Yaping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhu D, He X, Duan Y, Chen J, Wang J, Sun X, Qian H, Feng J, Sun W, Xu F, Zhang L. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum. Parasit Vectors 2014; 7:148. [PMID: 24685242 PMCID: PMC3974749 DOI: 10.1186/1756-3305-7-148] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Background In the process of hepatic fibrosis, hepatic stellate cells (HSCs) can be activated by many inflammatory cytokines. The transforming growth factor-β1 (TGF-β1) is one of the main profibrogenic mediators. Recently, some studies have also shown that microRNAs (miRNAs) play essential roles in the progress of liver fibrosis by being involved in the differentiation, fat metabolism and ECM production of HSCs. Methods The expression of miR-454 in LX-2 cells treated with TGF-β1 and in the fibrotic livers with Schistosoma japonicum infection was detected by qRT-PCR. The role of miR-454 on LX-2 cells was then analyzed by Western blot, flow cytometry and luciferase assay. Results The results showed that the expression of miR-454 was down-regulated in the TGF-β1-treated LX-2 cells and miR-454 could inhibit the activation of HSCs by directly targeting Smad4. However, we found that miR-454 had no effect on cell cycle and cell proliferation in TGF-β1-treated LX-2. Besides these, miR-454 was found to be regulated in the process of Schistosoma japonicum infection. Conclusions All the results suggested that miR-454 could provide a novel therapeutic approach for treating liver fibrosis, especially the liver fibrosis induced by Schistosoma japonicum.
Collapse
Affiliation(s)
| | | | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang F, Yuan PW, Hao YQ, Lu ZM. Emodin enhances osteogenesis and inhibits adipogenesis. Altern Ther Health Med 2014; 14:74. [PMID: 24565373 PMCID: PMC3974048 DOI: 10.1186/1472-6882-14-74] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/11/2014] [Indexed: 11/23/2022]
Abstract
Background It has been suggested that the formation of osteoblasts in bone marrow is closely associated with adipogenesis, and the balance between osteogenesis and adipogenesis differentiation of MSCs (mesenchymal stem cells) is disrupted in osteoporosis. In order to improve the treatment of osteoporosis, available agents with roles of regulating the balance is highly desirable. Emodin is a natural anthraquinone derivative extracted from Chinese herbs, which have been used to treat bone diseases for thousands of years. However, the underlying molecular mechanisms of emodin in modulating osteogenesis and adipogenesis remain poorly understood. Methods The molecular mechanisms of emodin on the processes of osteogenesis and adipogenesis in ovariectomized mouse and BMSCs (bone marrow mesenchymal stem cells) have been studied. We have analyzed the effects of emodin in vivo and in vitro. Female ICR mice were assigned to three groups: sham group, ovariectomy group, emodin group. Efficacy was evaluated by H&E, immunohistochemical assay and Micro-CT. In vitro, we analyze the effect of emodin—at concentrations between 0.1 μM and 10 μM-on the processes of inducing osteogenesis and inhibiting adipogenesis in BMSCs by ALP, Oil red O staining, real time RT-PCR and western blot. Results As our experiment shows that emodin could increase the number of osteoblast, BMD (bone mineral density), BV/TV (trabecular bone volume fraction), Tb.N (trabecular number) and Conn.D (connectivity density) of OVX (ovariectomized) mice and decrease the bone marrow fat tissue and adipocytes. The genes and proteins expression of osteogenesis markers, such as Runx2, osterix, collagen type I, osteocalcin, or ALP were up-regulated. While, the genes and proteins involved in adipogenesis, PPARγ, C/EBPα and ap2 were down-regulated. Conclusion It proves that emodin inhibits adipocyte differentiation and enhances osteoblast differentiation from BMSCs.
Collapse
|
48
|
Chen YH, Lan T, Li J, Qiu CH, Wu T, Gou HJ, Lu MQ. Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile duct-ligated rats and human hepatic stellate cells. World J Gastroenterol 2012; 18:7158-65. [PMID: 23326120 PMCID: PMC3544017 DOI: 10.3748/wjg.v18.i48.7158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-hepatofibrotic effects of Gardenia jasminoides in liver fibrosis.
METHODS: Male Sprague-Dawley rats underwent common bile duct ligation (BDL) for 14 d and were treated with Gardenia jasminoides by gavage. The effects of Gardenia jasminoides on liver fibrosis and the detailed molecular mechanisms were also assessed in human hepatic stellate cells (LX-2) in vitro.
