1
|
Staršíchová A. SR-B1-/-ApoE-R61h/h Mice Mimic Human Coronary Heart Disease. Cardiovasc Drugs Ther 2024; 38:1123-1137. [PMID: 37273155 PMCID: PMC10240136 DOI: 10.1007/s10557-023-07475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world. Atherosclerosis underlies the majority of these pathologies and may result in sudden life-threatening events such as myocardial infarction or stroke. Current concepts consider a rupture (resp. erosion) of "unstable/vulnerable" atherosclerotic plaques as a primary cause leading to thrombus formation and subsequent occlusion of the artery lumen finally triggering an acute clinical event. We and others described SR-B1-/-ApoE-R61h/h mice mimicking clinical coronary heart disease in all major aspects: from coronary atherosclerosis through vulnerable plaque ruptures leading to thrombus formation/coronary artery occlusion, finally resulting in myocardial infarction/ischemia. SR-B1-/-ApoE-R61h/h mouse provides a valuable model to study vulnerable/occlusive plaques, to evaluate bioactive compounds as well as new anti-inflammatory and "anti-rupture" drugs, and to test new technologies in experimental cardiovascular medicine. This review summarizes and discuss our knowledge about SR-B1-/-ApoE-R61h/h mouse model based on recent publications and experimental observations from the lab.
Collapse
Affiliation(s)
- Andrea Staršíchová
- Graduate School Cell Dynamics and Disease, University of Muenster, Muenster, Germany.
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany.
- Novogenia Covid GmbH, Eugendorf, Austria.
| |
Collapse
|
2
|
Arias A, Quiroz A, Santander N, Morselli E, Busso D. Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility. Front Cell Dev Biol 2022; 10:941539. [PMID: 36187480 PMCID: PMC9518216 DOI: 10.3389/fcell.2022.941539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Collapse
Affiliation(s)
- Andreina Arias
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso Quiroz
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Dolores Busso
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- *Correspondence: Dolores Busso,
| |
Collapse
|
3
|
Hu S, Hu D, Wei H, Li SY, Wang D, Li CZ, Jiang J, Wang D, Cui G, Wang D. Functional Deletion/Insertion Promoter Variants in SCARB1 Associated With Increased Susceptibility to Lipid Profile Abnormalities and Coronary Heart Disease. Front Cardiovasc Med 2022; 8:800873. [PMID: 35097019 PMCID: PMC8793335 DOI: 10.3389/fcvm.2021.800873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Genetic variants in Scavenger receptor Class B Type 1 (SCARB1) influencing high-density lipoprotein cholesterol (HDL-C) and coronary heart disease (CHD) risk were identified by recent genome-wide association studies. Further study of potential functional variants in SCARB1 may provide new ideas of the complicated relationship between HDL-C and CHD. Methods: 2000 bp in SCARB1 promoter region was re-sequenced in 168 participants with extremely high plasma HDL-C and 400 control subjects. Putative risk alleles were identified using bioinformatics analysis and reporter-gene assays. Two indel variants, rs144334493 and rs557348251, respectively, were genotyped in 5,002 CHD patients and 5,175 control subjects. The underlying mechanisms were investigated. Results: Through resequencing, 27 genetic variants were identified. Results of genotyping in 5,002 CHD patients and 5,175 control subjects revealed that rs144334493 and rs557348251 were significantly associated with increased risk of CHD [odds ratio (OR): 1.28, 95% confidence interval (CI): 1.09 to 1.52, p = 0.003; OR: 2.65, 95% CI: 1.66–4.24, p = 4.4 × 10−5). Subsequent mechanism experiments demonstrated that rs144334493 deletion allele attenuated forkhead box A1 (FOXA1) binding to the promoter region of SCARB1, while FOXA1 overexpression reversely increased SR-BI expression. Conclusion: Genetic variants in SCARB1 promoter region significantly associated with the plasma lipid levels by affecting SR-BI expression and contribute to the susceptibility of CHD.
