1
|
Girard P, Verleye M, Castagné V. Serotoninergic Mechanisms of Action in the Relaxant Properties of Saccharomyces boulardii CNCM I-745 on the Intestine. Dig Dis Sci 2024:10.1007/s10620-024-08786-y. [PMID: 39661276 DOI: 10.1007/s10620-024-08786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Perturbations of intestinal serotonergic neurotransmission seem to be involved in bowel dysmotility associated with irritable bowel syndrome (IBS) with diarrhea. Oral administration of probiotics is an emerging strategy to improve IBS symptoms, possibly via influencing local serotonin metabolism and neurotransmission. In the present study, we evaluated the effects of the yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) on intestinal motility and serotonergic receptors. METHODS Isolated rat ileum was contracted in a cumulative concentration way by serotonin (5-HT), various 5-HT agonists or by acetylcholine to determine their effective concentration 50% (EC50). Single concentrations of S. boulardii or 5-HT antagonists were added before agonists to identify the receptors targeted by S. boulardii. RESULTS The serotonin antagonists 5-HT1A WAY100635, 5-HT2A ketanserin and 5-HT4 GR113808 inhibited 5-HT-induced contractions in a concentration-dependent manner. S. boulardii between 0.05 and 1.5 mg/mL increased the EC50 value of 5-HT suggesting an inhibitory effect against serotonin-induced contraction. Ileum contractions induced by the serotonin agonist 5-HT1 carboxamidotryptamine or by the serotonin agonist 5-HT2 alpha-methyl-5-HT were significantly reduced by S. boulardii at 1.5 mg/mL. The yeast did not affect acetylcholine-induced ileum contraction. CONCLUSION S. boulardii CNCM I-745 possesses relaxant properties on the rat ileum involving the inhibition of 5-HT and more specifically 5-HT1A and 5-HT2A/2B/2C receptor-induced contractions. These data suggest that the attenuation of 5-HT-induced ileal contractions by S. boulardii represents a probable mechanism of action sustaining its efficacy in patients affected by IBS with diarrhea.
Collapse
Affiliation(s)
- P Girard
- Biocodex - Research and Development Center, Compiègne, France.
| | - M Verleye
- Biocodex - Research and Development Center, Compiègne, France
| | - V Castagné
- Biocodex - Research and Development Center, Compiègne, France
| |
Collapse
|
2
|
Hao Z, Lu Y, Hao Y, Luo Y, Wu K, Zhu C, Shi P, Zhu F, Lin Y, Zeng X. Fungal mycobiome dysbiosis in choledocholithiasis concurrent with cholangitis. J Gastroenterol 2024:10.1007/s00535-024-02183-y. [PMID: 39604579 DOI: 10.1007/s00535-024-02183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The gut mycobiome might have an important influence on the pathogenesis of choledocholithiasis concurrent with cholangitis (CC). The aim of this study was to characterize the fungal mycobiome profiles, explore the correlation and equilibrium of gut interkingdom network among bacteria-fungi-metabolites triangle in CCs. METHODS In a retrospective case-control study, we recruited patients with CC (n = 25) and healthy controls (HCs) (n = 25) respectively to analyze the gut fungal dysbiosis. Metagenomic sequencing was employed to characterize the gut mycobiome profiles, and liquid chromatography/mass spectrometry (LC/MS) analysis was used to quantify the metabolites composition. RESULTS The Shannon index displayed a reduction in fungal α-diversity in CCs compared to HCs (p = 0.041), and the overall fungal composition differed significantly between two groups. The dominant 7 fungi species with the remarkable altered abundance were identified (LDA score > 3.0, p < 0.05), including CC-enriched Aspergillus_niger and CC-depleted fungi Saccharomyces_boulardii. In addition, the correlations between CC-related fungi and clinical variables in CCs were analyzed. Moreover, the increased abundance ratio of Basidiomycota-to-Ascomycota and a dense linkage of bacteria-fungi interkingdom network in CCs were demonstrated. Finally, we identified 30 markedly altered metabolites in CCs (VIP > 1.0 and p < 0.05), including low level of acetate and butyrate, and the deeper understanding on the complexity of bacteria-fungi-metabolites triangle involving bile inflammation was verified. CONCLUSION Our investigation demonstrated a distinct gut fungal dysbiosis in CCs and proposed that, beyond bacteria, the more attention should be paid to significantly potential influence of fungi and bacteria-fungi-metabolites triangle interkingdom interactions on pathogenesis of CC.
Collapse
Affiliation(s)
- Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yiting Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yuanyuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Kaiming Wu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Changpeng Zhu
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Peimei Shi
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
- Department of Pathology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
3
|
Yu J, Cui C, Ma K, Yang P, Jiang Y, Wang X. Effectiveness and safety of vonoprazan and amoxicillin dual regimen with Saccharomyces boulardii supplements on eradication of Helicobacter pylori. BMC Gastroenterol 2024; 24:430. [PMID: 39592940 PMCID: PMC11590635 DOI: 10.1186/s12876-024-03524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Currently, Vonoprazan (VPZ) and amoxicillin dual regimen (VA-dual) has not achieved satisfied efficacy as the first-line treatment for Helicobacter pylori (H. pylori) infection in China. Thus, we aimed to determine the effect of VA-dual plus Saccharomyces boulardii (S. boulardii) on H. pylori eradication rate. METHODS Naive H. pylori-infected patients were randomly allocated to the ECAB group [20-mg esomeprazole, 500-mg clarithromycin, 1000-mg amoxicillin, and 220-mg bismuth twice/day for 14 days] or the VAS group [20-mg VPZ twice/day, 750-mg amoxicillin three times/day, and 250-mg S. boulardii twice/day for 10 days]. Factors associated with eradication success were explored, and cost-effectiveness analyses were also performed. RESULTS Herein, 126 patients were finally included and randomly assigned to the two groups in a 1:1 ratio. The H. pylori eradication rates of VAS and ECAB groups by intention-to-treat analysis were 87.3% and 88.9% (P = 1.000) and by per-protocol analysis were 87.3% and 91.8% (P = 0.560), respectively. The ECAB group had a significantly higher incidence of adverse events than the VAS group. Superior H. pylori eradication in the VAS group was related to small body surface area and being a non-smoker. The cost-effectiveness ratio of the VAS group was less than that of the ECAB group. CONCLUSIONS Addition of S. boulardii to VA-dual for 10 days is as effective as the 14-days bismuth-based quadruple regimen while ensuring fewer adverse events and lesser cost. This regimen is particularly suitable for low-BSA patients or non-smokers. TRIAL REGISTRATION Chinese Clinical trial Registry No. ChiCTR2100055101 31/12/2021.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, Jiangsu Province, 213000, China
- Graduate School, Dalian Medical University, 9 West Section of Lushun South Road, Lvshunkou District, Dalian, Liaoning Province, 116000, China
| | - Chen Cui
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, Jiangsu Province, 213000, China
| | - Kai Ma
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, Jiangsu Province, 213000, China
| | - Peng Yang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, Jiangsu Province, 213000, China
- Graduate School, Dalian Medical University, 9 West Section of Lushun South Road, Lvshunkou District, Dalian, Liaoning Province, 116000, China
| | - Yizhou Jiang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, Jiangsu Province, 213000, China
| | - Xiaoyong Wang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning District, Changzhou, Jiangsu Province, 213000, China.
| |
Collapse
|
4
|
Schmid SM, Tolbert MK. Harnessing the microbiome: probiotics, antibiotics and their role in canine and feline gastrointestinal disease. Vet Rec 2024; 195:13-25. [PMID: 39545593 DOI: 10.1002/vetr.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Unfavourable alterations of the host microbial environment, known as dysbiosis, have been identified in many canine and feline gastrointestinal (GI) diseases. As a result, normalisation of microbial composition and function has become an important therapeutic target. Given the complex and individualistic interplay between the resident microbiota, host and environment, a multimodal approach is often necessary when addressing dysbiosis in dogs and cats with GI disease. Systemic antibiotics are often empirically used to treat acute and chronic GI diseases. However, with modern genomic techniques demonstrating the profound negative effect antibiotics can have on the GI microbiota and the rapid emergence of resistant bacteria globally, there has been an increased focus on identifying antibiotic alternatives for use in small animal practice. Biotics, such as prebiotics, probiotics and synbiotics, are of growing interest due to their potential supportive effect on the microbiota. This article reviews the evidence for the use of biotics in canine and feline GI disease, highlighting how judicious use of antibiotics and targeted probiotic supplementation can enhance patient outcomes by promoting a balanced gut microbial environment.
Collapse
Affiliation(s)
- Sarah M Schmid
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - M Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Loy MH. From plate to planet: culturally responsive culinary practices for health system innovation. Front Nutr 2024; 11:1476503. [PMID: 39483786 PMCID: PMC11525790 DOI: 10.3389/fnut.2024.1476503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The field of culinary medicine has gained significant attention for its potential to improve health outcomes through the integration of nutrition and medical practice. However, the cultural dimensions of this interdisciplinary field remain underexplored. Emphasizing the role of sociocultural practices, the paper highlights how culturally appreciative culinary practices can meet the sextuple aim of healthcare system innovation. By examining diverse cultural traditions and their contributions to culinary medicine, this review underscores the importance of culturally attuned approaches in promoting human health. The integration of cultural food wisdom into healthcare practices offers a pathway to more effective and personalized care, stronger patient-provider relationships, diversity/equity/inclusion/belonging, and sustainable food systems.