RESULTS: Treatment with Gardenia jasminoides decreased serum alanine aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 146.6 ± 15 U/L vs 77 ± 6.5 U/L, P = 0.0007) and aspartate aminotransferase (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 188 ± 35.2 U/L vs 128 ± 19 U/L, P = 0.005) as well as hydroxyproline (BDL vs BDL + 100 mg/kg Gardenia jasminoides, 438 ± 40.2 μg/g vs 228 ± 10.3 μg/g liver tissue, P = 0.004) after BDL. Furthermore, Gardenia jasminoides significantly reduced liver mRNA and/or protein expression of transforming growth factor β1 (TGF-β1), collagen type I (Col I) and α-smooth muscle actin (α-SMA). Gardenia jasminoides significantly suppressed the upregulation of TGF-β1, Col I and α-SMA in LX-2 exposed to recombinant TGF-β1. Moreover, Gardenia jasminoides inhibited TGF-β1-induced Smad2 phosphorylation in LX-2 cells.
CONCLUSION: Gardenia jasminoides exerts antifibrotic effects in the liver fibrosis and may represent a novel antifibrotic agent.
Collapse
|
49
|
Tian Y, Guo XL, Wang LQ, Li Y. Emodin reduces intestinal fibrosis in rats with TNBS-induced colitis. Shijie Huaren Xiaohua Zazhi 2012; 20:2703-2708. [DOI: 10.11569/wcjd.v20.i28.2703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-fibrotic effects of emodin in rats with experimental colitis, and to explore the possible mechanisms.
METHODS: Rats with colitis induced with trinitrobenzene sulphonic acid (TNBS) were used as the model of intestinal fibrosis. Thirty-four rats were randomly divided into normal group, model group and emodin group. Colitis was induced with TNBS in rats of the model group and emodin group. Rats in the emodin group were gavaged with 40 mg/kg of emodin daily, and the other groups were gavaged with an equal volume of 0.9% NaCl solution. Body weight loss and changes in stool and activities were observed, and DAI was calculated. At the end of the experiment, colon tissue samples were collected, and the general and histological scores were given. The injury and fibrosis of the colon were detected by HE staining and Masson collagen staining, respectively. Expression of transforming growth factor (TGF)-β1, collagenⅠ, collagen Ⅲ, Smad3 and α-SMA was determined by FQ-PCR.
RESULTS: Compared to the model group, the general condition, general and histological scores, and fibrosis were improved significantly in the emodin group. Expression of TGF-β1, collagenⅠ, collagen Ⅲ, Smad3 and α-SMA in colonic mucosa in the emodin group were significantly lower than that in the model group (1.27 ± 0.78 vs 4.56 ± 3.14; 0.60 ± 0.59 vs 2.15 ± 1.22; 0.92 ± 1.38 vs 3.34 ± 1.47; 3.11 ± 2.81 vs 8.77 ± 6.40; 0.87 ± 0.62 vs 2.40 ± 1.15, all P < 0.05), while expression of E-cad was higher in the emodin group (1.01 ± 0.34 vs 0.30 ± 0.23, P < 0.05).
CONCLUSION: Emodin reduces intestinal fibrosis in rats with TNBS-induced colitis possibly by down-regulation of TGF-β1/Smad3 signaling and inhibition of epithelial-mesenchymal transition.
Collapse
|
50
|
Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats. J Transl Med 2012; 10:133. [PMID: 22735033 PMCID: PMC3439354 DOI: 10.1186/1479-5876-10-133] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/19/2012] [Indexed: 02/08/2023] Open
Abstract
Introduction Adipose derived mesenchymal stem cells (ADMSCs), carrying the similar characteristics to bone marrow mesenchymal stem cells, only much more abundant and easier to obtain, may be a promising treatment for liver fibrosis. We aim to investigate the therapeutic potential of ADMSCs transplantation in liver fibrosis caused by carbon tetrachloride (CCl4) in rats as well as its underlying mechanism, and to further explore the appropriate infusion pathway. Methods ADMSCs were isolated, cultured and identified. Placebo and ADMSCs were transplanted via portal vein and tail vein respectively into carbon tetrachloride (CCl4)-induced liver fibrosis rats. Computed tomography (CT) perfusion scan and microvessel counts were performed to measure the alteration of liver microcirculation after therapy. Liver function tests and histological findings were estimated. Results CT perfusion scan shown significant decrease of hepatic arterial perfusion index, significant increased portal vein perfusion, total liver perfusion in rats receiving ADMSCs from portal vein, and Factor VIII (FVIII) immunohistochemical staining shown significant decrease of microvessels in rats receiving ADMSCs from portal vein, indicating microcirculation improvement in portal vein group. Vascular endothelial growth Factor (VEGF) was significantly up-regulated in fibrosis models, and decreased after ADMSCs intraportal transplantation. A significant improvement of liver functional test and histological findings in portal vein group were observed. No significance was found in rats receiving ADMSCs from tail vein. Conclusions ADMSCs have a therapeutic effect against CCl4-mediated liver fibrosis. ADMSCs may benefit the fibrotic liver through alteration of microcirculation, evidenced by CT perfusion scan and down-regulation of VEGF. Intraportal transplantation is a better pathway than tail vein transplantation.
Collapse
|