Collapse
Affiliation(s)
- Senlin Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-yang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-ze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Guanglin Cui
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guanglin Cui
| | - Daowu Wang
- State Key Laboratory of Reproductive Medicine, The Center for Clinical Reproductive Medicine and Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Daowu Wang
| |
Collapse
|
4
|
Pitsava G, Maria AG, Faucz FR. Disorders of the adrenal cortex: Genetic and molecular aspects. Front Endocrinol (Lausanne) 2022; 13:931389. [PMID: 36105398 PMCID: PMC9465606 DOI: 10.3389/fendo.2022.931389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Adrenal cortex produces glucocorticoids, mineralocorticoids and adrenal androgens which are essential for life, supporting balance, immune response and sexual maturation. Adrenocortical tumors and hyperplasias are a heterogenous group of adrenal disorders and they can be either sporadic or familial. Adrenocortical cancer is a rare and aggressive malignancy, and it is associated with poor prognosis. With the advance of next-generation sequencing technologies and improvement of genomic data analysis over the past decade, various genetic defects, either from germline or somatic origin, have been unraveled, improving diagnosis and treatment of numerous genetic disorders, including adrenocortical diseases. This review gives an overview of disorders associated with the adrenal cortex, the genetic factors of these disorders and their molecular implications.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- Molecular Genomics Core (MGC), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- *Correspondence: Fabio R. Faucz,
| |
Collapse
|
5
|
Su X, Ramírez-Escudero M, Sun F, van den Dikkenberg JB, van Steenbergen MJ, Pieters RJ, Janssen BJC, van Hasselt PM, Hennink WE, van Nostrum CF. Internalization and Transport of PEGylated Lipid-Based Mixed Micelles across Caco-2 Cells Mediated by Scavenger Receptor B1. Pharmaceutics 2021; 13:2022. [PMID: 34959304 PMCID: PMC8703698 DOI: 10.3390/pharmaceutics13122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles' ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.
Collapse
Affiliation(s)
- Xiangjie Su
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Mercedes Ramírez-Escudero
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.R.-E.); (B.J.C.J.)
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Joep B. van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Mies J. van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Bert J. C. Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.R.-E.); (B.J.C.J.)
| | - Peter M. van Hasselt
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| |
Collapse
|
6
|
Thiosemicarbazone Copper Chelator BLT-1 Blocks Apicomplexan Parasite Replication by Selective Inhibition of Scavenger Receptor B Type 1 (SR-BI). Microorganisms 2021; 9:microorganisms9112372. [PMID: 34835496 PMCID: PMC8622581 DOI: 10.3390/microorganisms9112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Coccidian parasites are obligate intracellular pathogens that affect humans and animals. Apicomplexans are defective in de novo synthesis of cholesterol, which is required for membrane biosynthesis and offspring formation. In consequence, cholesterol has to be scavenged from host cells. It is mainly taken up from extracellular sources via LDL particles; however, little is known on the role of HDL and its receptor SR-BI in this process. Here, we studied effects of the SR-BI-specific blocker BLT-1 on the development of different fast (Toxoplasma gondii, Neospora caninum, Besnoitia besnoiti) and slow (Eimeria bovis and Eimeria arloingi) replicating coccidian species. Overall, development of all these parasites was significantly inhibited by BLT-1 treatment indicating a common SR-BI-related key mechanism in the replication process. However, SR-BI gene transcription was not affected by T. gondii, N. caninum and B. besnoiti infections. Interestingly, BLT-1 treatment of infective stages reduced invasive capacities of all fast replicating parasites paralleled by a sustained increase in cytoplasmic Ca++ levels. Moreover, BLT1-mediated blockage of SR-BI led to enhanced host cell lipid droplet abundance and neutral lipid content, thereby confirming the importance of this receptor in general lipid metabolism. Finally, the current data suggest a conserved role of SR-BI for successful coccidian infections.
