1
|
Cao L, Duan D, Peng J, Li R, Cao Q, Li X, Guo Y, Li J, Liu K, Li Y, Zhang W, Liu S, Zhang X, Zhao Y. Oral enzyme-responsive nanoprobes for targeted theranostics of inflammatory bowel disease. J Nanobiotechnology 2024; 22:484. [PMID: 39138477 PMCID: PMC11321179 DOI: 10.1186/s12951-024-02749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a progressive and debilitating inflammatory disease of the gastrointestinal tract (GIT). Despite recent advances, precise treatment and noninvasive monitoring remain challenging. METHODS Herein, we developed orally-administered, colitis-targeting and hyaluronic acid (HA)-modified, core-shell curcumin (Cur)- and cerium oxide (CeO2)-loaded nanoprobes (Cur@PC-HA/CeO2 NPs) for computed tomography (CT) imaging-guided treatment and monitoring of IBD in living mice. RESULTS Following oral administration, high-molecular-weight HA maintains integrity with little absorption in the upper GIT, and then actively accumulates at local colitis sites owing to its colitis-targeting ability, leading to specific CT enhancement lasting for 24 h. The retained NPs are further degraded by hyaluronidase in the colon to release Cur and CeO2, thereby exerting anti-inflammatory and antioxidant effects. Combined with the ability of NPs to regulate intestinal flora, the oral NPs result in substantial relief in symptoms. Following multiple treatments, the gradually decreasing range of the colon with high CT attenuation correlates with the change in the clinical biomarkers, indicating the feasibility of treatment response and remission. CONCLUSION This study provides a proof-of-concept for the design of a novel theranostic integration strategy for concomitant IBD treatment and the real-time monitoring of treatment responses.
Collapse
Affiliation(s)
- Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruinan Li
- Image Center, Cangzhou Hospital of Integrated and Western Medicine, Cangzhou, 061001, China
| | - Qi Cao
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Xinwen Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kangkang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Sufina Nazar S, Ayyappan JP. Mechanistic evaluation of myristicin on apoptosis and cell cycle regulation in breast cancer cells. J Biochem Mol Toxicol 2024; 38:e23740. [PMID: 38779996 DOI: 10.1002/jbt.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The current study was focused on the anticancer activity of myristicin against MCF-7 human breast cancer (BC) cells. BC is the most common and leading malignant disease in women worldwide. Now-a-days, various conventional therapies are used against BC and still represent a chief challenge because those treatments fail to differentiate normal cells from malignant cells, and they have severe side effects also. So, there is a need develop new therapies to decrease BC-related morbidity and mortality. Myristicin, a 1‑allyl‑5‑methoxy‑3, 4‑methylenedioxybenzene, is a main active aromatic compound present in various spices, such as nutmeg, mace, carrot, cinnamon, parsely and some essential oils. Myristicin has a wide range of effects, including antitumor, antioxidative and antimicrobial activity. Nevertheless, the effects of myristicin on human BC cells remain largely unrevealed. The cytotoxicity effect of myristicin on MCF‑7 cells was increased dose dependently detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Lactate Dehydrogenase assays. Myristicin was found to be significantly inducing the cell apoptosis, as compared to control, using acridine orange/ethidium bromide, Hoechst stain and annexin V. Moreover, it activates cell antimigration, intracellular reactive oxygen species generation and cell cycle arrest in the G1/S phase. In addition, myristicin induces the expression of apoptosis and cell cycle genes (Caspases8, Bax, Bid, Bcl2, PARP, p53, and Cdk1) was demonstrated by quantitative polymerase chain reaction and apoptosis proteins (c-PARP, Caspase 9, Cytochrome C, PDI) expression was also analyzed with western blot. Overall, we illustrated that myristicin could regulate apoptosis signaling pathways in MCF-7 BC cells.
Collapse
Affiliation(s)
- Sudhina Sufina Nazar
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biochemistry, Centre for Advanced Cancer Research, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Biochemistry, Centre for Advanced Cancer Research, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023; 13:metabo13010096. [PMID: 36677021 PMCID: PMC9862976 DOI: 10.3390/metabo13010096] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing idiopathic inflammatory conditions affecting the gastrointestinal tract. They are mainly represented by two forms, ulcerative colitis (UC) and Crohn's disease (CD). IBD can be associated with the activation of nuclear factors, such as nuclear factor-kB (NF-kB), leading to increased transcription of pro-inflammatory mediators that result in diarrhea, abdominal pain, bleeding, and many extra-intestinal manifestations. Phytochemicals can interfere with many inflammation targets, including NF-kB pathways. Thus, this review aimed to investigate the effects of different phytochemicals in the NF-kB pathways in vitro and in vivo models of IBD. Fifty-six phytochemicals were included in this study, such as curcumin, resveratrol, kaempferol, sesamol, pinocembrin, astragalin, oxyberberine, berberine hydrochloride, botulin, taxifolin, naringin, thymol, isobavachalcone, lancemaside A, aesculin, tetrandrine, Ginsenoside Rk3, mangiferin, diosgenin, theanine, tryptanthrin, lycopene, gyngerol, alantolactone, mangostin, ophiopogonin D, fisetin, sinomenine, piperine, oxymatrine, euphol, artesunate, galangin, and nobiletin. The main observed effects related to NF-kB pathways were reductions in tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2), and augmented occludin, claudin-1, zonula occludens-1, and IL-10 expression levels. Moreover, phytochemicals can improve weight loss, stool consistency, and rectal bleeding in IBD. Therefore, phytochemicals can constitute a powerful treatment option for IBD in humans.
Collapse
|
4
|
Karthikeyan A, Young KN, Moniruzzaman M, Beyene AM, Do K, Kalaiselvi S, Min T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021; 13:484. [PMID: 33918207 PMCID: PMC8065662 DOI: 10.3390/pharmaceutics13040484] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disorder of the small intestine and colon. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), and it is a major factor for the development of colon cancer, referred to as colitis-associated cancer (CAC). The current treatment of IBD mainly includes the use of synthetic drugs and monoclonal antibodies. However, these drugs have side effects over long-term use, and the high relapse rate restricts their application. In the recent past, many studies had witnessed a surge in applying plant-derived products to manage various diseases, including IBD. Curcumin is a bioactive component derived from a rhizome of turmeric (Curcuma longa). Numerous in vitro and in vivo studies show that curcumin may interact with many cellular targets (NF-κB, JAKs/STATs, MAPKs, TNF-γ, IL-6, PPARγ, and TRPV1) and effectively reduce the progression of IBD with promising results. Thus, curcumin is a potential therapeutic agent for patients with IBD once it significantly decreases clinical relapse in patients with quiescent IBD. This review aims to summarize recent advances and provide a comprehensive picture of curcumin's effectiveness in IBD and offer our view on future research on curcumin in IBD treatment.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Kim Na Young
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Senthil Kalaiselvi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| |
Collapse
|
5
|
Fallahi F, Borran S, Ashrafizadeh M, Zarrabi A, Pourhanifeh MH, Khaksary Mahabady M, Sahebkar A, Mirzaei H. Curcumin and inflammatory bowel diseases: From in vitro studies to clinical trials. Mol Immunol 2020; 130:20-30. [PMID: 33348246 DOI: 10.1016/j.molimm.2020.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBDs) may result from mutations in genes encoding for innate immunity, which can lead to exacerbated inflammatory response. Although some mono-targeted treatments have developed in recent years, IBDs are caused through several pathway perturbations. Therefore, targeting all these pathways is difficult to be achieved by a single agent. Moreover, those mono-targeted therapies are usually expensive and may cause side-effects. These limitations highlight the significance of an available, inexpensive and multi-targeted dietary agents or natural compounds for the treatment and prevention of IBDs. Curcumin is a multifunctional phenolic compound that is known for its anti-inflammatory and immunomodulatory properties. Over the past decades, mounting experimental investigations have revealed the therapeutic potential of curcumin against a broad spectrum of inflammatory diseases including IBDs. Furthermore, it has been reported that curcumin directly interacts with many signaling mediators implicated in the pathogenesis of IBDs. These preclinical findings have created a solid basis for the assessment of the efficacy of curcumin in clinical practice. In clinical trials, different dosages e.g., 550 mg /three times daily-1month, and 1 g /twice times daily-6month of curcumin were used for patients with IBDs. Taken together, these findings indicated that curcumin could be employed as a therapeutic candidate in the treatment of IBDs. Moreover, it seems that overcome to current limitations of curcumin i.e., poor oral bioavailability, and poor oral absorption with using nanotechnology and others, could improve the efficacy of curcumin both in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Joshi M, Reddy ND, Kumar N, Sumalatha S, Chamallamudi MR. Cinnamyl Sulfonamide Hydroxamate Derivatives Inhibited LPS-Stimulated NF-kB Expression in RAW 264.7 Cells In Vitro and Mitigated Experimental Colitis in Wistar Rats In Vivo. Curr Pharm Des 2020; 26:4934-4943. [PMID: 32586247 DOI: 10.2174/1381612826666200625101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibition has been found to be effective in the treatment of inflammatory bowel disease. Previous studies have reported that Cinnamyl sulfonamide hydroxamate derivatives possess non-selective HDAC inhibition. OBJECTIVE The present study was designed to screen three selected Cinnamyl sulfonamide hydroxamate derivatives, NMJ-1, NMJ-2, and NMJ3, for in vitro anti-inflammatory response by assessing the expression of pNF-κB in lipopolysaccharide (LPS)-induced inflammatory changes on RAW 264.7 cells, and in vivo anti-inflammatory response in acetic acid (AA) and 2.4-dinitrochlorobenzene (DNCB)-induced colitis models in Wistar rats. METHOD AA-induced colitis was produced in Wistar rats by intra-colonic administration of 1 ml AA. DNCBinduced colitis was produced by spraying 250 μL DNCB in acetone (20g/L) on the nape of the rats for 14 days, followed by the intracolonic administration on day 15. Drugs were administered for three days after the induction of colitis. RESULTS In vitro anti-inflammatory effect was observed by NMJ1 and NMJ2 through a significant decrease in pNF-κB overexpression-induced by LPS. Similar effect was observed in anti-colitis response by NMJ2 in both models by reversing the colitis-induced changes in length, weight, anti-oxidant profile and histopathology of the colon. CONCLUSION NMJ2 was found to be most effective among the tested compounds as an anti-inflammatory agent in both in vitro and in vivo inflammatory studies.