Collapse
Affiliation(s)
- Michelle H. Loy
- Department of Medicine and Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
6
|
Tafazzoli K, Ghavami M, Khosravi-Darani K. Investigation of impact of siderophore and process variables on production of iron enriched Saccharomyces boulardii by Plackett-Burman design. Sci Rep 2024; 14:22813. [PMID: 39353969 PMCID: PMC11445229 DOI: 10.1038/s41598-024-70467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
The primary cause of anemia worldwide is due to poor diet and iron deficiency. Iron (Fe) enriched yeast can be the most effective way to manage anemia because of the capability for biotransformation of mineral to organic and bioavailable iron. To overcome the low richness of yeast, the use of siderophore as cellular iron carriers is a new approach. In this research, for the first time the potential of siderophore in increasing the Fe enrichment of Saccharomyces boulardii (S. boulardii), which is important because of its probiotic properties and resistance to different stresses, has been investigated to produce of potential iron supplements. For this purpose, siderophore was produced by Pseudomonas aeruginosa (P. aeruginosa). Siderophore impact, along with ten other independent process variables, has been studied on the efficiency of iron biotransformation by the Plackett-Burman design (PBD). The results showed that the highest biotransformation yield was 17.77 mg Fe/g dry cell weight (DCW) in the highest biomass weight of 9 g/l. Iron concentration is the most important variable, with contributions of 46% and 70.79% for biomass weight and biotransformation, respectively, followed by fermentation time, agitation speed, and KH2PO4 concentration. But increasing the level of siderophore and zinc led to a significant negative effect. siderophore inefficiency may be attributed to the absence of membrane receptors for pyoverdine (Pvd) and pyochelin (Pch) siderophores. Also, the steric hindrance of the cell wall mannan, the stickiness and sediment ability of the yeast, can create limitations in the absorption of elements. Such yeast can be used as a potential source of iron even for vegetarians and vegans in the form of medicinal and fortified food products to improve the treatment of anemia. It is recommended that further research be focused on increasing the iron enrichment of yeast by overcoming the structural barrier of the cell wall, investigating factors affecting membrane permeability and iron transport potential of other types of siderophores.
Collapse
Affiliation(s)
- Kiyana Tafazzoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Qin X, Zhao Q, Zhao Q, Yang L, Li W, Wu J, Liu T, Zhong W, Jiang K, Liu W, Wang B, Wang S, Cao H. A Saccharomyces boulardii-derived antioxidant protein, thioredoxin, ameliorates intestinal inflammation through transactivating epidermal growth factor receptor. Pharmacol Res 2024; 208:107372. [PMID: 39182661 DOI: 10.1016/j.phrs.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Saccharomyces boulardii (Sb) is a probiotic yeast for the treatment of gastrointestinal disorders, including inflammatory bowel disease (IBD). Little is known about the modulatory capacity of the Sb in IBD. Here, we found that oral gavage of Sb supernatant (SbS) alleviated gut inflammation, protected the intestinal barrier, and reversed DSS-induced down-regulated activation of epidermal growth factor receptor (EGFR) in colitis. Mass spectrum analysis showed that thioredoxin (Trx) is one of the critical secreted soluble proteins participating in EGFR activation detected in SbS. Trx exerted an array of significant effects on anti-inflammatory activity, including alleviating inflammation, protecting gut barrier, suppressing apoptosis, as well as reducing oxidative stress. Mechanistically, Trx promoted EGFR ligand gene expression and transactivated EGFR in a concentration-dependent manner. EGFR kinase inhibitor could block Trx-mediated preventive effects of intestinal epithelial injury. Our data suggested that Sb-derived soluble protein Trx could serve as a potential prophylactic, as a novel postbiotic against colitis, which provides a new strategy for the precision prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Wanyu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
8
|
Mal S, Das TK, Pradhan S, Ghosh K. Probiotics as a Therapeutic Approach for Non-infectious Gastric Ulcer Management: a Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10348-7. [PMID: 39190267 DOI: 10.1007/s12602-024-10348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A gastric ulcer is a stomach lining or nearby intestine disruption caused by acid and pepsin. Helicobacter pylori (H. pylori) and NSAIDs are the primary culprits behind stomach infections that can lead to gastric ulcers and other digestive disorders. Additionally, lifestyle choices such as alcohol consumption and cigarette smoking, stress, and exposure to cold environments can also contribute to non-infectious gastric ulcers. Various treatments are available for gastric ulcers, including antibiotics, anticholinergics, and antacids. However, potential concerns include antibiotic resistance, side effects, and treatment failure. Considering this, there is a need for an alternative approach to manage it. Fortunately, probiotics, typically Lactobacillus and Bifidobacterium, show potential for healing gastric ulcers, offering a non-invasive alternative to conventional treatments. A notable concern arises from applying probiotic bacteria stemming from the propensity of pathogenic bacteria to develop antimicrobial resistance in response to antibiotic therapies. Therefore, the use of yeast becomes more imperative due to its natural resistance to antibacterial antibiotics for antibacterial-treated patients. Probiotic bacteria and yeasts could heal gastric ulcers by regulating the immune response, reducing inflammation, and restoring the balance between defensive and aggressive factors of the gastric layer. This comprehensive review provides an in-depth analysis of the benefits of probiotics and their potential as a therapeutic treatment for non-infectious gastric ulcers, along with other probiotic options. In particular, this review provides a succinct summary of multiple literature studies on probiotics, emphasising the distinctive properties of yeast probiotics, as well as their (bacteria and yeasts) application in the management of non-infectious gastric ulcers.
Collapse
Affiliation(s)
- Subhasree Mal
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Tridip K Das
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
9
|
Maslennikov R, Benuni N, Levshina A, Adzhieva F, Demina T, Kucher A, Pervushova E, Yuryeva E, Poluektova E, Zolnikova O, Kozlov E, Sigidaev A, Ivashkin V. Effect of Saccharomyces boulardii on Liver Diseases: A Systematic Review. Microorganisms 2024; 12:1678. [PMID: 39203520 PMCID: PMC11357183 DOI: 10.3390/microorganisms12081678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
We aimed to systematize the results of published studies on the use of Saccharomyces boulardii (SB) for the treatment of various liver disorders (CRD42022378050). Searches were conducted using PubMed and Scopus on 1 August 2022. The PubMed search was updated on 15 June 2024. The review included sixteen studies: ten experimental animal studies (EASs) and six randomized controlled trials (RCTs). The CNCM I-745 strain was used in 68.8% of the included studies. SB reduced the severity of many manifestations of cirrhosis, and lowered the Child-Pugh scores in RCT. SB reduced the serum concentrations of TNF-α, IL-1β, IL-6, and IL-4 in animals with metabolic dysfunction-associated steatotic liver disease (MASLD); lowered the serum TNF-α and IL-6 levels in experimental cirrhosis in rats; and reduced the CRP levels in decompensated cirrhosis. The EAS of MASLD revealed that SB reduced liver steatosis and inflammation and lowered the liver expression of genes of TNF-α, IL-1β, interferon-γ, and IL-10. In studies on experimental cirrhosis and MASLD, SB reduced the liver expression of genes of TGF-β, α-SMA, and collagen as well as liver fibrosis. SB reduced the abundance of Escherichia (Proteobacteria), increased the abundance of Bacteroidetes in the gut microbiota, prevented an increase in intestinal barrier permeability, and reduced bacterial translocation and endotoxemia.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Nona Benuni
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Farida Adzhieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Tatyana Demina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Alina Kucher
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Ekaterina Pervushova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Evgeniya Yuryeva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Moscow 119435, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119435, Russia;
| | - Alexey Sigidaev
- Department of Clinical Disciplines, Tyumen State Medical University, Tyumen 625023, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia (A.K.)
| |
Collapse
|
10
|
Tullio V. Probiotic Yeasts: A Developing Reality? J Fungi (Basel) 2024; 10:489. [PMID: 39057374 PMCID: PMC11277836 DOI: 10.3390/jof10070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Yeasts are gaining increasing attention for their potential health benefits as probiotics in recent years. Researchers are actively searching for new yeast strains with probiotic properties (i.e, Debaryomyces hansenii; Kluyveromyces marxianus; Yarrowia lipolytica; Pichia hudriavzevii; and Torulaspora delbrueckii) from various sources, including traditional fermented foods, the human gut, and the environment. This exploration is expanding the pool of potential probiotic yeasts beyond the well-studied Saccharomyces boulardii. Research suggests that specific yeast strains possess properties that could be beneficial for managing conditions like inflammatory bowel disease, irritable bowel syndrome, skin disorders, and allergies. Additionally, probiotic yeasts may compete with pathogenic bacteria for adhesion sites and nutrients, thereby inhibiting their growth and colonization. They might also produce antimicrobial compounds that directly eliminate harmful bacteria. To achieve these goals, the approach that uses probiotics for human health is changing. Next-generation yeast probiotics are emerging as a powerful new approach in the field of live biotherapeutics. By using genetic engineering, scientists are able to equip these tools with specialized capabilities. However, most research on these probiotic yeasts is still in its early stages, and more clinical trials are needed to confirm their efficacy and safety for various health conditions. This review could provide a brief overview of the situation in this field.