Collapse
|
7
|
Franczyk B, Rysz J, Ławiński J, Rysz-Górzyńska M, Gluba-Brzózka A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines 2021; 9:1083. [PMID: 34572269 PMCID: PMC8466913 DOI: 10.3390/biomedicines9091083] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The specific interest concerning HDL cholesterol (HDL-C) is related to its ability to uptake and return surplus cholesterol from peripheral tissues back to the liver and, therefore, to its role in the prevention of cardiovascular diseases, such as atherosclerosis and myocardial infarction, but also transient ischemic attack and stroke. Previous epidemiological studies have indicated that HDL-C concentration is inversely associated with the risk of cardiovascular disease and that it can be used for risk prediction. Some genetic disorders are characterized by markedly elevated levels of HDL-C; however, they do not translate into diminished cardiovascular risk. The search of the potential causative relationship between HDL-C and adverse events has shifted the attention of researchers towards the composition and function of the HDL molecule/subfractions. HDL possesses various cardioprotective properties. However, currently, it appears that higher HDL-C is not necessarily protective against cardiovascular disease, but it can even be harmful in extremely high quantities.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-549 Rzeszow, Poland;
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
8
|
Zhou Q, Hu H, Zhao G, Liu P, Wang Y, Zhang H. Effect and related mechanism of Yinchenhao decoction on mice with lithogenic diet-induced cholelithiasis. Exp Ther Med 2021; 21:316. [PMID: 33717259 PMCID: PMC7885065 DOI: 10.3892/etm.2021.9747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effects and the underlying mechanisms of Yinchenhao Decoction (YCHD), a traditional Chinese medicine formulation, on C57BL/6 mice with lithogenic diet (LD)-induced cholelithiasis. The condition of cholelithiasis was evaluated using a six-level criteria. Levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) in the serum and liver tissue were measured using enzyme colorimetry. Concentrations of TC, phospholipids (PL) and total bile acids (TBA) in the bile were measured to calculate the cholesterol saturation index. Liver histopathology was microscopically observed and mRNA expression levels of ABCG5, ABCG8, SRBI, ABCB4, ABCB11 and NPC1L1 involved in cholesterol metabolism were measured using reverse transcription-quantitative PCR. The results showed that feeding mice the LD induced cholelithiasis, along with abnormal serum biochemical indices and imbalances in biliary cholesterol homeostasis. Increased ALT and ALP levels in the serum and ALT, ALP, TC and LDL-C levels in the serum and liver indicated the existence of hepatocyte injury, which were consistent with the pathological changes. YCHD treatment ameliorated the serum and hepatic biochemical abnormalities and adjusted the biliary imbalance. In addition, elevated expression of ATP-binding cassette subfamily G member 5/8, scavenger receptor class B type I and Niemann-Pick C1 Like 1 in the liver and small intestine were observed at the onset of cholelithiasis but were reversed by YCHD. Taken together, results from the present study suggest that YCHD ameliorated LD-induced cholelithiasis mice, which may be caused by improvements in biliary cholesterol supersaturation and regulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Qun Zhou
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hai Hu
- Department of Cholelithiasis, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Gang Zhao
- Department of Cholelithiasis, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yixing Wang
- Department of Traditional Chinese Medicine, East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Hua Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Clinical Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
9
|
Vishnyakova TG, Bocharov AV, Baranova IN, Kurlander R, Drake SK, Chen Z, Amar M, Sviridov D, Vaisman B, Poliakov E, Remaley AT, Eggerman TL, Patterson AP. SR-BI mediates neutral lipid sorting from LDL to lipid droplets and facilitates their formation. PLoS One 2020; 15:e0240659. [PMID: 33057430 PMCID: PMC7561250 DOI: 10.1371/journal.pone.0240659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.
Collapse
Affiliation(s)
- Tatyana G. Vishnyakova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Alexander V. Bocharov
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- * E-mail:
| | - Irina N. Baranova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Roger Kurlander
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Steven K. Drake
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Zhigang Chen
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Marcelo Amar
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Denis Sviridov
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Boris Vaisman
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Eugenia Poliakov
- National Eye Institute, Bethesda, Maryland, United States of
America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Thomas L. Eggerman
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda,
Maryland, United States of America
| | - Amy P. Patterson
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| |
Collapse
|
10
|
Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci 2020; 21:ijms21030732. [PMID: 31979129 PMCID: PMC7037660 DOI: 10.3390/ijms21030732] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/07/2023] Open
Abstract
High Density Lipoprotein (HDL) particles, beyond serving as lipid transporters and playing a key role in reverse cholesterol transport, carry a highly variable number of proteins, micro-RNAs, vitamins, and hormones, which endow them with the ability to mediate a plethora of cellular and molecular mechanisms that promote cardiovascular health. It is becoming increasingly evident, however, that the presence of cardiovascular risk factors and co-morbidities alters HDLs cargo and protective functions. This concept has led to the notion that metrics other than HDL-cholesterol levels, such as HDL functionality and composition, may better capture HDL cardiovascular protection. On the other hand, the potential of HDL as natural delivery carriers has also fostered the design of engineered HDL-mimetics aiming to improve HDL efficacy or as drug-delivery agents with therapeutic potential. In this paper, we first provide an overview of the molecules known to be transported by HDL particles and mainly discuss their functions in the cardiovascular system. Second, we describe the impact of cardiovascular risk factors and co-morbidities on HDL remodeling. Finally, we review the currently developed HDL-based approaches.