Collapse
Affiliation(s)
- Mit Joshi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Neetinkumar D Reddy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Suhani Sumalatha
- Department of Anatomy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
7
|
V S A, S K K. Phloretin Ameliorates Acetic Acid Induced Colitis Through Modulation of Immune and Inflammatory Reactions in Rats. Endocr Metab Immune Disord Drug Targets 2020; 21:163-172. [PMID: 32579511 DOI: 10.2174/1871530320666200624120257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Adverse effects associated with current therapy for Ulcerative colitis (UC) over prolonged treatment periods and the high relapse rate limit their use. Incorporating fruits as regular diet has beneficial role in the management of UC. Phloretin, a dihydrochalcone of apple is reported for its anti-oxidant and anti-inflammatory effects. Our study aims to evaluate the effectiveness of phloretin on experimentally induced ulcerative colitis in rats. METHODS In vitro study was performed using Raw 264.7 cells stimulated with LPS (1μg/mL) and in in-vivo study, colitis was induced by intra rectal administration of 4% Acetic acid. Phloretin (50 mg/kg) was given orally for 3 days to Wistar rats after induction for the post-treatment group and 1 day before induction to the pre-treatment group. Macroscopical, biochemical and histopathological evaluations were performed to assess the effectiveness. RESULTS A concentration dependent inhibition of MPO and iNOS activity was obtained in LPS stimulated neutrophil cells. Phloretin exerted ameliorative effect in both pre and post-treatment groups by restoring plasma ALP and LDH level and reduce inflammatory markers like myeloperoxidase, nitric oxide and eosinophil peroxidase level as well as downregulates colon ICAM-1 gene in acetic acid induced ulcerative colitis in rats. Antioxidative potency was confirmed by restoring tissue GSH level. Phloretin prevents mucosal damage and it was confirmed by histopathological analysis. CONCLUSION Collectively, our findings provide evidence that phloretin might be useful as a natural therapeutic agent in the management of UC as well as may pose a promising outcome for future clinical usage.
Collapse
Affiliation(s)
- Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
8
|
Nouri-Vaskeh M, Afshan H, Malek Mahdavi A, Alizadeh L, Fan X, Zarei M. Curcumin ameliorates health-related quality of life in patients with liver cirrhosis: A randomized, double-blind placebo-controlled trial. Complement Ther Med 2020; 49:102351. [PMID: 32147077 DOI: 10.1016/j.ctim.2020.102351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Current study aimed to find the effects of curcumin on quality of life (QoL) in liver cirrhotic patients. DESIGN In this randomized double-masked placebo-controlled trial, 70 cases with liver cirrhosis aged 20-70 years were randomly divided into two groups to receive 1000 mg/day curcumin (n = 35) or placebo (n = 35) for 12 weeks. The health-related QoL (HRQoL) was assessed by CLDQ, LDSI 2.0, and SF-36. RESULTS Fifty-eight patients (28 in curcumin and 30 in placebo groups) finished the research. Compared with baseline, overall scores as well as most of CLDQ domains (e.g. Fatigue, Emotional Function, Worry, Abdominal Symptoms, and Systemic Symptoms) and the Physical and Mental health (Total) scores and most of SF-36 domains (e.g. Physical Functioning, Bodily Pain, Vitality, Social Functioning, and Mental Health) increased considerably (P < 0.05) after curcumin administration. Furthermore, curcumin reduced most of LDSI 2.0 domains (e.g. Itch, Joint pain, Pain in the right upper abdomen, Sleeping during the day, Decreased appetite, Depression, Fear of complication, Jaundice, Hindrance in Financial Affairs, Change in use of time, Decreased sexual interest, and Decreased sexual activity) significantly (P < 0.05). Significant differences were noticed between two groups in CLDQ domains and overall scores, LDSI 2.0 domains and overall scores, SF-36 Physical and Mental health (total) scores and all its domains scores (P < 0.05), adjusting for baseline values and disease duration. CONCLUSIONS Curcumin improved QoL in liver cirrhotic patients according to CLDQ, LDSI 2.0, and SF-36 domains. Additional studies are warranted to consider curcumin as a safe, accessible, and low-cost complementary therapeutic option in cirrhosis.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Afshan
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Xiude Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061 China; Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, 44195, USA
| | - Mohammad Zarei
- Departrment of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
9
|
Cao F, Liu J, Sha BX, Pan HF. Natural Products: Experimental Efficient Agents for Inflammatory Bowel Disease Therapy. Curr Pharm Des 2020; 25:4893-4913. [DOI: 10.2174/1381612825666191216154224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
:
Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of
intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and
Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental
risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in
the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by
chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis
factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side
effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural
products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory,
anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide-
binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular
endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research
development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and
intrinsic mechanisms of NPs in IBD.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jie Liu
- School of Traditional Chinese Medicine, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, China
| | - Bing-Xian Sha
- Department of Clinical Medicine, Tongji University, 50 Chifeng Road, Shanghai, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
10
|
Xu S, Xu ZX, Yan S, Le J, Chen H, Ming L, Xu SG, Lin T. Curcumin suppresses intestinal microvascular endothelial cells invasion and angiogenesis induced by activated platelets. Exp Ther Med 2019; 18:1099-1106. [PMID: 31316605 PMCID: PMC6601414 DOI: 10.3892/etm.2019.7662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/09/2019] [Indexed: 01/19/2023] Open
Abstract
The present study investigated the effects and mechanism by which curcumin suppresses intestinal microvascular endothelial cells (INMECs) invasion and angiogenesis induced by activated platelets. INMECs were obtained from healthy rats, and divided into five groups: Control, platelets, platelets +2.5 µM curcumin, platelets +5.0 µM curcumin and platelets +10.0 µM curcumin. Curcumin toxicity was determined and vascular endothelial growth factor (VEGF) concentrations of the five groups were measured using ELISA. The branch point numbers were measured using a capillary tube formation experiment, invasion cell numbers were evaluated with the Transwell assay, relative protein expression levels were measured with western blot assay and immunofluorescence staining of the nucleus. The 2.5, 5 and 10 µM curcumin concentrations were found to be suitable for INMECs. Curcumin significantly downregulated VEGF concentration, suppressed vascular lumen formation and inhibited invasion cell numbers in a dose-dependent manner. The α-smooth muscle actin, collagen I, E-cadherin, phosphorylated (p-) phosphoinositide 3-kinase (PI3K), p-protein kinase B (AKT), p-mammalian target of rapamycin (m-TOR) and hypoxia inducible factor subunit alpha (HIF-1α) protein expression levels of the curcumin-treated groups were significantly downregulated in a dose-dependent manner compared with the platelet group. HIF-1α protein expression levels in the nucleus of the curcumin-treated groups were significantly suppressed in a dose-dependent manner compared with the platelet group. In conclusion, curcumin suppressed INMEC invasion and angiogenesis induced by activated platelets via inhibiting the activation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Su Xu
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, P.R. China
| | - Zhao-Xiu Xu
- Department of Colorectal Surgery, Kongjiang Hospital of Yangpu, Shanghai 200433, P.R. China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Jin Le
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, P.R. China
| | - Hao Chen
- Department of Anorectal Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lan Ming
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, P.R. China
| | - Shu-Guang Xu
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, P.R. China
| | - Tao Lin
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, P.R. China
| |
Collapse
|
11
|
Ganji-Arjenaki M, Rafieian-Kopaei M. Phytotherapies in inflammatory bowel disease. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:42. [PMID: 31160909 PMCID: PMC6540767 DOI: 10.4103/jrms.jrms_590_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 07/26/2017] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) has been considered as a group of heterogeneous intestinal diseases that affects multiple organs outside of the gastrointestinal tract and is due to an uncontrolled inflammatory response mediated by the immune system. The IBD etiology has not been clearly defined, and it is considered as a multifactorial disease. Due to side effects of some conventional therapies, the consumption of complementary and alternative medicines, and in particular, the herbal therapy, more than before is increasing. Herbal therapy results for management of IBD by various mechanisms including leukotriene B4 inhibition, antioxidant activity, immune system regulation of nuclear factor-kappa B, as well as antiplatelet activity are favorable, and no unfortunate events have been yet reported. In this article, we aimed to review and report the herbal therapies established for management of human IBD or evaluated by animal IBD models. Their possible mechanisms of actions are also discussed.