Collapse
Affiliation(s)
- Vivian Tullio
- Department of Public Health and Pediatrics, University of Turin, via Santena 9; 10126 Turin, Italy
| |
Collapse
|
11
|
Okuka N, Milinkovic N, Velickovic K, Polovina S, Sumarac-Dumanovic M, Minic R, Korčok D, Djordjevic B, Ivanovic ND. Beneficial effects of a new probiotic formulation on adipocytokines, appetite-regulating hormones, and metabolic parameters in obese women. Food Funct 2024; 15:7658-7668. [PMID: 38953736 DOI: 10.1039/d4fo01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Obesity is often accompanied by low-grade chronic inflammation and metabolic syndrome. It has been established that microbiota influences many physiological processes, including the development of obesity, and dysbiosis has been observed in obese individuals. In this study, we aimed to evaluate the impact of a new probiotic formulation, containing two probiotic strains and the bioactive compound octacosanol, on body weight, metabolic parameters, and concentrations of certain adipocytokines and appetite-regulating hormones in obese women. This double blind placebo-controlled supplementary intervention study included twenty-five women in the intervention group and twenty-three in the placebo group, and it lasted 12 weeks. Daily oral supplementation included 7 × 1010 CFU of Lactiplantibacillus plantarum 299v (DSM9843), 5 × 109 CFU of Saccharomyces cerevisiae var. boulardii (DBVPG6763), and 40 mg of octacosanol or placebo. Body weight, metabolic parameters, adipocytokines, and appetite-regulating hormones were assessed before (T0) and after the intervention (T1). After the intervention, significantly lower median concentrations of CRP (p = 0.005) and IL-6 (p = 0.012) were measured in the intervention group than the baseline, while the median concentrations of ghrelin (p = 0.026) and HDL-cholesterol (p = 0.03) were significantly increased. The intervention group had lower CRP levels (p = 0.023) and higher ghrelin levels (p = 0.006) than the placebo group. Significant changes in BMI between groups were not observed. In summary, although the new probiotic formulation showed beneficial effects on IL-6, CRP, HDL, and ghrelin levels, its potential effects on regulating triglyceride, insulin, and glucose levels require further studies before the novel dietary intervention could be considered a useful adjuvant therapy and an effective strategy for the management of obesity and obesity-associated comorbidities.
Collapse
Affiliation(s)
- Nina Okuka
- University of Banja Luka, Faculty of Medicine, Department of Bromatology, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Neda Milinkovic
- University of Belgrade, Faculty of Pharmacy, Department of Medical Biochemistry, 11000, Belgrade, Serbia
| | - Ksenija Velickovic
- University of Belgrade, Faculty of Biology, Department of Cell and Tissue Biology, 11000 Belgrade, Serbia
| | - Snezana Polovina
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Pharmacy, Novi Sad, University Business Academy, 21000 Novi Sad, Serbia
| | - Mirjana Sumarac-Dumanovic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- School of Medicine, University of Belgrade, Clinic for Endocrinology, Diabetes and Diseases of Metabolism, 11000 Belgrade, Serbia
| | - Rajna Minic
- Institute of Virology, Vaccines and Sera "Torlak", Department of Protein Engineering and Biochemistry, 11000 Belgrade, Serbia
| | - Davor Korčok
- Faculty of Pharmacy, Novi Sad, University Business Academy, 21000 Novi Sad, Serbia
| | - Brizita Djordjevic
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, 11000 Belgrade, Serbia
| | - Nevena Dj Ivanovic
- University of Belgrade, Faculty of Pharmacy, Department of Bromatology, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Guarner F, Sanders ME, Szajewska H, Cohen H, Eliakim R, Herrera-deGuise C, Karakan T, Merenstein D, Piscoya A, Ramakrishna B, Salminen S, Melberg J. World Gastroenterology Organisation Global Guidelines: Probiotics and Prebiotics. J Clin Gastroenterol 2024; 58:533-553. [PMID: 38885083 DOI: 10.1097/mcg.0000000000002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/03/2024] [Indexed: 06/20/2024]
Affiliation(s)
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | | - Jim Melberg
- World Gastroenterology Organisation, Milwaukee, WI
| |
Collapse
|
13
|
Ghanbari F, Hasani S, Aghili ZS, Asgary S. The potential preventive effect of probiotics, prebiotics, and synbiotics on cardiovascular risk factors through modulation of gut microbiota: A review. Food Sci Nutr 2024; 12:4569-4580. [PMID: 39055176 PMCID: PMC11266939 DOI: 10.1002/fsn3.4142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a significant contributor to global morbidity and death, underscoring the importance of their prevention and treatment. The association between the development and progression of CVD and several risk factors has been extensively studied. Among these risk factors, the gut microbiota has garnered considerable attention of the scientific community during the last two decades. In particular, dysbiosis is directly associated with many risk factors of CVD in the host, such as diabetes. Prior research has demonstrated a robust correlation between dysbiosis and the development of CVD. Probiotics, prebiotics, and synbiotics are considered important regulators of microbiota imbalances as they increase the colonization of beneficial bacteria and thereby alter the gut microbiota. Although these beneficial effects of biotics are now widely recognized, new evidence has demonstrated that target therapy of the microbiota affects many other organs, including the heart, through a process commonly referred to as the gut-heart axis. In this review, we will discuss the potential benefits of probiotics, prebiotics, and synbiotics for the beneficial effects on cardiovascular disease by modulating gut microbiota.
Collapse
Affiliation(s)
- Fahimeh Ghanbari
- Applied Physiology Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Samira Hasani
- Department of Plant and Animal Biology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Sadat Aghili
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
14
|
Ekstedt N, Jamioł-Milc D, Pieczyńska J. Importance of Gut Microbiota in Patients with Inflammatory Bowel Disease. Nutrients 2024; 16:2092. [PMID: 38999840 PMCID: PMC11242987 DOI: 10.3390/nu16132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic diseases of the digestive system with a multifactorial and not fully understood etiology. There is research suggesting that they may be initiated by genetic, immunological, and lifestyle factors. In turn, all of these factors play an important role in the modulation of intestinal microflora, and a significant proportion of IBD patients struggle with intestinal dysbiosis, which leads to the conclusion that intestinal microflora disorders may significantly increase the risk of developing IBD. Additionally, in IBD patients, Toll-like receptors (TLRs) produced by intestinal epithelial cells and dendritic cells treat intestinal bacterial antigens as pathogens, which causes a disruption of the immune response, resulting in the development of an inflammatory process. This may result in the occurrence of intestinal dysbiosis, which IBD patients are significantly vulnerable to. In this study, we reviewed scientific studies (in particular, systematic reviews with meta-analyses, being studies with the highest level of evidence) regarding the microflora of patients with IBD vs. the microflora in healthy people, and the use of various strains in IBD therapy.
Collapse
Affiliation(s)
- Natalia Ekstedt
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Joanna Pieczyńska
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
15
|
de Carvalho BT, Subotić A, Vandecruys P, Deleu S, Vermeire S, Thevelein JM. Enhancing probiotic impact: engineering Saccharomyces boulardii for optimal acetic acid production and gastric passage tolerance. Appl Environ Microbiol 2024; 90:e0032524. [PMID: 38752748 PMCID: PMC11218656 DOI: 10.1128/aem.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 06/19/2024] Open
Abstract
Saccharomyces boulardii has been a subject of growing interest due to its potential as a probiotic microorganism with applications in gastrointestinal health, but the molecular cause for its probiotic potency has remained elusive. The recent discovery that S. boulardii contains unique mutations causing high acetic acid accumulation and inhibition of bacterial growth provides a possible clue. The natural S. boulardii isolates Sb.P and Sb.A are homozygous for the recessive mutation whi2S270* and accumulate unusually high amounts of acetic acid, which strongly inhibit bacterial growth. However, the homozygous whi2S270* mutation also leads to acetic acid sensitivity and acid sensitivity in general. In the present study, we have constructed a new S. boulardii strain, derived from the widely therapeutically used CMCN I-745 strain (isolated from the pharmaceutical product Enterol), producing even higher levels of acetic acid while keeping the same tolerance toward low pH as the parent Enterol (ENT) strain. This newly engineered strain, named ENT3, has a homozygous deletion of ACH1 and strong overexpression of ALD4. It is also able to accumulate much higher acetic acid concentrations when growing on low glucose levels, in contrast to the ENT wild-type and Sb.P strains. Moreover, we show the antimicrobial capacity of ENT3 against gut pathogens in vitro and observed that higher acetic acid production might correlate with better persistence in the gut in healthy mice. These findings underscore the possible role of the unique acetic acid production and its potential for improvement of the probiotic action of S. boulardii.IMPORTANCESuperior variants of the probiotic yeast Saccharomyces boulardii produce high levels of acetic acid, which inhibit the growth of bacterial pathogens. However, these strains also show increased acid sensitivity, which can compromise the viability of the cells during their passage through the stomach. In this work, we have developed by genetic engineering a variant of Saccharomyces boulardii that produces even higher levels of acetic acid and does not show enhanced acid sensitivity. We also show that the S. boulardii yeasts with higher acetic acid production persist longer in the gut, in agreement with a previous work indicating competition between probiotic yeast and bacteria for residence in the gut.
Collapse
Affiliation(s)
| | - Ana Subotić
- NovelYeast bv, Bio-Incubator BIO4, Leuven-Heverlee, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Sara Deleu
- Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Johan M. Thevelein
- NovelYeast bv, Bio-Incubator BIO4, Leuven-Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| |
Collapse
|
16
|
Sjomina O, Poļaka I, Suhorukova J, Vangravs R, Paršutins S, Knaze V, Park JY, Herrero R, Murillo R, Leja M. Randomised clinical trial: efficacy and safety of H. pylori eradication treatment with and without Saccharomyces boulardii supplementation. Eur J Cancer Prev 2024; 33:217-222. [PMID: 37942999 DOI: 10.1097/cej.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND Standard triple therapy is commonly prescribed Helicobacter pylori eradication regimen in Europe. However, the world is witnessing declines in eradication success. It is crucial to find better treatment options. AIMS To evaluate efficacy, compliance and side effects of H. pylori eradication treatment by adding Saccharomyces boulardii . METHODS We conducted a randomized clinical trial within the GISTAR cohort, consisting of healthy individuals aged 40-64 years. Participants were administered clarithromycin-containing triple therapy (clarithromycin 500 mg, amoxicillin 1000 mg, esomeprazole 40 mg) twice daily. Randomization was applied based on two factors: 1)addition of Saccharomyces boulardii CNCM I-745 500 mg BID or not; 2)treatment duration of 10 or 14 days. Treatment completion and adverse events were assessed via telephone interview 21-28 days after medication delivery. The efficacy was evaluated using a 13C-urea breath test (UBT) six months after treatment. RESULTS Altogether 404 participants were enrolled; data on adverse events were available from 391. Overall, 286 participants received follow-up UBT. Intention-to-treat analysis revealed higher eradication rates for 10-day probiotic treatment (70.8% vs. 54.6%, P = 0.022), but not for 14-day. Probiotic subgroups combined showed non-significantly higher efficacy in per-protocol analysis (90.6% vs. 85.0%, P = 0.183). S. boulardii reduced the frequency of adverse events ( P = 0.033) in 14-day regimen, particularly treatment-associated diarrhea ( P = 0.032). However, after the adjustment to control Type I error, results lost their significance. CONCLUSION Addition of S. boulardii to 14-day clarithromycin-containing triple regimen non-significantly lowers the likelihood of diarrhea and does not increase the eradication rate.