Collapse
|
11
|
Santander N, Lizama C, Murgas L, Contreras S, Martin AJM, Molina P, Quiroz A, Rivera K, Salas-Pérez F, Godoy A, Rigotti A, Busso D. Transcriptional profiling of embryos lacking the lipoprotein receptor SR-B1 reveals a regulatory circuit governing a neurodevelopmental or metabolic decision during neural tube closure. BMC Genomics 2018; 19:731. [PMID: 30290792 PMCID: PMC6173885 DOI: 10.1186/s12864-018-5110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background The high-density lipoprotein receptor SR-B1 mediates cellular uptake of several lipid species, including cholesterol and vitamin E. During early mouse development, SR-B1 is located in the maternal-fetal interface, where it facilitates vitamin E transport towards the embryo. Consequently, mouse embryos lacking SR-B1 are vitamin E-deficient, and around half of them fail to close the neural tube and show cephalic neural tube defects (NTD). Here, we used transcriptomic profiling to identify the molecular determinants of this phenotypic difference between SR-B1 deficient embryos with normal morphology or with NTD. Results We used RNA-Seq to compare the transcriptomic profile of three groups of embryos retrieved from SR-B1 heterozygous intercrosses: wild-type E9.5 embryos (WT), embryos lacking SR-B1 that are morphologically normal, without NTD (KO-N) and SR-B1 deficient embryos with this defect (KO-NTD). We identified over 1000 differentially expressed genes: down-regulated genes in KO-NTD embryos were enriched for functions associated to neural development, while up-regulated genes in KO-NTD embryos were enriched for functions related to lipid metabolism. Feeding pregnant dams a vitamin E-enriched diet, which prevents NTD in SR-B1 KO embryos, resulted in mRNA levels for those differentially expressed genes that were more similar to KO-N than to KO-NTD embryos. We used gene regulatory network analysis to identify putative transcriptional regulators driving the different embryonic expression profiles, and identified a regulatory circuit controlled by the androgen receptor that may contribute to this dichotomous expression profile in SR-B1 embryos. Supporting this possibility, the expression level of the androgen receptor correlated strongly with the expression of several genes involved in neural development and lipid metabolism. Conclusions Our analysis shows that normal and defective embryos lacking SR-B1 have divergent expression profiles, explained by a defined set of transcription factors that may explain their divergent phenotype. We propose that distinct expression profiles may be relevant during early development to support embryonic nutrition and neural tube closure. Electronic supplementary material The online version of this article (10.1186/s12864-018-5110-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolás Santander
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile
| | - Carlos Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Leandro Murgas
- Network Biology Laboratory, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Sebastián Contreras
- Network Biology Laboratory, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alberto J M Martin
- Network Biology Laboratory, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Paz Molina
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile
| | - Alonso Quiroz
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile
| | - Katherine Rivera
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile
| | - Francisca Salas-Pérez
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile
| | - Alejandro Godoy
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Attilio Rigotti
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.,Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dolores Busso
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 367, 83300024, Santiago, CP, Chile.