Collapse
Affiliation(s)
- Mahboube Ganji-Arjenaki
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
13
|
Rashidian A, Keshavarz-Bahaghighat H, Abdollahi A, Chamanara M, Faghir-Ghanesefat H, Hoseini-Ahmadabadi M, Dehpour AR. Agmatine ameliorates acetic acid-induced colitis in rats: involvement of nitrergic system. Immunopharmacol Immunotoxicol 2019; 41:242-249. [DOI: 10.1080/08923973.2019.1578973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedieh Keshavarz-Bahaghighat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hedyeh Faghir-Ghanesefat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sanidad KZ, Sukamtoh E, Xiao H, McClements DJ, Zhang G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu Rev Food Sci Technol 2019; 10:597-617. [PMID: 30633561 DOI: 10.1146/annurev-food-032818-121738] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substantial human and preclinical studies have shown that curcumin, a dietary compound from turmeric, has a variety of health-promoting effects including but not limited to antioxidant, antimicrobial, anti-inflammatory, and anticancer actions. However, curcumin has poor bioavailability, and high doses of curcumin are usually needed to exert its health-promoting effects in vivo, limiting its applications for disease prevention. Here, we discuss the health-promoting effects of curcumin, factors limiting its bioavailability, and strategies to improve its oral bioavailability.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Elvira Sukamtoh
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; ,
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; ,
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA; , .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
15
|
Ilhan M, Akkol EK, Taştan H, Dereli FTG, Tümen I. Efficacy of Pyrus elaeagnifolia subsp. elaeagnifolia in acetic acid–induced colitis model. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AbstractIn Turkish folk medicine, the fruits of Pyrus elaeagnifolia subsp. elaeagnifolia have been used to treat diarrhea and detoxify poisonous snake bites by enlarging the wound. The aim of the study was to confirm the ethnopharmacological usage of the plant using in vivo and in vitro models. Experimental colitis was performed under anesthesia by intrarectal administration of acetic acid in rats, and the extracts were administered orally. The colonic malondialdehyde (MDA), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and nitrite levels, in addition to the myeloperoxidase (MPO) and caspase-3 activities, were measured to determine the effects of the plant extracts. The methanol (MeOH) extract revealed a significant decrease in MPO and caspase-3 levels. The MeOH extract was found to have the highest total tannin content. It was also found to have significant antioxidant (p ˂ 0.01) and anti-inflammatory activities (p ˂ 0.05) in acetic acid induced colitis rat model . According to our results, the present study exhibited a decrease in MDA, nitrite, IL-6, and TNF-α levels in the colon tissue and blood in the MeOH extract treated group. The findings of this study can help in treating various disorders, such as Clostridium difficile infection, irritable bowel syndrome, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mert Ilhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
- Department of Pharmacognosy, Faculty of Pharmacy, Yüzüncü Yıl University, Tuşba 65080, Van, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Hakkı Taştan
- Department of Biology, Faculty of Science, Gazi University, Etiler 06330, Ankara, Turkey
| | | | - Ibrahim Tümen
- Bandirma Onyedi Eylul University, Faculty of Health Science, 10200, Bandirma, Turkey
| |
Collapse
|
16
|
Di Ciaula A, Portincasa P, Maes N, Albert A. Efficacy of bio-optimized extracts of turmeric and essential fennel oil on the quality of life in patients with irritable bowel syndrome. Ann Gastroenterol 2018; 31:685-691. [PMID: 30386118 PMCID: PMC6191874 DOI: 10.20524/aog.2018.0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of herbal products to treat irritable bowel syndrome (IBS), a disease that frequently affects the quality of life (QoL), is still under evaluation. This open pilot study assessed the efficacy of bio-optimized extracts of turmeric and essential fennel oil (Enterofytol®) in IBS patients. METHODS A total of 211 patients (14% diarrhea-predominant, IBS-D; 24% constipation-predominant, IBS-C; 62% mixed, IBS-M) were enrolled by general practitioners and completed questionnaires measuring symptom severity and QoL before and after Enterofytol®, two capsules b.i.d. for one month, followed by two capsules q.d. for another month. RESULTS IBS severity index and QoL were inversely related. A significant reduction in the severity index and an improvement in QoL were evident following treatment in all IBS subgroups. IBS-D patients showed the worst clinical picture at entry, with the highest IBS severity index and the lowest QoL score, compared with IBS-C and IBS-M subtypes. IBS-D patients, however, also showed the most pronounced response to therapy, considering both scores. The improvement in the IBS severity index was independent of age and sex. CONCLUSIONS Results from this "real-life" study show that the combination of turmeric and essential fennel oil over two months improves both symptoms and QoL in IBS patients, irrespectively of age, sex, initial severity of symptoms and IBS-subtypes, suggesting a potential role for the natural treatment of IBS.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie, ASL-BAT, Italy (Agostino Di Ciaula)
- Correspondence to: Prof. Piero Portincasa, MD, PhD, Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School - Piazza Giulio Cesare 11, 70124 Bari, Italy; e-mail:
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy (Piero Portincasa)
- Correspondence to: Prof. Piero Portincasa, MD, PhD, Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School - Piazza Giulio Cesare 11, 70124 Bari, Italy; e-mail:
| | - Nathalie Maes
- Biostatistics, University Hospital of Liège, Belgium (Nathalie Maes, Adelin Albert)
| | - Adelin Albert
- Biostatistics, University Hospital of Liège, Belgium (Nathalie Maes, Adelin Albert)
- Department of Public Health, University of Liège, Belgium (Adelin Albert)
| |
Collapse
|
17
|
Raj PM, Raj R, Kaul A, Mishra AK, Ram A. Biodistribution and targeting potential assessment of mucoadhesive chitosan nanoparticles designed for ulcerative colitis via scintigraphy. RSC Adv 2018; 8:20809-20821. [PMID: 35542340 PMCID: PMC9080856 DOI: 10.1039/c8ra01898g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
In the present investigation we have prepared and characterized curcumin (CN)-containing chitosan nanoparticles (CS-NPs) coated with Eudragit FS 30D for colon-specific drug delivery for treatment of ulcerative colitis. METHODS CS-NPs were prepared by ionic gelation using tripolyphosphate. To specify pH sensitive delivery, CS-CN-NPs were coated with Eudragit FS 30D by using a solvent evaporation method. Different process parameters were evaluated, and the optimized formulation was characterized by particle size, size distribution, zeta potential and encapsulation efficiency before lyophilization. The lyophilized product was further subjected to Fourier-transform infrared spectroscopy, and particle morphology and in vitro drug release in different media were studied. RESULTS the kinetics of in vitro drug release from the CS-CN-NPs revealed sustained release behaviour of the developed carriers. In vivo biodistribution study by gamma-scintigraphy showed good accumulation of the developed nanocarriers in the colonic region. CONCLUSION sustained and pH stimulated delivery of CN to the colon was successfully attained via coating of CS-NPs with Eudragit FS 30D to circumvent poor absorption and availability of CN.