Collapse
Affiliation(s)
- Olga Sjomina
- Institute of Clinical and Preventive Medicine
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | | | | | | | - Viktoria Knaze
- International Agency for Research on Cancer (IARC/WHO), Early Detection, Prevention and Infections Branch, Lyon, France
| | - Jin Young Park
- International Agency for Research on Cancer (IARC/WHO), Early Detection, Prevention and Infections Branch, Lyon, France
| | - Rolando Herrero
- International Agency for Research on Cancer (IARC/WHO), Early Detection, Prevention and Infections Branch, Lyon, France
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, Costa Rica
| | - Raul Murillo
- Hospital Universitario San Ignacio, Bogota, Columbia
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
17
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Dudzicz-Gojowy S, Więcek A, Adamczak M. The Role of Probiotics in the Prevention of Clostridioides difficile Infection in Patients with Chronic Kidney Disease. Nutrients 2024; 16:671. [PMID: 38474799 DOI: 10.3390/nu16050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In patients suffering from chronic kidney disease (CKD), substantial unfavourable alterations in the intestinal microbiota composition, i.e., dysbiosis, have been noted. The main causes of such dysbiosis among others are insufficient dietary fibre content in the diet, fluid restrictions, medications used, and physical activity limitation. One clinically important consequence of dysbiosis in CKD patients is high risk of Clostridioides difficile infection (CDI). In observational studies, it was found that CDI is more frequent in CKD patients than in the general population. This appears to be related to high hospitalization rate and more often antibiotic therapy use, leading up to the occurrence of dysbiosis. Therefore, the use of probiotics in CKD patients may avert changes in the intestinal microbiota, which is the major risk factor of CDI. The aim of this review paper is to summarize the actual knowledge concerning the use of probiotics in CDI prevention in CKD patients in the context of CDI prevention in the general population.
Collapse
Affiliation(s)
- Sylwia Dudzicz-Gojowy
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| |
Collapse
|
19
|
Zhu X, Zhang C, Feng S, He R, Zhang S. Intestinal microbiota regulates the gut-thyroid axis: the new dawn of improving Hashimoto thyroiditis. Clin Exp Med 2024; 24:39. [PMID: 38386169 PMCID: PMC10884059 DOI: 10.1007/s10238-024-01304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Intestinal microbiota plays an indispensable role in the host's innate immune system, which may be related to the occurrence of many autoimmune diseases. Hashimoto thyroiditis (HT) is one of the most common autoimmune diseases, and there is plenty of evidence indicating that HT may be related to genetics and environmental triggers, but the specific mechanism has not been proven clearly. Significantly, the composition and abundance of intestinal microbiota in patients with HT have an obvious difference. This phenomenon led us to think about whether intestinal microbiota can affect the progress of HT through some mechanisms. By summarizing the potential mechanism of intestinal microflora in regulating Hashimoto thyroiditis, this article explores the possibility of improving HT by regulating intestinal microbiota and summarizes relevant biomarkers as therapeutic targets, which provide new ideas for the clinical diagnosis and treatment of Hashimoto thyroiditis.
Collapse
Affiliation(s)
- Xiaxin Zhu
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310018, People's Republic of China
| | - Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Yousif D, Wu Y, Gonzales AA, Mathieu C, Zeng Y, Sample L, Terando S, Li T, Xiao J. Anti-Cariogenic Effects of S. cerevisiae and S. boulardii in S. mutans-C. albicans Cross-Kingdom In Vitro Models. Pharmaceutics 2024; 16:215. [PMID: 38399269 PMCID: PMC10891968 DOI: 10.3390/pharmaceutics16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the well-documented health benefits of the probiotic Saccharomyces, its application in oral health has not been comprehensively assessed. Dental caries is a transmissible disease initiated by acid production of cariogenic bacteria and yeast, such as Streptococcus mutans and Candida albicans, on tooth enamel and followed by subsequent enamel demineralization. Here, we investigated the effect of two Saccharomyces strains (Saccharomyces boulardii and Saccharomyces cerevisiae) on S. mutans-C. albicans cross-kingdom interactions using a cariogenic planktonic model. Viable cells, pH changes, and gene expression were measured. S. cerevisiae and S. boulardii inhibited the growth of C. albicans in dual- and multi-species conditions at 4, 6, and 20 h. Saccharomyces also inhibited C. albicans hyphal formation. Furthermore, Saccharomyces reduced the acidity of the culture medium, which usually plummeted below pH 5 when S. mutans and C. albicans were present in the model. The presence of Saccharomyces maintained the culture medium above 6 even after overnight incubation, demonstrating a protective potential against dental enamel demineralization. S. boulardii significantly down-regulated S. mutans atpD and eno gene expression. Overall, our results shed light on a new promising candidate, Saccharomyces, for dental caries prevention due to its potential to create a less cariogenic environment marked by a neutral pH and reduced growth of C. albicans.
Collapse
Affiliation(s)
- Dina Yousif
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Yan Wu
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430042, China
| | - Alexandria Azul Gonzales
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Christa Mathieu
- VCU College of Health Professions, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Lee Sample
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Sabrina Terando
- School of Arts & Sciences, University of Rochester, Rochester, NY 14627, USA;
| | - Ting Li
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| |
Collapse
|
21
|
Chen Y, Meng L, Yuan W, Gao Z, Zhang X, Xie B, Song J, Li J, Zhong J, Liu X. Gut Fungal Microbiota Alterations in Pulmonary Arterial Hypertensive Rats. Biomedicines 2024; 12:298. [PMID: 38397900 PMCID: PMC10886911 DOI: 10.3390/biomedicines12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiome's imbalance has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), yet the contribution of the gut mycobiome remains largely unclear. This study delineates the gut mycobiome profile in PAH and examines its interplay with the bacterial microbiome alterations. Fecal samples from monocrotaline-induced PAH rats and matched controls were subjected to internal transcribed spacer 1 (ITS1) sequencing for fungal community assessment and 16S ribosomal RNA (rRNA) gene sequencing for bacterial community characterization. Comparative analysis revealed no significant disparities in the overall mycobiome diversity between the PAH and control groups. However, taxonomic profiling identified differential mycobiome compositions, with the PAH group exhibiting a significant enrichment of genera such as Wallemia, unidentified_Branch02, Postia, Malassezia, Epicoccum, Cercospora, and Alternaria. Conversely, genera Xeromyces, unidentified_Plectosphaerellaceae, and Monilia were more abundant in the controls. Correlations of Malassezia and Wallemia abundance with hemodynamic parameters were observed. Indications of bidirectional fungal-bacterial community interactions were also noted. This investigation reveals distinct gut mycobiome alterations in PAH, which are intricately associated with concurrent bacterial microbiome changes, suggesting a possible contributory role of gut fungi in PAH pathophysiology. These findings underscore the potential for novel gut mycobiome-targeted therapeutic interventions in PAH management.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Liukun Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100032, China;
| | - Wen Yuan
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| | - Zehan Gao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Z.G.); (J.L.)
| | - Xun Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Boqia Xie
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiawei Song
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Z.G.); (J.L.)
| | - Jiuchang Zhong
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaoyan Liu
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (Y.C.); (B.X.); (J.S.)
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| |
Collapse
|
22
|
Hedin KA, Mirhakkak MH, Vaaben TH, Sands C, Pedersen M, Baker A, Vazquez-Uribe R, Schäuble S, Panagiotou G, Wellejus A, Sommer MOA. Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities. THE ISME JOURNAL 2024; 18:wrae212. [PMID: 39488793 PMCID: PMC11631509 DOI: 10.1093/ismejo/wrae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Metabolic exchanges between strains in gut microbial communities shape their composition and interactions with the host. This study investigates the metabolic synergy between potential probiotic bacteria and Saccharomyces boulardii, aiming to enhance anti-inflammatory effects within a multi-species probiotic community. By screening a collection of 85 potential probiotic bacterial strains, we identified two strains that demonstrated a synergistic relationship with S. boulardii in pairwise co-cultivation. Furthermore, we computationally predicted cooperative communities with symbiotic relationships between S. boulardii and these bacteria. Experimental validation of 28 communities highlighted the role of S. boulardii as a key player in microbial communities, significantly boosting the community's cell number and production of anti-inflammatory effectors, thereby affirming its essential role in improving symbiotic dynamics. Based on our observation, one defined community significantly activated the aryl hydrocarbon receptor-a key regulator of immune response-280-fold more effectively than the community without S. boulardii. This study underscores the potential of microbial communities for the design of more effective probiotic formulations.
Collapse
Affiliation(s)
- Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mohammad H Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Adam Baker
- Human Health Biosolution, Novonesis, Hørsholm 2970, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Center for Microbiology, VIB-KU Leuven, Leuven 3001, Belgium
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany
- Jena University Hospital, Friedrich Schiller University, Jena 07743, Germany
- Department of Medicine, University of Hong Kong, Hong Kong (SAR), China
| | - Anja Wellejus
- Human Health Biosolution, Novonesis, Hørsholm 2970, Denmark
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
23
|
Buttar J, Kon E, Lee A, Kaur G, Lunken G. Effect of diet on the gut mycobiome and potential implications in inflammatory bowel disease. Gut Microbes 2024; 16:2399360. [PMID: 39287010 PMCID: PMC11409510 DOI: 10.1080/19490976.2024.2399360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.