| |
Collapse
|
12
|
Kosmas CE, Silverio D, Sourlas A, Garcia F, Montan PD, Guzman E. Primary genetic disorders affecting high density lipoprotein (HDL). Drugs Context 2018; 7:212546. [PMID: 30214464 PMCID: PMC6135231 DOI: 10.7573/dic.212546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/21/2023] Open
Abstract
There is extensive evidence demonstrating that there is a clear inverse correlation between plasma high density lipoprotein cholesterol (HDL-C) concentration and cardiovascular disease (CVD). On the other hand, there is also extensive evidence that HDL functionality plays a very important role in atheroprotection. Thus, genetic disorders altering certain enzymes, lipid transfer proteins, or specific receptors crucial for the metabolism and adequate function of HDL, may positively or negatively affect the HDL-C levels and/or HDL functionality and subsequently either provide protection or predispose to atherosclerotic disease. This review aims to describe certain genetic disorders associated with either low or high plasma HDL-C and discuss their clinical features, associated risk for cardiovascular events, and treatment options.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Delia Silverio
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | | | - Frank Garcia
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Peter D Montan
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
13
|
Lotfi CFP, Kremer JL, dos Santos Passaia B, Cavalcante IP. The human adrenal cortex: growth control and disorders. Clinics (Sao Paulo) 2018; 73:e473s. [PMID: 30208164 PMCID: PMC6113920 DOI: 10.6061/clinics/2018/e473s] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
This review summarizes key knowledge regarding the development, growth, and growth disorders of the adrenal cortex from a molecular perspective. The adrenal gland consists of two distinct regions: the cortex and the medulla. During embryological development and transition to the adult adrenal gland, the adrenal cortex acquires three different structural and functional zones. Significant progress has been made in understanding the signaling and molecules involved during adrenal cortex zonation. Equally significant is the knowledge obtained regarding the action of peptide factors involved in the maintenance of zonation of the adrenal cortex, such as peptides derived from proopiomelanocortin processing, adrenocorticotropin and N-terminal proopiomelanocortin. Findings regarding the development, maintenance and growth of the adrenal cortex and the molecular factors involved has improved the scientific understanding of disorders that affect adrenal cortex growth. Hypoplasia, hyperplasia and adrenocortical tumors, including adult and pediatric adrenocortical adenomas and carcinomas, are described together with findings regarding molecular and pathway alterations. Comprehensive genomic analyses of adrenocortical tumors have shown gene expression profiles associated with malignancy as well as methylation alterations and the involvement of miRNAs. These findings provide a new perspective on the diagnosis, therapeutic possibilities and prognosis of adrenocortical disorders.
Collapse
Affiliation(s)
- Claudimara Ferini Pacicco Lotfi
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Jean Lucas Kremer
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Barbara dos Santos Passaia
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Isadora Pontes Cavalcante
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
14
|
Morel E, Ghezzal S, Lucchi G, Truntzer C, Pais de Barros JP, Simon-Plas F, Demignot S, Mineo C, Shaul PW, Leturque A, Rousset M, Carrière V. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:199-211. [PMID: 29196159 DOI: 10.1016/j.bbalip.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Sara Ghezzal
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Géraldine Lucchi
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Caroline Truntzer
- Clinical Innovation Proteomic Platform CLIPP, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Paul Pais de Barros
- Plateforme de Lipidomique, INSERM UMR1231, Université de Bourgogne Franche Comté, F-21000 Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvie Demignot
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France; EPHE, PSL Research University, F-75006 Paris, France
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Armelle Leturque
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France
| | - Véronique Carrière
- Centre de Recherche des Cordeliers, INSERM, UMPC Université Paris 6, Université Paris Descartes Paris 5, CNRS, F-75006 Paris, France.
| |
Collapse
|
15
|
Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport. Sci Rep 2016; 6:32105. [PMID: 27601313 PMCID: PMC5013287 DOI: 10.1038/srep32105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/29/2016] [Indexed: 11/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.
Collapse
|
16
|
Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, DerOhannessian S, Kontush A, Surendran P, Saleheen D, Trompet S, Jukema JW, De Craen A, Deloukas P, Sattar N, Ford I, Packard C, Majumder AAS, Alam DS, Di Angelantonio E, Abecasis G, Chowdhury R, Erdmann J, Nordestgaard BG, Nielsen SF, Tybjærg-Hansen A, Schmidt RF, Kuulasmaa K, Liu DJ, Perola M, Blankenberg S, Salomaa V, Männistö S, Amouyel P, Arveiler D, Ferrieres J, Müller-Nurasyid M, Ferrario M, Kee F, Willer CJ, Samani N, Schunkert H, Butterworth AS, Howson JMM, Peloso GM, Stitziel NO, Danesh J, Kathiresan S, Rader DJ. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351:1166-71. [PMID: 26965621 DOI: 10.1126/science.aad3517] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).