Collapse
Affiliation(s)
- Pooja Mongia Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya Bilaspur C.G. 495009 India +917752-260027
| | - Rakesh Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya Bilaspur C.G. 495009 India +917752-260027
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) New Delhi 110054 India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) New Delhi 110054 India
| | - Alpana Ram
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya Bilaspur C.G. 495009 India +917752-260027
| |
Collapse
|
18
|
|
19
|
Shapira S, Leshno A, Katz D, Maharshak N, Hevroni G, Jean-David M, Kraus S, Galazan L, Aroch I, Kazanov D, Hallack A, Becker S, Umanski M, Moshkowitz M, Dotan I, Arber N. Of mice and men: a novel dietary supplement for the treatment of ulcerative colitis. Therap Adv Gastroenterol 2017; 11:1756283X17741864. [PMID: 29383023 PMCID: PMC5784533 DOI: 10.1177/1756283x17741864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Curcumin, green tea polyphenols and selenium possess anti-inflammatory and anti-oxidant properties. Individually they have demonstrated some efficacy in animal models and human subjects with inflammatory bowel disease (IBD). To evaluate the efficacy and safety of Coltect [Curcumin (500 mg), green tea (250 mg) and selenium (100 µg)] in vivo and in patients with ulcerative colitis (UC). METHODS Each component was compared to placebo in a DSS mice colitis model. The efficacy was validated in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) rat colitis model. Twenty patients with mild-to-moderate UC received two Coltect tablets twice daily for 8 weeks. Enrollees underwent sigmoidoscopy at study entrance and closure, and physical and laboratory evaluation at baseline, 4 and 8 weeks. RESULTS Coltect showed a synergistic therapeutic effect in the DSS and TNBS models. Disease activity was significantly higher in the placebo versus the treated group (p < 0.05). Selenium was the more active component. The contribution of green tea was minor. In the TNBS model, the Wallace scores for macroscopic lesions were 4.8 ± 1.5 (treatment) and 8.2 ± 0.5 (placebo) (p = 0.01). In humans, Coltect was well tolerated and effective. Fourteen subjects (70%) improved: nine (45%) went into complete remission, four (20%) experienced marked improvement and one (5%) experienced moderate improvement at the end of the trial. Clinical activity index decreased significantly at 4 and 8 weeks (p < 0.001). Two patients had no change in their symptoms, and one withdrew after 4 weeks. Flare-up in four subjects caused three to withdraw from the study after less than 4 weeks. Endoscopic improvement was observed in 11 (69%) patients, and four patients (25%) achieved complete remission. CONCLUSIONS Coltect may serve as a first-line or add-on therapy in patients with mild-to-moderate UC.
Collapse
Affiliation(s)
| | | | | | - Nitsan Maharshak
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Hevroni
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Maayan Jean-David
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah Kraus
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Galazan
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilan Aroch
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dina Kazanov
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Aharon Hallack
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Stewart Becker
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mark Umanski
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Menachem Moshkowitz
- The Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel IBD Center, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Dotan
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel-Aviv Sourasky Medical Center, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
20
|
Guo BJ, Bian ZX, Qiu HC, Wang YT, Wang Y. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease. Ann N Y Acad Sci 2017; 1401:37-48. [DOI: 10.1111/nyas.13414] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Bao-Jian Guo
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa Macao SAR China
| | - Zhao-Xiang Bian
- School of Chinese Medicine and Hong Kong Chinese Medicine Study Centre; Hong Kong Baptist University; Kowloon Tong Hong Kong China
| | - Hong-Cong Qiu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards; Nanning China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa Macao SAR China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences; University of Macau; Taipa Macao SAR China
| |
Collapse
|
21
|
Zhao Q, Liu C, Shen X, Xiao L, Wang H, Liu P, Wang L, Xu H. Cytoprotective effects of myristicin against hypoxia‑induced apoptosis and endoplasmic reticulum stress in rat dorsal root ganglion neurons. Mol Med Rep 2017; 15:2280-2288. [PMID: 28260107 DOI: 10.3892/mmr.2017.6258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of myristicin (Myr; 1‑allyl‑5‑methoxy‑3,4‑methylenedioxybenzene), an active aromatic compound isolated from nutmeg, carrot, basil, cinnamon and parsley, in hypoxia‑induced apoptosis in rat dorsal root ganglion (DRG) neurons. It was observed that Myr significantly enhanced cell viability in hypoxia‑induced DRG neurons in a dose‑dependent manner; the optimal concentration of Myr was 50 µM. Furthermore, Myr reduced the percentage of deoxynucleotidyl transferase‑mediated dUTP nick end‑labeling‑positive neuronal cells and influenced the expression of the pro‑apoptotic gene B‑cell lymphoma 2 (Bcl‑2) associated X protein, the apoptosis protease cleaved caspase‑3 and the anti‑apoptotic gene Bcl‑2, in the hypoxia‑induced group. In addition, Myr protected against hypoxic injury in DRG neurons by inhibiting malondialdehyde and lactate dehydrogenase, however upregulating superoxide dismutase and glutathione peroxidase. Myr reduced the expression of endoplasmic reticulum stress (ERS) markers, including CCAAT/enhancer‑binding protein‑homologous protein, glucose‑related protein 78 and cleaved caspase‑12 in the hypoxia‑induced group. To the best of our knowledge, this is the first demonstration of the activity of Myr against hypoxia‑induced apoptosis in rat DRG neurons via inhibition of the ERS pathway.
Collapse
Affiliation(s)
- Quanlai Zhao
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Chen Liu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiang Shen
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Liang Xiao
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Hong Wang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ping Liu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Lingting Wang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Hongguang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
22
|
Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and Alternative Medicines Used by Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:415-429.e15. [PMID: 27743873 DOI: 10.1053/j.gastro.2016.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Patients and physicians often have many questions regarding the role of complementary and alternative medicines (CAMs), or nonallopathic therapies, for inflammatory bowel diseases (IBDs). CAMs of various forms are used by more than half of patients with IBD during some point in their disease course. We summarize the available evidence for the most commonly used and discussed CAMs. We discuss evidence for the effects of herbs (such as cannabis and curcumin), probiotics, acupuncture, exercise, and mind-body therapy. There have been few controlled studies of these therapies, which have been limited by their small sample sizes; most studies have been uncontrolled. In addition, there has been a lack of quality control for herbal preparations. It has been a challenge to design rigorous, randomized, placebo-controlled trials, in part owing to problems of adequate blinding for psychological interventions, acupuncture, and exercise. These barriers have limited the acceptance of CAMs by physicians. However, such therapies might be used to supplement conventional therapies and help ease patient symptoms. We conclude that physicians should understand the nature of and evidence for CAMs for IBD so that rational advice can be offered to patients who inquire about their use. CAMs have the potential to aid in the treatment of IBD, but further research is needed to validate these approaches.
Collapse
Affiliation(s)
- Adam S Cheifetz
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Robert Gianotti
- Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Raphael Luber
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Hospital and Monash University, Melbourne, Australia.
| |
Collapse
|
23
|
Park G, Oh DS, Lee MG, Lee CE, Kim YU. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway. Toxicol Appl Pharmacol 2016; 310:51-59. [PMID: 27562088 DOI: 10.1016/j.taap.2016.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 01/25/2023]
Abstract
Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α)+IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD.
Collapse
Affiliation(s)
- Gunhyuk Park
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Dal-Seok Oh
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Mi Gi Lee
- Major in Cosmeceutical Science, Division of Bio-technology and Convergence, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Chang Eon Lee
- Major in Cosmeceutical Science, Division of Bio-technology and Convergence, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, Republic of Korea.
| |
Collapse
|
24
|
|
25
|
Guo L, Li JH, Li CP, Shi L, Zhong XL. Role of STAT3 and PPAR-γ in pathogenesis of UC: Implications for therapeutic effect of curcumin. Shijie Huaren Xiaohua Zazhi 2016; 24:28-36. [DOI: 10.11569/wcjd.v24.i1.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the role of signal transducer and activator of transcription 3 (STAT3) and peroxisome proliferator-activated receptor-γ (PPAR-γ) in the pathogenesis of ulcerative colitis (UC) in mice, and the effect of curcumin on STAT3 pathway, cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) in UC.
METHODS: Sixty female BALB/c mice were randomly and equally divided into six groups: A (normal group), B (model group), C [dexamethasone intervention group, 1.5 mg/(kg•d)], L [low dose curcumin group, 25 mg/(kg•d)], M [medium dose curcumin group, 50 mg/(kg•d)], and H (high dose curcumin group, 100 mg/(kg•d)]. UC was induced in mice with dextran sodium sulfate. Disease activity index (DAI) scores were calculated in UC mice. HE staining was performed for observing colonic histological changes. PPAR-γ and STAT3 expression was detected by immunohistochemistry. The expression of COX-2 was detected by ELISA, the expression of p-STAT3 was detected by Western blot, and the expression of STAT3 mRNA was detected by RT-PCR.