Collapse
Affiliation(s)
- J Buttar
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - E Kon
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - A Lee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - G Kaur
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - G Lunken
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
24
|
Siyal M, Abbas Z, Amir MR, Qadeer MA. Saccharomyces cerevisiae for abdominal pain and discomfort in irritable bowel syndrome patients. Pak J Med Sci 2024; 40:492-498. [PMID: 38356838 PMCID: PMC10862425 DOI: 10.12669/pjms.40.3.8349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024] Open
Abstract
Background Irritable Bowel Syndrome (IBS) leads to significant impairment of health-related quality of life, for the alleviation of which, the efficacy of available therapies is modest. Limited data is available on the role of Saccharomyces cerevisiae in treating patients with IBS. Methods Thirty patients with IBS as per Rome-IV criteria, visiting our outpatient department from March 2021 to October 2021, were given capsule Saccharomyces cerevisiae 500 mg twice daily for four weeks. Evaluation for abdominal pain symptoms was done every week and the patient's compliance was assessed. IBS Quality of Life (QOL) questionnaires were filled at baseline and after four weeks of treatment. The QOL and pain scales were adjusted to 0-100 for statistical analysis. Results Seventeen patients (56.7%) were males. The age range was 21-72 years (mean ± SD: 39. 63 ± 14.32), out of which 18(60%) patients were 20-40 years old. Body Mass Index (BMI) ranged from 18-33 (25.33 ± 4.09), and 17 (56.67%) were overweight or obese. Sixteen patients had constipation predominant (53.3%), nine had diarrhea-predominant (30%), and five had mixed-type (16.7%) IBS. There was an improvement in the pain score from 63.81 at week 0 (W0) to 20.48 at the end of week 4 (W4) (p<0.001). An improvement was noted in all the eight categories of IBS QOL questionnaire, i.e., dysphoria (p<0.001), interference with activity (p<0.001), body image (p<0.001), health worry (p<0.001), food avoidance (p<0.001), social reaction (p<0.001), sexual function (p<0.001) and relationships (p<0.001). There was an overall improvement in QOL score from a mean of 24.68 at baseline to 58.09 at the end of the study duration (p<0.001). The improvement in the pain score showed a positive correlation with the improvement in quality of life (p<0.001). Conclusion Treatment with Saccharomyces cerevisiae improved the pain and quality of life in patients with IBS and it appears to be a promising option for alleviating symptoms in these patients.
Collapse
Affiliation(s)
- Mehreen Siyal
- Mehreen Siyal, MBBS Department of Gastroenterology and Hepatology, Dr. Ziauddin Hospital, Clifton Campus, Karachi - Pakistan
| | - Zaigham Abbas
- Zaigham Abbas, FCPS, FACG Department of Gastroenterology and Hepatology, Dr. Ziauddin Hospital, Clifton Campus, Karachi - Pakistan
| | - Muhammad Rafay Amir
- Muhammad Rafay Amir, MBBS Department of Gastroenterology and Hepatology, Dr. Ziauddin Hospital, Clifton Campus, Karachi - Pakistan
| | - Muhammad Ali Qadeer
- Muhammad Ali Qadeer, MBBS Department of Gastroenterology and Hepatology, Dr. Ziauddin Hospital, Clifton Campus, Karachi - Pakistan
| |
Collapse
|
25
|
Liu LH, Han B, Tao J, Zhang K, Wang XK, Wang WY. The effect of Saccharomyces boulardii supplementation on Helicobacter pylori eradication in children: a systematic review and meta-analysis of Randomized controlled trials. BMC Infect Dis 2023; 23:878. [PMID: 38102568 PMCID: PMC10722661 DOI: 10.1186/s12879-023-08896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND It is unclear whether Saccharomyces boulardii (S. boulardii) supplementation in standard triple therapy (STT) is effective in eradicating Helicobacter pylori (H. pylori) infection in children. We therefore conducted a meta-analysis of randomized controlled trials (RCTs) to assess the effect of S. boulardii supplementation on H. pylori eradication in children. METHODS We conducted electronic searches in PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure and Wanfang database from the beginning up to September 2023. A random-effects model was employed to calculate the pooled relative risk (RR) with 95% confidence intervals (CI) through a meta-analysis. RESULTS Fifteen RCTs (involving 2156 patients) were included in our meta-analysis. Results of the meta-analysis indicated that S. boulardii in combination with STT was more effective than STT alone (intention-to-treat analysis : 87.7% vs. 75.9%, RR = 1.14, 95% CI: 1.10-1.19, P < 0.00001; per-protocol analysis : 88.5% vs. 76.3%, RR = 1.15, 95% CI: 1.10-1.19, P < 0.00001). The S. boulardii supplementation group had a significantly lower incidence of total adverse events (n = 6 RCTs, 9.2% vs. 29.2%, RR = 0.32, 95% CI: 0.21-0.48, P < 0.00001), diarrhea (n = 13 RCTs, 14.7% vs. 32.4%, RR = 0.46, 95% CI: 0.37-0.56, P < 0.00001), and nausea (n = 11 RCTs, 12.7% vs. 21.3%, RR = 0.53, 95% CI: 0.40-0.72, P < 0.0001) than STT group alone. Similar results were also observed in the incidence of vomiting, constipation, abdominal pain, abdominal distention, epigastric discomfort, poor appetite and stomatitis. CONCLUSIONS Current evidence indicated that S. boulardii supplementing with STT could improve the eradication rate of H. pylori, and concurrently decrease the incidence of total adverse events and gastrointestinal adverse events in children.
Collapse
Affiliation(s)
- Lian-Hua Liu
- Department of Pediatric Gastroenterology, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Guizhou provincial people's hospital, Guiyang, Guizhou Province, China.
| | - Bin Han
- Department of Endoscopy, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Guizhou provincial people's hospital, Guiyang, Guizhou Province, China
| | - Jing Tao
- Department of Pediatric Gastroenterology, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Guizhou provincial people's hospital, Guiyang, Guizhou Province, China
| | - Kai Zhang
- Department of Pediatric Gastroenterology, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Guizhou provincial people's hospital, Guiyang, Guizhou Province, China
| | - Xi-Ke Wang
- Department of Pediatric Gastroenterology, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Guizhou provincial people's hospital, Guiyang, Guizhou Province, China
| | - Wen-Yu Wang
- Department of Pediatric Gastroenterology, Guizhou Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 395 Jinzhu East Road, Guanshanhu District, Guiyang City, Guizhou Province, China.
| |
Collapse
|
26
|
Batista KS, de Albuquerque JG, de Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, Aquino JDS. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev 2023; 36:181-198. [PMID: 34668465 PMCID: PMC8593414 DOI: 10.1017/s0954422421000317] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Scientists are working to identify prevention/treatment methods and clinical outcomes of coronavirus disease 2019 (COVID-19). Nutritional status and diet have a major impact on the COVID-19 disease process, mainly because of the bidirectional interaction between gut microbiota and lung, that is, the gut-lung axis. Individuals with inadequate nutritional status have a pre-existing imbalance in the gut microbiota and immunity as seen in obesity, diabetes, hypertension and other chronic diseases. Communication between the gut microbiota and lungs or other organs and systems may trigger worse clinical outcomes in viral respiratory infections. Thus, this review addresses new insights into the use of probiotics and prebiotics as a preventive nutritional strategy in managing respiratory infections such as COVID-19 and highlighting their anti-inflammatory effects against the main signs and symptoms associated with COVID-19. Literature search was performed through PubMed, Cochrane Library, Scopus and Web of Science databases; relevant clinical articles were included. Significant randomised clinical trials suggest that specific probiotics and/or prebiotics reduce diarrhoea, abdominal pain, vomiting, headache, cough, sore throat, fever, and viral infection complications such as acute respiratory distress syndrome. These beneficial effects are linked with modulation of the microbiota, products of microbial metabolism with antiviral activity, and immune-regulatory properties of specific probiotics and prebiotics through Treg cell production and function. There is a need to conduct clinical and pre-clinical trials to assess the combined effect of consuming these components and undergoing current therapies for COVID-19.
Collapse
Affiliation(s)
- Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Juliana Gondim de Albuquerque
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária s/n, Recife, Brazil
- Post Graduate in Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana (UAM), Ciudad de Mexico, Mexico
| | - Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Maria Luiza Rolim Bezerra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Mariany Bernardino da Silva Barbalho
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
27
|
Ullah M, Rizwan M, Raza A, Xia Y, Han J, Ma Y, Chen H. Snapshot of the Probiotic Potential of Kluveromyces marxianus DMKU-1042 Using a Comparative Probiogenomics Approach. Foods 2023; 12:4329. [PMID: 38231794 DOI: 10.3390/foods12234329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Kluyveromyces marxianus is a rapidly growing thermotolerant yeast that secretes a variety of lytic enzymes, utilizes different sugars, and produces ethanol. The probiotic potential of this yeast has not been well explored. To evaluate its probiotic potential, the yeast strain Kluyveromyces marxianus DMKU3-1042 was analyzed using next-generation sequencing technology. Analysis of the genomes showed that the yeast isolates had a GC content of 40.10-40.59%. The isolates had many genes related to glycerol and mannose metabolism, as well as genes for acetoin and butanediol metabolism, acetolactate synthase subunits, and lactic acid fermentation. The strain isolates were also found to possess genes for the synthesis of different vitamins and Coenzyme A. Genes related to heat and hyperosmotic shock tolerance, as well as protection against reactive oxygen species were also found. Additionally, the isolates contained genes for the synthesis of lysine, threonine, methionine, and cysteine, as well as genes with anticoagulation and anti-inflammatory properties. Based on our analysis, we concluded that the strain DMKU3-1042 possesses probiotic properties that make it suitable for use in food and feed supplementation.