Collapse
Affiliation(s)
- Paolo Zanoni
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sumeet A Khetarpal
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel B Larach
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William F Hancock-Cerutti
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. INSERM UMR 1166 ICAN, Université Pierre et Marie Curie Paris 6, Hôpital de la Pitié, Paris, France
| | - John S Millar
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Cuchel
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie DerOhannessian
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatol Kontush
- INSERM UMR 1166 ICAN, Université Pierre et Marie Curie Paris 6, Hôpital de la Pitié, Paris, France
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Danish Saleheen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands. Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, Netherlands
| | - Anton De Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - Chris Packard
- Glasgow Clinical Research Facility, Western Infirmary, Glasgow, UK
| | | | - Dewan S Alam
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck 23562, Germany
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Kari Kuulasmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Dajiang J Liu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland. Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany. University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Philippe Amouyel
- Department of Epidemiology and Public Health, Institut Pasteur de Lille, Lille, France
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
| | - Jean Ferrieres
- Department of Epidemiology, Toulouse University-CHU Toulouse, Toulouse, France
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marco Ferrario
- Research Centre in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, Department of Human Genetics, and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK. National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Glenfield Hotel, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Adam S Butterworth
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gina M Peloso
- Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan O Stitziel
- Department of Medicine, Division of Cardiology, Department of Genetics, and the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Sekar Kathiresan
- Broad Institute and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel J Rader
- Departments of Genetics and Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
17
|
Liao J, Huang W, Liu G. Animal models of coronary heart disease. J Biomed Res 2015; 30:3. [PMID: 26585560 PMCID: PMC5274506 DOI: 10.7555/jbr.30.20150051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/16/2015] [Accepted: 06/27/2015] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular disease, predominantly coronary heart disease and stroke, leads to high morbidity and mortality not only in developed worlds but also in underdeveloped regions. The dominant pathologic foundation for cardiovascular disease is atherosclerosis and as to coronary heart disease, coronary atherosclerosis and resulting lumen stenosis, even total occlusions. In translational research, several animals, such as mice, rabbits and pigs, have been used as disease models of human atherosclerosis and related cardiovascular disorders. However, coronary lesions are either naturally rare or hard to be fast induced in these models, hence, coronary heart disease induction mostly relies on surgical or pharmaceutical interventions with no or limited primary coronary lesions, thus unrepresentative of human coronary heart disease progression and pathology. In this review, we will describe the progress of animal models of coronary heart disease following either spontaneous or diet-accelerated coronary lesions.
Collapse
Affiliation(s)
- Jiawei Liao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
18
|
Combined effect of Cameo2 and CBP on the cellular uptake of lutein in the silkworm, Bombyx mori. PLoS One 2014; 9:e86594. [PMID: 24475153 PMCID: PMC3903547 DOI: 10.1371/journal.pone.0086594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/13/2013] [Indexed: 01/10/2023] Open
Abstract
Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein.
Collapse
|
19
|
Gao X, Zeng Y, Liu S, Wang S. Acute stress show great influences on liver function and the expression of hepatic genes associated with lipid metabolism in rats. Lipids Health Dis 2013; 12:118. [PMID: 23902778 PMCID: PMC3733886 DOI: 10.1186/1476-511x-12-118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 01/29/2023] Open
Abstract
Background The theory of Chinese medicine believes rage harms normal liver function, namely ’raged impairing liver' in short. The purpose of this study is to investigate the impact of acute stress on liver lipid metabolism in rats. Methods and results Comparison of liver function indicators, serum lipid level of rats under acute stress and normal rats, as well as detection of liver tissue in the SR - BI, ABCG5 and ABCG8 protein and gene expression changes. Acute stressed rats had shown a lower serum levels of albumin (P<0.01), HDL- cholesterol (P<0.01) than normal rats, with higher serum levels of globulin (P<0.01) and LDL-cholesterol (P<0.05). Acute stressed rat’s liver tissue exhibited a lower protein expression of ABCG5 (P<0.05), ABCG8 (P<0.01) and a higher level of SR-BI (P<0.05), compared with to normal rats. Furthermore, liver gene expression of ABCG5 (P<0.01) and ABCG8 (P<0.05) were lower in acute stressed rats than in normal rats, while SR-BI was higher in acute stressed rats than in normal rats (P<0.01). Conclusions Acute stress had a direct influence on rat’s liver lipid metabolism.