RESULTS: Mice in group B showed symptoms and histological changes consistent with UC standards. DAI and histological scores in group B were higher than those in group A, but compared with group B, DAI and histological scores in groups C, L, M and H showed varying degrees of decrease. Immunohistochemical results showed that the expression of PPAR-γ in mouse colon in group B was lower than that in group A (23.15 ± 2.33 vs 42.07 ± 3.82, P < 0.01). The expression of STAT3 in mouse colon in group B was significantly higher than that in groups A, C, L, M and H (66.36 ± 6.08 vs 28.25 ± 2.84, 29.84 ± 3.32, 45.26 ± 5.42, 29.02 ± 3.28, 21.22 ± 3.30, P < 0.01). The expression of COX-2 in mouse colon in groups C, L, M and H was lower than that in group B (P < 0.01). The expression of p-STAT3 in mouse colon in group B was significantly higher than that in group A, but lower than that in groups C, L, M and H (P < 0.05). The expression of STAT3 mRNA in mouse colon in group B was significantly higher than that in group A, but lower than that in groups C, L, M and H (P < 0.05).
CONCLUSION: STAT3 and PPAR-γ may participate in the pathogenesis of UC. The mechanism of curcumin for treating UC may be through increasing the expression of PPAR-γ, inhibiting STAT3 signaling pathway, reducing the release of COX-2, decreasing neutrophil infiltration and thus attenuating colonic mucosa damage.
Collapse
|
26
|
Botanical Drugs as an Emerging Strategy in Inflammatory Bowel Disease: A Review. Mediators Inflamm 2015; 2015:179616. [PMID: 26576073 PMCID: PMC4630406 DOI: 10.1155/2015/179616] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/08/2023] Open
Abstract
Crohn's disease and ulcerative colitis are the two most common categories of inflammatory bowel disease (IBD), which are characterized by chronic inflammation of the intestine that comprises the patients' life quality and requires sustained pharmacological and surgical treatments. Since their aetiology is not completely understood, nonfully efficient drugs have been developed and those that show effectiveness are not devoid of quite important adverse effects that impair their long-term use. Therefore, many patients try with some botanical drugs, which are safe and efficient after many years of use. However, it is necessary to properly evaluate these therapies to consider a new strategy for human IBD. In this report we have reviewed the main botanical drugs that have been assessed in clinical trials in human IBD and the mechanisms and the active compounds proposed for their beneficial effects.
Collapse
|
27
|
Kondamudi PK, Kovelamudi H, Nayak PG, Rao MC, Shenoy RR. Curcumin half analog modulates interleukin-6 and tumor necrosis factor-alpha in inflammatory bowel disease. Pharmacogn Mag 2015; 11:S296-302. [PMID: 26664018 PMCID: PMC4653340 DOI: 10.4103/0973-1296.165991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/18/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). MATERIALS AND METHODS Male Wistar rats (200-220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 µL of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 µL of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24(th) day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. RESULTS The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. CONCLUSION These findings show that DHZ can be a promising molecule for the treatment of IBD.
Collapse
Affiliation(s)
- Phani Krishna Kondamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Hemalatha Kovelamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Mallikarjuna Chamallamudi Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| |
Collapse
|
28
|
Lang A, Salomon N, Wu JCY, Kopylov U, Lahat A, Har-Noy O, Ching JYL, Cheong PK, Avidan B, Gamus D, Kaimakliotis I, Eliakim R, Ng SC, Ben-Horin S. Curcumin in Combination With Mesalamine Induces Remission in Patients With Mild-to-Moderate Ulcerative Colitis in a Randomized Controlled Trial. Clin Gastroenterol Hepatol 2015; 13:1444-9.e1. [PMID: 25724700 DOI: 10.1016/j.cgh.2015.02.019] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The phytochemical compound curcumin was reported to be effective in maintaining remission in patients with ulcerative colitis (UC). We investigated curcumin's efficacy in inducing remission in patients with active mild-to-moderate UC. METHODS We performed a multicenter randomized, placebo-controlled, double-blind study of 50 mesalamine-treated patients with active mild-to-moderate UC (defined by the Simple Clinical Colitis Activity Index [SCCAI]) who did not respond to an additional 2 weeks of the maximum dose of mesalamine oral and topical therapy. Patients were randomly assigned to groups who were given curcumin capsules (3 g/day, n = 26) or an identical placebo (n = 24) for 1 month, with continued mesalamine. The primary outcome was the rate of clinical remission (SCCAI ≤2) at week 4. Clinical and endoscopic responses were also recorded. RESULTS In the intention-to-treat analysis, 14 patients (53.8%) receiving curcumin achieved clinical remission at week 4, compared with none of the patients receiving placebo (P = .01; odds ratio [OR], 42; 95% confidence interval [CI], 2.3-760). Clinical response (reduction of ≥3 points in SCCAI) was achieved by 17 patients (65.3%) in the curcumin group vs. 3 patients (12.5%) in the placebo group (P < .001; OR, 13.2; 95% CI, 3.1-56.6). Endoscopic remission (partial Mayo score ≤1) was observed in 8 of the 22 patients evaluated in the curcumin group (38%), compared with none of 16 patients evaluated in the placebo group (P = .043; OR, 20.7; 95% CI, 1.1-393). Adverse events were rare and comparable between the 2 groups. CONCLUSIONS Addition of curcumin to mesalamine therapy was superior to the combination of placebo and mesalamine in inducing clinical and endoscopic remission in patients with mild-to-moderate active UC, producing no apparent adverse effects. Curcumin may be a safe and promising agent for treatment of UC. Clinicaltrials.gov number: NCT01320436.
Collapse
Affiliation(s)
- Alon Lang
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Nir Salomon
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel; Complementary Medicine Service, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| | - Justin C Y Wu
- Institute of Digestive Disease and Hong Kong Institute of Integrative Medicine, Chinese University of Hong Kong, Hong Kong
| | - Uri Kopylov
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Adi Lahat
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Ofir Har-Noy
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Jessica Y L Ching
- Institute of Digestive Disease and Hong Kong Institute of Integrative Medicine, Chinese University of Hong Kong, Hong Kong
| | - Pui Kuan Cheong
- Institute of Digestive Disease and Hong Kong Institute of Integrative Medicine, Chinese University of Hong Kong, Hong Kong
| | - Benjamin Avidan
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Dorit Gamus
- Complementary Medicine Service, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | | | - Rami Eliakim
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| | - Siew C Ng
- Institute of Digestive Disease and Hong Kong Institute of Integrative Medicine, Chinese University of Hong Kong, Hong Kong
| | - Shomron Ben-Horin
- Gastroenterology Department, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
29
|
Saxena A, Kaur K, Hegde S, Kalekhan FM, Baliga MS, Fayad R. Dietary agents and phytochemicals in the prevention and treatment of experimental ulcerative colitis. J Tradit Complement Med 2014; 4:203-17. [PMID: 25379461 PMCID: PMC4220497 DOI: 10.4103/2225-4110.139111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), consisting mainly of ulcerative colitis (UC) and Crohn's disease (CD), are important immune-mediated diseases of the gastrointestinal tract. The etiology of the disease includes environmental and genetic factors. Its management presents a constant challenge for gastroenterologists and conventional surgeon. 5-Amninosalicylates, antibiotics, steroids, and immune modulators have been used to reduce the symptoms and for maintenance of remission. Unfortunately, long-term usage of these agents has been found to lead to severe toxicities, which are deterrent to the users. Pre-clinical studies carried out in the recent past have shown that certain dietary agents, spices, oils, and dietary phytochemicals that are consumed regularly possess beneficial effects in preventing/ameliorating UC. For the first time, this review addresses the use of these dietary agents and spices in the treatment and prevention of IBD and also emphasizes on the mechanisms responsible for their effects.