Collapse
Affiliation(s)
- Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Ali Raza
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yutong Xia
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yi Ma
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
28
|
Asghari KM, Dolatkhah N, Ayromlou H, Mirnasiri F, Dadfar T, Hashemian M. The effect of probiotic supplementation on the clinical and para-clinical findings of multiple sclerosis: a randomized clinical trial. Sci Rep 2023; 13:18577. [PMID: 37903945 PMCID: PMC10616192 DOI: 10.1038/s41598-023-46047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelination disease of the central nervous system (CNS). The gut-brain axis involves communication between the nervous, endocrine, and immune systems. Probiotics can positively impact immune and inflammatory responses by regulating gut microbiota. A total of 40 MS patients (average age of 34.38 ± 6.65) were examined to determine the effect of the Saccharomyces boulardii supplement for four months compared to a placebo. The results showed that the Saccharomyces boulardii significantly decreased the inflammatory marker high-sensitivity C-reactive protein (hs-CRP) compared to the placebo (P < 0.001). The serum antioxidant capacity (TAC) also increased significantly in the probiotic group compared to the placebo (p = 0.004). Both the probiotic and placebo groups showed a reduction in the oxidative stress indicator malondialdehyde (MDA), but there was no significant difference between the two groups. Pain intensity (measured by Visual Analogue Scale) and fatigue severity (measured by Fatigue Severity Scale) significantly decreased in the probiotic group compared to the placebo (p = 0.004 and p = 0.01, respectively). The probiotic group experienced significant improvement in some quality of life scales (measured by 36-Item Short Form Survey) and somatic and social dysfunction subscale of General Health Questionnaire scores compared to the placebo group (p = 0.01). The study suggests that the Saccharomyces boulardii probiotic supplement may benefit inflammatory markers, oxidative stress indicators, pain, fatigue, and quality of life in MS patients.
Collapse
Affiliation(s)
- Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Emam Reza Hospital, Tabriz University of Medical Sciences, Golgasht, Azadi Ave., Tabriz, Iran.
| | - Hormoz Ayromlou
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mirnasiri
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Dadfar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, USA
| |
Collapse
|
29
|
Ahlawat GM, Singh PK. Methods of Determining Irritable Bowel Syndrome and Efficiency of Probiotics in Treatment: A Review. CURRENT THERAPEUTIC RESEARCH 2023; 99:100721. [PMID: 38021264 PMCID: PMC10665699 DOI: 10.1016/j.curtheres.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Background Irritable bowel syndrome (IBS) is a prevalent lifestyle-associated ailment linked to the gut microbiota that significantly influences patients' quality of life. A notable correlation exists between Blastocystis infections and susceptibility to IBS, with infected individuals exhibiting an increased likelihood of developing the condition. Despite promising results from using probiotics to modulate the gut microbiota and manage IBS, the precise mechanisms and potential risks remain unclear. Objective This review aims to explore the therapeutic potential of probiotics, particularly Saccharomyces boulardii, in the management of IBS, highlighting the role of the gut microbiota and the gut-brain axis in IBS pathophysiology. Methods A comprehensive literature survey was conducted to examine the association between gut microbiota and IBS, the role of probiotics in managing IBS, the mechanisms of their action, and the potential risks associated with their long-term use. Additionally, this study addresses the influence of Blastocystis infections on IBS susceptibility and evaluates various ongoing clinical trials investigating probiotic use for IBS. Results S boulardii, a yeast species with probiotic properties, has demonstrated effectiveness in both the treatment and prophylaxis of IBS. Its administration is associated with a decrease in the proinflammatory cytokine interleukin 8 and an increase in the anti-inflammatory cytokine interleukin 10. Probiotics appear to function by inhibiting the growth of pathogenic microorganisms and regulating neurotransmitter activity, influencing the gut-brain axis. However, selecting appropriate probiotic strains and dosing regimens is crucial because of potential adverse effects, such as infections and allergic reactions. Conclusions Probiotics, specifically S boulardii, offer a promising avenue for IBS management by modulating gut microbiota. However, further research is necessary to delineate the precise mechanisms of action, optimal strains, dosing regimens for IBS treatment, and potential risks associated with long-term use. A comprehensive approach incorporating probiotics, a low-FODMAP diet, and cognitive-behavioral therapy may provide effective management of IBS symptoms.
Collapse
Affiliation(s)
- Geetika M. Ahlawat
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Prabhat K. Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
30
|
Gopalan S, Ganapathy S, Mitra M, Neha, Kumar Joshi D, Veligandla KC, Rathod R, Kotak BP. Unique Properties of Yeast Probiotic Saccharomyces boulardii CNCM I-745: A Narrative Review. Cureus 2023; 15:e46314. [PMID: 37927652 PMCID: PMC10621882 DOI: 10.7759/cureus.46314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
Probiotics, both bacterial and yeast, have long been associated with a beneficial health history and human well-being. Among yeasts, Saccharomyces is a genus that is efficacious in rendering better human health, with Saccharomyces boulardii (S. boulardii) CNCM I-745 being classified as a probiotic agent. The present review highlights the unique properties of S. boulardii and its rolein the prevention of antibiotic-associated diarrhea (AAD) and pediatric acute gastroenteritis (PAGE) in comparison to bacterial probiotics. Its unique properties,such as viability over a wide pH range, inability to acquire antibiotic resistance genes, and property to achieve a steady state rapidly, have given S. boulardii an edge over bacterial probiotics. In AAD patients, prophylactic use of S. boulardii has shown a significantly lower risk of AAD (in comparison to controls) and restored the diversity of gut microbiota. Among Indian children with PAGE, S. boulardii CNCM I-745 was found superior to Lactobacillus rhamnosus GG and four strains of Bacillus clausii in shortening the duration of diarrhea and reducing the length of hospital stay. S. boulardii CNCM I-745 being considered a safe probiotic for use in children and adults also finds recommendations in several international guidelines for the management of acute diarrhea. The current review discusses evidence for the proven efficacy and safety of S. boulardii CNCM I-745 as a probiotic for preventing gastrointestinal disorders.
Collapse
Affiliation(s)
- Sarath Gopalan
- Pediatrics, Madhukar Rainbow Children's Hospital, New Delhi, IND
| | | | - Monjori Mitra
- Pediatrics, Institute of Child Health (ICH), Kolkata, IND
| | - Neha
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | | | | | - Rahul Rathod
- Ideation and Clinical Research/Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| | - Bhavesh P Kotak
- Medical Affairs, Dr. Reddy's Laboratories Ltd., Hyderabad, IND
| |
Collapse
|
31
|
Poto R, Laniro G, de Paulis A, Spadaro G, Marone G, Gasbarrini A, Varricchi G. Is there a role for microbiome-based approach in common variable immunodeficiency? Clin Exp Med 2023; 23:1981-1998. [PMID: 36737487 PMCID: PMC9897624 DOI: 10.1007/s10238-023-01006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by low levels of serum immunoglobulins and increased susceptibility to infections, autoimmune disorders and cancer. CVID embraces a plethora of heterogeneous manifestations linked to complex immune dysregulation. While CVID is thought to be due to genetic defects, the exact cause of this immune disorder is unknown in the large majority of cases. Compelling evidences support a linkage between the gut microbiome and the CVID pathogenesis, therefore a potential for microbiome-based treatments to be a therapeutic pathway for this disorder. Here we discuss the potential of treating CVID patients by developing a gut microbiome-based personalized approach, including diet, prebiotics, probiotics, postbiotics and fecal microbiota transplantation. We also highlight the need for a better understanding of microbiota-host interactions in CVID patients to prime the development of improved preventive strategies and specific therapeutic targets.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità (ISS), Rome, Italy
| | - Gianluca Laniro
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Rome, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO), Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
32
|
Pantazi AC, Balasa AL, Mihai CM, Chisnoiu T, Lupu VV, Kassim MAK, Mihai L, Frecus CE, Chirila SI, Lupu A, Andrusca A, Ionescu C, Cuzic V, Cambrea SC. Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients 2023; 15:3647. [PMID: 37630837 PMCID: PMC10457741 DOI: 10.3390/nu15163647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The first 1000 days after birth represent a critical window for gut microbiome development, which is essential for immune system maturation and overall health. The gut microbiome undergoes major changes during this period due to shifts in diet and environment. Disruptions to the microbiota early in life can have lasting health effects, including increased risks of inflammatory disorders, autoimmune diseases, neurological disorders, and obesity. Maternal and environmental factors during pregnancy and infancy shape the infant gut microbiota. In this article, we will review how maintaining a healthy gut microbiome in pregnancy and infancy is important for long-term infant health. Furthermore, we briefly include fungal colonization and its effects on the host immune function, which are discussed as part of gut microbiome ecosystem. Additionally, we will describe how potential approaches such as hydrogels enriched with prebiotics and probiotics, gut microbiota transplantation (GMT) during pregnancy, age-specific microbial ecosystem therapeutics, and CRISPR therapies targeting the gut microbiota hold potential for advancing research and development. Nevertheless, thorough evaluation of their safety, effectiveness, and lasting impacts is crucial prior to their application in clinical approach. The article emphasizes the need for continued research to optimize gut microbiota and immune system development through targeted early-life interventions.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Larisia Mihai
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Corina Elena Frecus
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Antonio Andrusca
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Constantin Ionescu
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (S.I.C.)
| | - Viviana Cuzic
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
33
|
Ma L, Wang L, Zhang Z, Xiao D. Research Progress of Biological Feed in Beef Cattle. Animals (Basel) 2023; 13:2662. [PMID: 37627453 PMCID: PMC10451282 DOI: 10.3390/ani13162662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Biological feed is a feed product developed through bioengineering technologies such as fermentation engineering, enzyme engineering, protein engineering, and genetic engineering. It possesses functional characteristics of high nutritional value and good palatability that can improve feed utilization, replace antibiotics, enhance the health level of livestock and poultry, improve the quality of livestock products, and promote a better breeding environment. A comprehensive review is provided on the types of biological feed, their mechanism of action, fermenting strains, fermenting raw material resources, and their current status in animal production to facilitate in-depth research and development of applications.