Collapse
Affiliation(s)
- Xiaoling Gao
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
20
|
Bell TA, Graham MJ, Lee RG, Mullick AE, Fu W, Norris D, Crooke RM. Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr-/- mice. J Lipid Res 2013; 54:2647-57. [PMID: 23801661 PMCID: PMC3770078 DOI: 10.1194/jlr.m036509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Due to their ability to promote positive effects across all of the lipoprotein classes, cholesteryl ester transfer protein (CETP) inhibitors are currently being developed as therapeutic agents for cardiovascular disease. In these studies, we compared an antisense oligonucleotide (ASO) inhibitor of CETP to the CETP small molecule inhibitor anacetrapib. In hyperlipidemic CETP transgenic (tg) mice, both drugs provided comparable reductions in total plasma cholesterol, decreases in CETP activity, and increases in HDL cholesterol. However, only mice treated with the antisense inhibitor showed an enhanced effect on macrophage reverse cholesterol transport, presumably due to differences in HDL apolipoprotein composition and decreases in plasma triglyceride. Additionally, the ASO-mediated reductions in CETP mRNA were associated with less accumulation of aortic cholesterol. These preliminary findings suggest that CETP ASOs may represent an alternative means to inhibit that target and to support their continued development as a treatment for cardiovascular disease in man.
Collapse
Affiliation(s)
- Thomas A Bell
- Cardiovascular Antisense Drug Discovery Group, Isis Pharmaceuticals, Inc., Carlsbad, CA 92010
| | | | | | | | | | | | | |
Collapse
|
21
|
M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids Health Dis 2011; 10:229. [PMID: 22146099 PMCID: PMC3281809 DOI: 10.1186/1476-511x-10-229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In obesity, phenotypic switches occur in macrophage populations such that the predominantly M2-polarised anti-inflammatory state seen in lean individuals changes to a predominantly M1-polarised pro-inflammatory state in those who are obese. However, the mechanisms by which these phenotypic shifts occur have not yet been fully elucidated. RESULTS The effects of oxLDL (1-40 μg/ml; 24 h) on several parameters relevant to the Unfolded Protein Response (UPR)-mediated lipotoxic effects of oxLDL (disruption of ER Ca²⁺ handling; activation of the UPR transcription factor XBP-1; upregulation of the UPR target genes BiP and CHOP; apoptosis; cell viability) were investigated in human primary monocyte-derived macrophages, and also in monocyte-macrophages derived from the THP-1 monocytic cell line. A consistent pattern was observed: M2-polarised macrophages were more sensitive to the lipotoxic effects of oxLDL than either non-polarised macrophages or non-differentiated monocytic cells. Specifically, M2-polarised macrophages were the only cell type to undergo significantly increased apoptosis (Primary cells: 1.23 ± 0.01 basal; THP-1-derived: 1.97 ± 0.12 basal; P < 0.05 in both cases) and decreased cell viability (Primary cells: 0.79 ± 0.04 basal; THP-1-derived: 0.67 ± 0.02 basal; P < 0.05 in both cases) when exposed to oxLDL levels similar to those seen in overweight individuals (ie. 1 μg/ml). CONCLUSIONS We propose that the enhanced susceptibility of M2-polarised macrophages to lipotoxicity seen in the present in vitro study could, over time, contribute to the phenotypic shift seen in obese individuals in vivo. This is because a higher degree of oxLDL-induced lipotoxic cell death within M2 macrophages could contribute to a decrease in numbers of M2 cells, and thus a relative increase in proportion of non-M2 cells, within macrophage populations. Given the pro-inflammatory characteristics of a predominantly M1-polarised state, the data presented here may constitute a useful contribution to our understanding of the origin of the pro-inflammatory nature of obesity, and of the pathogenesis of obesity-associated inflammatory disorders such as Type 2 diabetes and atherosclerosis.
Collapse
|
22
|
Abstract
Reverse cholesterol transport was originally described as the high-density lipoprotein-mediated cholesterol flux from the periphery via the hepatobiliary tract to the intestinal lumen, leading to fecal excretion. Since the introduction of reverse cholesterol transport in the 1970s, this pathway has been intensively investigated. In this topic highlight, the classical reverse cholesterol transport concepts are discussed and the subject reverse cholesterol transport is revisited.
Collapse
|