Collapse
Affiliation(s)
- Arpit Saxena
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Kamaljeet Kaur
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Shweta Hegde
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Faizan M Kalekhan
- Research and Development, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India
| | | | - Raja Fayad
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
30
|
Jain K, Dhawan DK. Regulation of Biokinetics of 65Zn by Curcumin and Zinc in Experimentally Induced Colon Carcinogenesis in Rats. Cancer Biother Radiopharm 2014; 29:310-6. [DOI: 10.1089/cbr.2014.1670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kinnri Jain
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| | - Devinder K. Dhawan
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| |
Collapse
|
31
|
Kondamudi PK, Kovelamudi H, Mathew G, Nayak PG, Rao CM, Shenoy RR. Modulatory effects of sesamol in dinitrochlorobenzene-induced inflammatory bowel disorder in albino rats. Pharmacol Rep 2014; 65:658-65. [PMID: 23950588 DOI: 10.1016/s1734-1140(13)71043-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory condition of gastrointestinal tract of immune, genetic and environmental origin. In the present study, we examined the effect of sesamol (SES), the main anti-oxidative constituent of Sesamum indicum (sesame seed) Linn. in the dinitrochlorobenzene (DNCB)-induced model for IBD in rats. METHODS The groups were divided into normal control, DNCB control, SES and sulfasalazine (SS). On day 24, the rats were killed, colon removed and the macroscopic, biochemical and histopathological evaluations were performed. RESULTS The levels of MPO, TBARS and nitrite increased significantly (p < 0.05) in the DNCB group, whereas reduced significantly in the SES, SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. IL-6 and TNF-α levels were significantly high in the DNCB group. CONCLUSIONS We conclude the mucosal protective effect of SES on colon due to its potent antioxidant actions. Further investigation is required in a chronic model of different rodent strain for its role involved in the cytokine pathway.
Collapse
Affiliation(s)
- Phani Krishna Kondamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, Karnataka, India
| | | | | | | | | | | |
Collapse
|
32
|
Kumar VS, Rajmane AR, Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats. J Biomed Res 2013; 28:132-45. [PMID: 24683411 PMCID: PMC3968284 DOI: 10.7555/jbr.27.20120082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/15/2012] [Accepted: 02/27/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate the effect of naringin on experimentally induced inflammatory bowel disease in rats. Naringin (20, 40 and 80 mg/kg) was given orally for 7 days to Wistar rats before induction of colitis by intrarectal instillation of 2 mL of 4% (v/v) acetic acid solution. The degree of colonic mucosal damage was analyzed by examining mucosal damage, ulcer area, ulcer index and stool consistency. Intrarectal administration of 4% acetic acid resulted in significant modulation of serum alkaline phosphatase, lactate dehydrogenase, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA) and myeloperoxidase (MPO) content along with colonic nitric oxide (NO), xanthine oxidase (XO) level and protein carbonyl content in the colonic tissue as well as in blood. Naringin (40 and 80 mg/kg) exerted a dose dependent (P < 0.05) ameliorative effect, as it significantly increased hematological parameter as well as colonic SOD and GSH. There was a significant (P < 0.05) and dose dependant inhibition of macroscopical score, ulcer area along with colonic MDA, MPO activity by the 7 days of pretreatment of naringin (40 and 80 mg/kg). Biochemical studies revealed a significant (P < 0.05) dose dependant inhibition in serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels by pretreatment of naringin. Increased levels of colonic NO, XO, protein carbonyl content and DNA damage were also significantly decreased by naringin pretreatment. The findings of the present investigation propose that naringin has an anti-inflammatory, anti-oxidant and anti-apoptotic potential effect at colorectal sites as it modulates the production and expression of oxidative mediators such as MDA, MPO, NO and XO, thus reducing DNA damage.
Collapse
Affiliation(s)
- Venkatashivam Shiva Kumar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Anuchandra Ramchandra Rajmane
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Mohammad Adil
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Amit Dattatraya Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Pinaki Ghosh
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| | - Subhash Laxman Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra 411038, India
| |
Collapse
|
33
|
Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 2013; 169:1672-92. [PMID: 23425071 PMCID: PMC3753829 DOI: 10.1111/bph.12131] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED TNFs are major mediators of inflammation and inflammation-related diseases, hence, the United States Food and Drug Administration (FDA) has approved the use of blockers of the cytokine, TNF-α, for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis and ankylosis. These drugs include the chimeric TNF antibody (infliximab), humanized TNF-α antibody (Humira) and soluble TNF receptor-II (Enbrel) and are associated with a total cumulative market value of more than $20 billion a year. As well as being expensive ($15 000-20 000 per person per year), these drugs have to be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models and in humans. In addition, we provide evidence for curcumin's activities against all of the diseases for which TNF blockers are currently being used. Mechanisms by which curcumin inhibits the production and the cell signalling pathways activated by this cytokine are also discussed. With health-care costs and safety being major issues today, this golden spice may help provide the solution. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | |
Collapse
|
34
|
Baliga MS, Joseph N, Venkataranganna MV, Saxena A, Ponemone V, Fayad R. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: preclinical and clinical observations. Food Funct 2013; 3:1109-17. [PMID: 22833299 DOI: 10.1039/c2fo30097d] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) comprising of ulcerative colitis (UC) and Crohn's disease (CD) is a major ailment affecting the small and large bowel. In clinics, IBD is treated using 5-amninosalicylates, antibiotics, the steroids and immunomodulators. Unfortunately, the long term usages of these agents are associated with undue side effects and compromise the therapeutic advantage. Accordingly, there is a need for novel agents that are effective, acceptable and non toxic to humans. Preclinical studies in experimental animals have shown that curcumin, an active principle of the Indian spice turmeric (Curcuma longa Linn) is effective in preventing or ameliorating UC and inflammation. Over the last few decades there has been increasing interest in the possible role of curcumin in IBD and several studies with various experimental models of IBD have shown it to be effective in mediating the inhibitory effects by scavenging free radicals, increasing antioxidants, influencing multiple signaling pathways, especially the kinases (MAPK, ERK), inhibiting myeloperoxidase, COX-1, COX-2, LOX, TNF-α, IFN-γ, iNOS; inhibiting the transcription factor NF-κB. Clinical studies have also shown that co-administration of curcumin with conventional drugs was effective, to be well-tolerated and treated as a safe medication for maintaining remission, to prevent relapse and improve clinical activity index. Large randomized controlled clinical investigations are required to fully understand the potential of oral curcumin for treating IBD.
Collapse
Affiliation(s)
- Manjeshwar Shrinath Baliga
- Department of Research and Development, Father Muller Medical College, Kankanady, Mangalore, Karnataka, India.
| | | | | | | | | | | |
Collapse
|
35
|
Martínez-Moya P, Ortega-González M, González R, Anzola A, Ocón B, Hernández-Chirlaque C, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez de Medina F. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol Res 2012; 66:144-53. [PMID: 22569414 DOI: 10.1016/j.phrs.2012.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 12/17/2022]
Abstract
Alkaline phosphatase (AP) inactivates bacterial lipopolysaccharide and may therefore be protective. The small intestine and colon express intestinal (IAP) and tissue nonspecific enzyme (TNAP), respectively. The aim of this study was to assess the therapeutic potential of exogenous AP and its complementarity with endogenous enzyme protection in the intestine, as evidenced recently. IAP was given to rats by the oral or intrarectal route (700U/kgday). Oral budesonide (1mg/kgday) was used as a reference treatment. Treatment with intrarectal AP resulted in a 54.5% and 38.0% lower colonic weight and damage score, respectively, and an almost complete normalization of the expression of S100A8, LCN2 and IL-1β (p<0.05). Oral AP was less efficacious, while budesonide had a more pronounced effect on most parameters. Both oral and intrarectal AP counteracted bacterial translocation effectively (78 and 100%, respectively, p<0.05 for the latter), while budesonide failed to exert a positive effect. AP activity was increased in the feces of TNBS colitic animals, associated with augmented sensitivity to the inhibitor levamisole, suggesting enhanced luminal release of this enzyme. This was also observed in the mouse lymphocyte transfer model of chronic colitis. In a separate time course study, TNAP was shown to increase 2-3 days after colitis induction, while dextran sulfate sodium was a much weaker inducer of this isoform. We conclude that exogenous AP exerts beneficial effects on experimental colitis, which includes protection against bacterial translocation. AP of the tissue-nonspecific isoform is shed in higher amounts to the intestinal lumen in experimental colitis, possibly aiding in intestinal protection.