Collapse
Affiliation(s)
| | | | | | - Dingfu Xiao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.M.); (L.W.); (Z.Z.)
| |
Collapse
|
34
|
Collins JH, Kunyeit L, Weintraub S, Sharma N, White C, Haq N, Anu-Appaiah KA, Rao RP, Young EM. Genetic basis for probiotic yeast phenotypes revealed by nanopore sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad093. [PMID: 37103477 PMCID: PMC10411601 DOI: 10.1093/g3journal/jkad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Probiotic yeasts are emerging as preventative and therapeutic solutions for disease. Often ingested via cultured foods and beverages, they can survive the harsh conditions of the gastrointestinal tract and adhere to it, where they provide nutrients and inhibit pathogens like Candida albicans. Yet, little is known of the genomic determinants of these beneficial traits. To this end, we have sequenced 2 food-derived probiotic yeast isolates that mitigate fungal infections. We find that the first strain, KTP, is a strain of Saccharomyces cerevisiae within a small clade that lacks any apparent ancestry from common European/wine S. cerevisiae strains. Significantly, we show that S. cerevisiae KTP genes involved in general stress, pH tolerance, and adherence are markedly different from S. cerevisiae S288C but are similar to the commercial probiotic yeast species S. boulardii. This suggests that even though S. cerevisiae KTP and S. boulardii are from different clades, they may achieve probiotic effect through similar genetic mechanisms. We find that the second strain, ApC, is a strain of Issatchenkia occidentalis, one of the few of this family of yeasts to be sequenced. Because of the dissimilarity of its genome structure and gene organization, we infer that I. occidentalis ApC likely achieves a probiotic effect through a different mechanism than the Saccharomyces strains. Therefore, this work establishes a strong genetic link among probiotic Saccharomycetes, advances the genomics of Issatchenkia yeasts, and indicates that probiotic activity is not monophyletic and complimentary mixtures of probiotics could enhance health benefits beyond a single species.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Lohith Kunyeit
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Sarah Weintraub
- Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nilesh Sharma
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Charlotte White
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nabeeha Haq
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
35
|
Díaz AB, Durán-Guerrero E, Valiente S, Castro R, Lasanta C. Development and Characterization of Probiotic Beers with Saccharomyces boulardii as an Alternative to Conventional Brewer's Yeast. Foods 2023; 12:2912. [PMID: 37569181 PMCID: PMC10418778 DOI: 10.3390/foods12152912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The development of new non-dairy probiotic foods is interesting, given lactose intolerance, milk allergies, and the growing trend of vegetarianism. In this paper, beer has been used as a probiotic delivery matrix, using Saccharomyces boulardii as an alternative to conventional brewer's yeast. The strain was able to grow in worts prepared with hops containing different alpha-acid concentrations, attaining in all cases a final cell concentration above 1·108 cells mL-1. Some differences were found in the physicochemical parameters of beers brewed with S. boulardii compared to those brewed with a standard brewer's yeast. Probiotic beers turned out to be less cloudy, which could help with a possible filtering step; less alcoholic in some cases; a healthier alternative; and with a slightly lower pH, interesting for the reduction of spoilage risk. Thirty volatile compounds were determined in the samples, and, in general, the beers brewed with the probiotic yeast presented significantly higher concentrations for the majority of the studied volatile compounds. In addition, multivariate statistical analysis was successfully performed to differentiate the beers obtained in terms of their volatile composition. Probiotic and standard beers were also subjected to sensory analysis, and they presented similar results in their overall impression.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain;
| | - Sergio Valiente
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain;
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (A.B.D.); (S.V.); (C.L.)
| |
Collapse
|
36
|
Egea MB, de Oliveira Filho JG, Lemes AC. Investigating the Efficacy of Saccharomyces boulardii in Metabolic Syndrome Treatment: A Narrative Review of What Is Known So Far. Int J Mol Sci 2023; 24:12015. [PMID: 37569390 PMCID: PMC10418856 DOI: 10.3390/ijms241512015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is characterized by complex metabolic changes involving a cluster of co-occurring conditions, such as abdominal obesity, high blood pressure, high fasting plasma glucose, high serum triglycerides, and high LDL cholesterol levels or low HDL cholesterol levels. The incidence and risk factors of MetS occurrence increase every year. It is estimated that MetS affects approximately 30% of the population of some countries. Therefore, novel strategies are being studied to reduce the negative impact of having an unbalanced diet and a lack of physical activity. One of these strategies is the administration of probiotic microorganisms, such as the yeast Saccharomyces boulardii, which has been associated with several beneficial health effects (including modulation of the intestinal microbiota and improvement of the inflammatory, antioxidant, antibacterial, antitumor, and anti-inflammatory profiles). Thus, the objective of this study was to review the risk factors of MetS occurrence and the beneficial effects of S. boulardii ingestion in the treatment of MetS. Here, we critically evaluate the treatment necessary to promote these benefits. Using the pre-established inclusion criteria, eight studies were reviewed, including five animal and three human studies. The results reported the regulation of the lipid profile, modulation of the intestinal microbiota and gene expression, and a decrease in mass gain as positive results when S. boulardii was administered. Although more experiments are needed to validate these results, especially using human models, there is a trend toward improvement in MetS and a reduction in its risk factors with the administration of S. boulardii.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde 75901-970, Brazil
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
| |
Collapse
|
37
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
38
|
Doar NW, Samuthiram SD. Qualitative Analysis of the Efficacy of Probiotic Strains in the Prevention of Antibiotic-Associated Diarrhea. Cureus 2023; 15:e40261. [PMID: 37440799 PMCID: PMC10335840 DOI: 10.7759/cureus.40261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/15/2023] Open
Abstract
Antibiotic-associated diarrhea is often managed by the withdrawal of the culprit antibiotics or the administration of alternative antibiotics when a Clostridium difficile infection (CDI) is suspected, an infection that tends to be the most common causative agent of the disease. Probiotics are also gaining popularity as alternative therapies, and it was hypothesized in this article that a Lactobacillus strain is the most efficacious probiotic for the prevention of antibiotic-associated diarrhea. This article conducted a literature review investigating the relative efficacy of the Lactobacillus, Bifidobacterium, and Saccharomyces probiotic strains as effective alternative therapies for antibiotic-associated diarrhea. The literature searched was from the PubMed database. The inclusion filters were: random control trials (RCTs), clinical trials, meta-analysis, last 10 years, full-text articles available in English, and all articles published in peer-reviewed journals. All three probiotic genera had strains that demonstrated significant efficacy in the prevention of antibiotic-associated diarrhea. However, Saccharomyces boulardii I-745 tends to outperform all the strains as the most effective and the one with the fewest, if any, adverse effects. Whenever probiotics are considered for the prevention of antibiotic-associated diarrhea (AAD) in both pediatric and adult patients, S. boulardii I-745 should probably be prioritized.
Collapse
Affiliation(s)
- Nyier W Doar
- Medicine, Interfaith Medical Center, New York, USA
| | | |
Collapse
|
39
|
Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, Mihai L, Ungureanu A, Kassim MAK, Andrusca A, Nicolae M, Cuzic V, Lupu VV, Cambrea SC. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023; 15:nu15112529. [PMID: 37299492 DOI: 10.3390/nu15112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The intestinal microbiota is a diverse and complex microecosystem that lives and thrives within the human body. The microbiota stabilizes by the age of three. This microecosystem plays a crucial role in human health, particularly in the early years of life. Dysbiosis has been linked to the development of various allergic diseases with potential long-term implications. Next-generation sequencing methods have established that allergic diseases are associated with dysbiosis. These methods can help to improve the knowledge of the relationship between dysbiosis and allergic diseases. The aim of this review paper is to synthesize the current understanding on the development of the intestinal microbiota in children, the long-term impact on health, and the relationship between dysbiosis and allergic diseases. Furthermore, we examine the connection between the microbiome and specific allergies such as atopic dermatitis, asthma, and food allergies, and which mechanisms could determine the induction of these diseases. Furthermore, we will review how factors such as mode of delivery, antibiotic use, breastfeeding, and the environment influence the development of the intestinal flora, as well as review various interventions for the prevention and treatment of gut microbiota-related allergies.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Corina Elena Frecus
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adina Ungureanu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| | | | - Antonio Andrusca
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Maria Nicolae
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viviana Cuzic
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| |
Collapse
|
40
|
Yu J, Lv YM, Yang P, Jiang YZ, Qin XR, Wang XY. Safety and effectiveness of vonoprazan-based rescue therapy for Helicobacter pylori infection. World J Gastroenterol 2023; 29:3133-3144. [PMID: 37346155 PMCID: PMC10280792 DOI: 10.3748/wjg.v29.i20.3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/25/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Vonoprazan (VPZ)-based regimens are an effective first-line therapy for Helicobacter pylori (H. pylori) infection. However, their value as a rescue therapy needs to be explored. AIM To assess a VPZ-based regimen as H. pylori rescue therapy. METHODS This prospective, single-center, clinical trial was conducted between January and August 2022. Patients with a history of H. pylori treatment failure were administered 20 mg VPZ twice daily, 750 mg amoxicillin 3 times daily, and 250 mg Saccharomyces boulardii (S. boulardii) twice daily for 14 d (14-d VAS regimen). VPZ and S. boulardii were taken before meals, while amoxicillin was taken after meals. Within 3 d after the end of eradication therapy, all patients were asked to fill in a questionnaire to assess any adverse events they may have experienced. At least 4-6 wk after the end of eradication therapy, eradication success was assessed using a 13C-urea breath test, and factors associated with eradication success were explored. RESULTS Herein, 103 patients were assessed, and 68 patients were finally included. All included patients had 1-3 previous eradication failures. The overall eradication rates calculated using intention-to-treat and per-protocol analyses were 92.6% (63/68) and 92.3% (60/65), respectively. The eradication rate did not differ with the number of treatment failures (P = 0.433). The rates of clarithromycin, metronidazole, and levofloxacin resistance were 91.3% (21/23), 100.0% (23/23), and 60.9% (14/23), respectively. There were no cases of resistance to tetracycline, amoxicillin, or furazolidone. In 60.9% (14/23) patients, the H. pylori isolate was resistant to all 3 antibiotics (clarithromycin, metronidazole, and levofloxacin); however, eradication was achieved in 92.9% (13/14) patients. All patients showed metronidazole resistance, and had an eradication rate of 91.3% (21/23). The eradication rate was higher among patients without anxiety (96.8%) than among patients with anxiety (60.0%, P = 0.025). No severe adverse events occurred; most adverse events were mild and disappeared without intervention. Good compliance was seen in 95.6% (65/68) patients. Serological examination showed no significant changes in liver and kidney function. CONCLUSION VAS is a safe and effective rescue therapy, with an acceptable eradication rate (> 90%), regardless of the number of prior treatment failures. Anxiety may be associated with eradication failure.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Yi-Ming Lv
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Peng Yang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Yi-Zhou Jiang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Xiang-Rong Qin
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| | - Xiao-Yong Wang
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
41
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
42
|
Krawczyk A, Salamon D, Kowalska-Duplaga K, Zapała B, Książek T, Drażniuk-Warchoł M, Gosiewski T. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn's disease. World J Gastroenterol 2023; 29:2172-2187. [PMID: 37122605 PMCID: PMC10130967 DOI: 10.3748/wjg.v29.i14.2172] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Numerous studies have shown that in Crohn’s disease (CD), the gut microbiota is of great importance in the induction and maintenance of inflammation in the gastrointestinal tract. Until recently, studies have focused almost exclusively on bacteria in the gut. Lately, more attention has been paid to the role of intestinal fungi.