Collapse
Affiliation(s)
- P Martínez-Moya
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas-CIBERehd, Campus de Cartuja s/n, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Soni D, Salh B. A neutraceutical by design: the clinical application of curcumin in colonic inflammation and cancer. SCIENTIFICA 2012; 2012:757890. [PMID: 24278738 PMCID: PMC3820655 DOI: 10.6064/2012/757890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/26/2012] [Indexed: 05/17/2023]
Abstract
Unquestionably, the natural food additive curcumin, derived from the colorful spice turmeric used in many Asian cuisines, possesses a diverse array of biological activities. These range from its anti-inflammatory, antineoplastic, and metabolic modifying properties to surprising roles in disorders ranging from Alzheimer's disease to cystic fibrosis. Its effects on growth factor receptors, signaling molecules, and transcription factors, together with its epigenetic effects are widely considered to be extraordinary. These pleiotropic attributes, coupled with its safety even when used orally at well over 10 g/day, are unparalleled amongst pharmacological agents. However, there is one drawback; apart from the luminal gastrointestinal tract where its pharmacology predicts that reasonable drug levels can be attained, its broader use is hampered by its poor solubility and hence near undetectable plasma levels. Medicinal chemistry and nanotechnology have resulted in the generation of compounds where the modified drug or its delivery system has improved matters such that this shortcoming has been addressed to some extent, with the surprising finding that it remains safe to use. It is predicted that either the parental compound or its derivatives may eventually find a place in the therapeutic management protocols of several conditions.
Collapse
Affiliation(s)
- D. Soni
- Division of Gastroenterology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada V5Z 1M9
| | - B. Salh
- Division of Gastroenterology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada V5Z 1M9
- *B. Salh:
| |
Collapse
|
37
|
Agrawal M, Arora S, Li J, Rahmani R, Sun L, Steinlauf AF, Mechanick JI, Zaidi M. Bone, inflammation, and inflammatory bowel disease. Curr Osteoporos Rep 2011; 9:251-7. [PMID: 21935582 DOI: 10.1007/s11914-011-0077-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a leading cause of morbidity in patients with inflammatory bowel disease (IBD). Bone loss is an early systemic process and occurs even before clinical disease manifests. Bone disease is attributed to vitamin D deficiency, steroid use, and/or systemic inflammation. In this review, we discuss the molecular pathways of bone loss mediated by inflammatory cytokines and other mediators. Further research will hopefully clarify the mechanisms of inflammation-induced bone loss in IBD and guide effective treatment modalities.
Collapse
Affiliation(s)
- Manasi Agrawal
- Department of Gastroenterology, Maimonides Medical Center, Brooklyn, NY 11201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Gálvez-Llompart M, Recio MC, García-Domenech R. Topological virtual screening: a way to find new compounds active in ulcerative colitis by inhibiting NF-κB. Mol Divers 2011; 15:917-26. [PMID: 21717125 DOI: 10.1007/s11030-011-9323-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/13/2011] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are chronic, immune-mediated inflammatory diseases of the gastrointestinal tract. Nuclear Factor Kappa B (NF-κB) is a transcription factor that plays a key role in regulating expression of multiple inflammatory and immune genes. In this study, a Topological Virtual Screening study has been carried out to achieve a model capable of finding new compounds active in ulcerative colitis by inhibiting NF-κB. Different topological indices were used as structural descriptors, and their relation to biological activity was determined using linear discriminant analysis. A topological model consisting of two discriminant functions was built up. The first function focused in the discrimination between NF-κB active and inactive compounds, and the second one in distinguishing between compounds active and inactive on ulcerative colitis. The model was then applied sequentially to a large database of compounds with unknown activity. Twenty-eight of such compounds were predicted to be active and selected for in vitro and in vivo testing.
Collapse
Affiliation(s)
- María Gálvez-Llompart
- Molecular Connectivity and Drug Design Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Avda. VA Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|
40
|
Rajasekaran SA. Therapeutic potential of curcumin in gastrointestinal diseases. World J Gastrointest Pathophysiol 2011; 2:1-14. [PMID: 21607160 PMCID: PMC3097964 DOI: 10.4291/wjgp.v2.i1.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin’s therapeutic potential for preventing and treating various cancers is being recognized. As curcumin’s therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin’s anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers.
Collapse
|
41
|
Larmonier C, Midura-Kiela M, Ramalingam R, Laubitz D, Janikashvili N, Larmonier N, Ghishan F, Kiela P. Modulation of neutrophil motility by curcumin: implications for inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:503-15. [PMID: 20629184 PMCID: PMC2958245 DOI: 10.1002/ibd.21391] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neutrophils (PMN) are the first cells recruited at the site of inflammation. They play a key role in the innate immune response by recognizing, ingesting, and eliminating pathogens and participate in the orientation of the adaptive immune responses. However, in inflammatory bowel disease (IBD) transepithelial neutrophil migration leads to an impaired epithelial barrier function, perpetuation of inflammation, and tissue destruction via oxidative and proteolytic damage. Curcumin (diferulolylmethane) displays a protective role in mouse models of IBD and in human ulcerative colitis, a phenomenon consistently accompanied by a reduced mucosal neutrophil infiltration. METHODS We investigated the effect of curcumin on mouse and human neutrophil polarization and motility in vitro and in vivo. RESULTS Curcumin attenuated lipopolysaccharide (LPS)-stimulated expression and secretion of macrophage inflammatory protein (MIP)-2, interleukin (IL)-1β, keratinocyte chemoattractant (KC), and MIP-1α in colonic epithelial cells (CECs) and in macrophages. Curcumin significantly inhibited PMN chemotaxis against MIP-2, KC, or against conditioned media from LPS-treated macrophages or CEC, a well as the IL-8-mediated chemotaxis of human neutrophils. At nontoxic concentrations, curcumin inhibited random neutrophil migration, suggesting a direct effect on neutrophil chemokinesis. Curcumin-mediated inhibition of PMN motility could be attributed to a downregulation of PI3K activity, AKT phosphorylation, and F-actin polymerization at the leading edge. The inhibitory effect of curcumin on neutrophil motility was further demonstrated in vivo in a model of aseptic peritonitis. CONCLUSIONS Our results indicate that curcumin interferes with colonic inflammation partly through inhibition of the chemokine expression and through direct inhibition of neutrophil chemotaxis and chemokinesis.
Collapse
Affiliation(s)
- C.B. Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona
| | - M.T. Midura-Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona
| | - R. Ramalingam
- Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona
| | - D. Laubitz
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona
| | - N. Janikashvili
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona
| | - N. Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona, Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona
| | - F.K. Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona
| | - P.R. Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, Arizona, Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona
| |
Collapse
|
42
|
Abstract
Curcumin is the active ingredient of turmeric. It is widely used as a kitchen spice and food colorant throughout India, Asia and the Western world. Curcumin is a major constituent of curry powder, to which it imparts its characteristic yellow colour. For over 4000 years, curcumin has been used in traditional Asian and African medicine to treat a wide variety of ailments. There is a strong current public interest in naturally occurring plant-based remedies and dietary factors related to health and disease. Curcumin is non-toxic to human subjects at high doses. It is a complex molecule with multiple biological targets and different cellular effects. Recently, its molecular mechanisms of action have been extensively investigated. It has anti-inflammatory, antioxidant and anti-cancer properties. Under some circumstances its effects can be contradictory, with uncertain implications for human treatment. While more studies are warranted to further understand these contradictions, curcumin holds promise as a disease-modifying and chemopreventive agent. We review the evidence for the therapeutic potential of curcumin from in vitro studies, animal models and human clinical trials.
Collapse
|
43
|
Sánchez-Calvo JM, Villegas I, Sánchez-Fidalgo S, Camacho-Barquero L, Talero E, Motilva V, Alarcón de la Lastra C. Protective effect of curcumin, aCurcuma longaconstituent, in early colonic inflammation in rats. Drug Dev Res 2009. [DOI: 10.1002/ddr.20319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Lubbad AS, Oriowo MA, Khan I. Curcumin reverses attenuated carbachol-induced contraction of the colon in a rat model of colitis. Scand J Gastroenterol 2009; 44:187-94. [PMID: 18830899 DOI: 10.1080/00365520802449302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Curcumin ameliorates colitis whether it reverses colitis-induced reduction in colonic contractility remains to be investigated. OBJECTIVES To investigate the effect of curcumin on colitis-induced reduction of carbachol-induced contraction in colon segments from rats treated with trinitrobenzenesulphonic acid. METHODS Colitis was induced in rats by intra rectal administration of trinitrobenzenesulphonic acid and followed for 5 days. A group of animals which received trinitobenzene sulphonic acids was treated with curcumin (100 mg/Kg and 200 mg/kg body weight) 2 hrs prior to induction of colitis. The controls received phosphate buffered saline in a similar fashion. Markers of inflammation and contractility of colon were assayed using standard procedures. RESULTS Induction of colitis was associated with increased myeloperoxidase activity and malondialdehyde levels, gross histological changes characterized by infiltration of inflammatory cells. All these changes were prevented by treatment with curcumin (100 mg/kg). Treatment with curcumin also reduced the histological scores from 3.34+/-0.40 to 1.75+/-0.30 confirming an anti-inflammatory effect of curcumin in this experimental model of colitis. Colonic reactivity to carbachol was decreased in colitis affecting the maximum response but not sensitivity. Treatment with curcumin had no effect on sensitivity of the colon to carbachol in any of the preparations. Curcumin however reversed the decrease in carbachol-induced contraction associated with trinitrobenzenesulphonic acid treatment. The same dose of curcumin had no effect on either the potency of or the maximum response to carbachol in control rats. Tissue expression of NF-kB was increased in colon segments from trinitrobenzenesulphonic acid -treated rats and this was inhibited in rats treated with curcumin. CONCLUSIONS Based on these findings it is concluded that curcumin prevented the reduction in carbachol-induced contraction in trinitrobenzenesulphonic acid -treated rats by modulating NF-kB signaling pathway.
Collapse
Affiliation(s)
- Asmaa S Lubbad
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| | | | | |
Collapse
|
45
|
Arafa HMM, Hemeida RA, El-Bahrawy AIM, Hamada FMA. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem Toxicol 2009; 47:1311-7. [PMID: 19285535 DOI: 10.1016/j.fct.2009.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 01/16/2023]
Abstract
We have addressed in this study the possible protective role of the main principle of turmeric pigment; curcumin on a murine model of ulcerative colitis (UC). Colitis was induced by administration of dextran sulfate sodium (DSS) (3% W/V) in drinking water to male Swiss albino rats for 5 consecutive days. DSS challenge induced UC model that was well characterized morphologically and biochemically. DSS produced shrinkage of colon length and increased the relative colon weight/length ratio accompanied by mucosal edema and bloody stool. Histologically, DSS produced submucosal erosions, ulceration, inflammatory cell infiltration and crypt abscess as well as epithelioglandular hyperplasia. The model was confirmed biochemically, and the test battery entailed elevated serum tumor necrosis factor (TNF-alpha) and colonic activity of myleoperoxidase (MPO). Colonic glutathione-S-transferase (GST) activity and its substrate concentration; GSH, were notably reduced, while lipid peroxidation, expressed as malondialdehyde (MDA) level, and total nitric oxide (NO) were significantly increased. Prior administration of curcumin (100mg/kg, IP) for 7 consecutive days ahead of DSS challenge mitigated the injurious effects of DSS and ameliorated all the altered biochemical parameters. These results suggest that curcumin could possibly have a protective role in ulcerative colitis probably via regulation of oxidant/anti-oxidant balance and modulation of the release of some inflammatory endocoids, namely TNF-alpha and NO.
Collapse
Affiliation(s)
- Hossam M M Arafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | | | | | | |
Collapse
|
46
|
Calabrese V, Bates TE, Mancuso C, Cornelius C, Ventimiglia B, Cambria MT, Di Renzo L, De Lorenzo A, Dinkova-Kostova AT. Curcumin and the cellular stress response in free radical-related diseases. Mol Nutr Food Res 2009; 52:1062-73. [PMID: 18792015 DOI: 10.1002/mnfr.200700316] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Free radicals play a main pathogenic role in several human diseases such as neurodegenerative disorders, diabetes, and cancer. Although there has been progress in treatment of these diseases, the development of important side effects may complicate the therapeutic course. Curcumin, a well known spice commonly used in India to make foods colored and flavored, is also used in traditional medicine to treat mild or moderate human diseases. In the recent years, a growing body of literature has unraveled the antioxidant, anticarcinogenic, and antinfectious activity of curcumin based on the ability of this compound to regulate a number of cellular signal transduction pathways. These promising data obtained in vitro are now being translated to the clinic and more than ten clinical trials are currently ongoing worldwide. This review outlines the biological activities of curcumin and discusses its potential use in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Clinical Biochemistry and Clinical Molecular Biology Chair, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kunnumakkara AB, Guha S, Aggarwal BB. Curcumin and colorectal cancer: Add spice to your life. CURRENT COLORECTAL CANCER REPORTS 2009. [DOI: 10.1007/s11888-009-0002-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Larmonier CB, Uno JK, Lee KM, Karrasch T, Laubitz D, Thurston R, Midura-Kiela MT, Ghishan FK, Sartor RB, Jobin C, Kiela PR. Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice suggest an IL-10-dependent mechanism of protection. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1079-91. [PMID: 18818316 PMCID: PMC2584828 DOI: 10.1152/ajpgi.90365.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin (diferulolylmethane) demonstrates profound anti-inflammatory effects in intestinal epithelial cells (IEC) and in immune cells in vitro and exhibits a protective role in rodent models of chemically induced colitis, with its presumed primary mechanism of action via inhibition of NF-kappaB. Although it has been demonstrated effective in reducing relapse rate in ulcerative colitis patients, curcumin's effectiveness in Crohn's disease (CD) or in Th-1/Th-17 mediated immune models of CD has not been evaluated. Therefore, we investigated the effects of dietary curcumin (0.1-1%) on the development of colitis, immune activation, and in vivo NF-kappaB activity in germ-free IL-10(-/-) or IL-10(-/-);NF-kappaB(EGFP) mice colonized with specific pathogen-free microflora. Proximal and distal colon morphology showed a mild protective effect of curcumin only at 0.1%. Colonic IFN-gamma and IL-12/23p40 mRNA expression followed similar pattern ( approximately 50% inhibition at 0.1%). Secretion of IL-12/23p40 and IFN-gamma by colonic explants and mesenteric lymph node cells was elevated in IL-10(-/-) mice and was not decreased by dietary curcumin. Surprisingly, activation of NF-kappaB in IL-10(-/-) mice (phospho-NF-kappaBp65) or in IL-10(-/-);NF-kappaB(EGFP) mice (whole organ or confocal imaging) was not noticeably inhibited by curcumin. Furthermore, we demonstrate that IL-10 and curcumin act synergistically to downregulate NF-kappaB activity in IEC and IL-12/23p40 production by splenocytes and dendritic cells. In conclusion, curcumin demonstrates limited effectiveness on Th-1 mediated colitis in IL-10(-/-) mice, with moderately improved colonic morphology, but with no significant effect on pathogenic T cell responses and in situ NF-kappaB activity. In vitro studies suggest that the protective effects of curcumin are IL-10 dependent.
Collapse
Affiliation(s)
- C. B. Larmonier
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - J. K. Uno
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Kang-Moon Lee
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - T. Karrasch
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - D. Laubitz
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - R. Thurston
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - M. T. Midura-Kiela
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - F. K. Ghishan
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - R. B. Sartor
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - C. Jobin
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - P. R. Kiela
- Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona; and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
49
|
Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 2008; 33:2444-71. [PMID: 18629638 DOI: 10.1007/s11064-008-9775-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/09/2008] [Indexed: 12/30/2022]
Abstract
The predominant molecular symptom of aging is the accumulation of altered gene products. Moreover, several conditions including protein, lipid or glucose oxidation disrupt redox homeostasis and lead to accumulation of unfolded or misfolded proteins in the aging brain. Alzheimer's and Parkinson's diseases or Friedreich ataxia are neurological diseases sharing, as a common denominator, production of abnormal proteins, mitochondrial dysfunction and oxidative stress, which contribute to the pathogenesis of these so called "protein conformational diseases". The central nervous system has evolved the conserved mechanism of unfolded protein response to cope with the accumulation of misfolded proteins. As one of the main intracellular redox systems involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins (Hsp) Hsp70 and heme oxygenase-1, as well as thioredoxin reductase and sirtuins. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Thus, the impact of dietary factors on health and longevity is an increasingly appreciated area of research. Reducing energy intake by controlled caloric restriction or intermittent fasting increases lifespan and protects various tissues against disease. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin, a group of proteins linked to aging, metabolism and stress tolerance in several organisms. Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in increased expression of vitagenes encoding survival proteins, as in the case of the Keap1/Nrf2/ARE pathway activated by curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Consistently, the neuroprotective roles of dietary antioxidants including curcumin, acetyl-L-carnitine and carnosine have been demonstrated through the activation of these redox-sensitive intracellular pathways. Although the notion that stress proteins are neuroprotective is broadly accepted, still much work needs to be done in order to associate neuroprotection with specific pattern of stress responses. In this review the importance of vitagenes in the cellular stress response and the potential use of dietary antioxidants in the prevention and treatment of neurodegenerative disorders is discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Viale Andrea Doria 6, 95100, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2008; 41:40-59. [PMID: 18662800 DOI: 10.1016/j.biocel.2008.06.010] [Citation(s) in RCA: 1192] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022]
Abstract
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
Collapse
|