AIM To study the gut mycobiome analysis of pediatric patients with CD (in different stages of disease activity) compared to healthy children.
METHODS Fecal samples were collected from patients: With active, newly diagnosed CD (n = 50); active but previously diagnosed and treated CD (n = 16); non-active CD and who were in clinical remission (n = 39) and from healthy volunteers (n = 40). Fungal DNA was isolated from the samples. Next, next generation sequencing (MiSeq, Illumina) was performed. The composition of mycobiota was correlated with clinical and blood parameters.
RESULTS Candida spp. were overrepresented in CD patients, while in the control group, the most abundant genus was Saccharomyces. In CD patients, the percentage of Malassezia was almost twice that of the control (P < 0.05). In active CD patients, we documented a higher abundance of Debaryomyces hansenii (D. hansenii) compared to the non-active CD and control (P < 0.05) groups. Moreover, statistically significant changes in the abundance of Mycosphaerella, Rhodotorula, and Microidium were observed. The analyses at the species level and linear discriminant analysis showed that in each group it was possible to distinguish a specific species characteristic of a given patient population. Moreover, we have documented statistically significant correlations between: D. hansenii and patient age (negative); C. zeylanoides and patient age (positive); C. dubliniensis and calprotectin (positive); C. sake and calprotectin (positive); and C. tropicalis and pediatric CD activity index (PCDAI) (positive).
CONCLUSION Mycobiome changes in CD patients, and the positive correlation of some species with calprotectin or PCDAI, give strong evidence that fungi may be of key importance in the development of CD.
Collapse
Affiliation(s)
- Agnieszka Krawczyk
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Dominika Salamon
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Kinga Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Cracow 31-066, Poland
| | - Teofila Książek
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Marta Drażniuk-Warchoł
- Department of Pediatrics, Gastroenterology and Nutrition, University Children's Hospital, Cracow 30-663, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| |
Collapse
|
43
|
Vargas-Albores F, Garibay-Valdez E, Medina-Félix D, Martínez-Porchas M. The micro-eukaryotic community: An underrated component of the mammalian gut microbiota? Front Microbiol 2023; 14:1123513. [PMID: 37007497 PMCID: PMC10060968 DOI: 10.3389/fmicb.2023.1123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Affiliation(s)
- Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, Mexico
| | - Estefanía Garibay-Valdez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, Mexico
| | - Diana Medina-Félix
- Departamento de Ecología, Universidad Estatal de Sonora, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, Mexico
- *Correspondence: Marcel Martínez-Porchas
| |
Collapse
|
44
|
Nayebhashemi M, Enayati S, Zahmatkesh M, Madanchi H, Saberi S, Mostafavi E, Mirbzadeh Ardakani E, Azizi M, Khalaj V. Surface display of pancreatic lipase inhibitor peptides by engineered Saccharomyces boulardii: Potential as an anti-obesity probiotic. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
45
|
Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023; 13:metabo13020228. [PMID: 36837847 PMCID: PMC9962843 DOI: 10.3390/metabo13020228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong probiotic properties that can maintain the balance of intestinal flora. However, the role of Saccharomyces boulardii and Pediococcus acidilactici in felines has not been comprehensively studied to date. The aim of this study is to investigate the effect of multistrain probiotics consisting of Saccharomyces boulardii and Pediococcus acidilactici on the gut health of felines by modulating gut microbes and the production of metabolite SCFAs. The results show that the multistrain probiotic did not alter the intestinal microbial diversity and structure of short-haired domestic cats, promoted the colonization of beneficial bacteria, increased the levels of microbiota-derived SCFAs and fecal antioxidants, and reduced the levels of fecal inflammatory markers. In conclusion, the use of a multistrain probiotic in healthy, short-haired domestic cats can promote gut health by modulating gut microbes, improving microbiota-derived SCFA production, reducing inflammatory conditions, and improving antioxidant status. These results provide new insights for further exploration of the role of probiotics in the gut microbiome of cats.
Collapse
|
46
|
West AG, Digby A, Taylor MW. The mycobiota of faeces from the critically endangered kākāpō and associated nest litter. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Annie G. West
- Te Kura Mātauranga Koiora School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Te Papa Atawhai Department of Conservation, Kākāpō Recovery Programme, Invercargill, New Zealand
| | - Michael W. Taylor
- Te Kura Mātauranga Koiora School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
47
|
dos Santos DC, da Oliveira Filho JG, Andretta JR, Silva FG, Egea MB. Challenges in maintaining the probiotic potential in alcoholic beverage development. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
48
|
Vergara SC, Leiva MJ, Mestre MV, Vazquez F, Nally MC, Maturano YP. Non-saccharomyces yeast probiotics: revealing relevance and potential. FEMS Yeast Res 2023; 23:foad041. [PMID: 37777839 DOI: 10.1093/femsyr/foad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Abstract
Non-Saccharomyces yeasts are unicellular eukaryotes that play important roles in diverse ecological niches. In recent decades, their physiological and morphological properties have been reevaluated and reassessed, demonstrating the enormous potential they possess in various fields of application. Non-Saccharomyces yeasts have gained relevance as probiotics, and in vitro and in vivo assays are very promising and offer a research niche with novel applications within the functional food and nutraceutical industry. Several beneficial effects have been described, such as antimicrobial and antioxidant activities and gastrointestinal modulation and regulation functions. In addition, several positive effects of bioactive compounds or production of specific enzymes have been reported on physical, mental and neurodegenerative diseases as well as on the organoleptic properties of the final product. Other points to highlight are the multiomics as a tool to enhance characteristics of interest within the industry; as well as microencapsulation offer a wide field of study that opens the niche of food matrices as carriers of probiotics; in turn, non-Saccharomyces yeasts offer an interesting alternative as microencapsulating cells of various compounds of interest.
Collapse
Affiliation(s)
- Silvia Cristina Vergara
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María José Leiva
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - María Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - María Cristina Nally
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Godoy Cruz 2290 Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| |
Collapse
|
49
|
Austriaco N. Yeast oral vaccines against infectious diseases. Front Microbiol 2023; 14:1150412. [PMID: 37138614 PMCID: PMC10149678 DOI: 10.3389/fmicb.2023.1150412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Vaccines that are delivered orally have several advantages over their counterparts that are administered via injection. Despite the advantages of oral delivery, however, approved oral vaccines are currently limited either to diseases that affect the gastrointestinal tract or to pathogens that have a crucial life cycle stage in the gut. Moreover, all of the approved oral vaccines for these diseases involve live-attenuated or inactivated pathogens. This mini-review summarizes the potential and challenges of yeast oral vaccine delivery systems for animal and human infectious diseases. These delivery systems utilize whole yeast recombinant cells that are consumed orally to transport candidate antigens to the immune system of the gut. This review begins with a discussion of the challenges associated with oral administration of vaccines and the distinct benefits offered by whole yeast delivery systems over other delivery systems. It then surveys the emerging yeast oral vaccines that have been developed over the past decade to combat animal and human diseases. In recent years, several candidate vaccines have emerged that can elicit the necessary immune response to provide significant protection against challenge by pathogen. They serve as proof of principle to show that yeast oral vaccines hold much promise.
Collapse
|
50
|
Mercer EM, Arrieta MC. Probiotics to improve the gut microbiome in premature infants: are we there yet? Gut Microbes 2023; 15:2201160. [PMID: 37122152 PMCID: PMC10153018 DOI: 10.1080/19490976.2023.2201160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Gut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants.
Collapse
Affiliation(s)
- Emily M. Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|