1
|
Wu B, Wu C, Li D, Yang Z, Liu Y, Zhang HX, Xin HW, Bai Y. Ovarian Microcystic Stromal Tumor with Significant Nestin Expression: A Unique Case. Intern Med 2024; 63:2781-2785. [PMID: 38432989 PMCID: PMC11557199 DOI: 10.2169/internalmedicine.3221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/24/2023] [Indexed: 03/05/2024] Open
Abstract
Ovary microcystic stromal tumor (MCST) is an extremely rare subtype of sex cord-stromal neoplasm, and only 57 cases have been reported. We herein report a unique case of ovarian MCST with positive nestin expression in a 39-year-old Chinese woman. The tumor showed microcystic stromal histological structures and characteristically expressed the CD10, WT-1, and Ki67 proteins. A molecular analysis identified a point mutation (c.110C > T) in exon 3 of the CTNNB1 gene. To our knowledge, no report has described a case of ovarian MCST with positive staining for nestin protein. Our study provides new insights into the tumor biology of ovarian MCST.
Collapse
Affiliation(s)
- Bao Wu
- Department of Histology and Embryology, School of Basic Medicine, Chifeng University, China
| | - Chongming Wu
- Department of Urology, University of Yamanashi, Japan
| | - Dandan Li
- Department of Pathology, Chifeng Cancer Hospital and The Second Affiliated Hospital of Chifeng University, China
| | - Zhanmin Yang
- Department of Pathology, Chifeng Cancer Hospital and The Second Affiliated Hospital of Chifeng University, China
| | - Ying Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, China
| | - Hai-Xia Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, China
- Research Center of Molecular Medicine, School of Basic Medicine, Chifeng University, China
| | - Yuqin Bai
- Department of Pathology, Chifeng Cancer Hospital and The Second Affiliated Hospital of Chifeng University, China
| |
Collapse
|
2
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
3
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Karpenko DV. Immune Privileges as a Result of Mutual Regulation of Immune and Stem Systems. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1818-1831. [PMID: 38105201 DOI: 10.1134/s0006297923110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Immune privileges of cancer stem cells is a well-known and widely studied problem, as presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests presence of immune privileges in non-pathological stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathological and normal stem cells raises the question of why stem cells have such a potentially dangerous property. Regulation of vital processes of autoimmunity control and regeneration realized through interactions between immune cells, stem cells, and their microenvironment are reviewed in this work as causes of formation of the stem cell immune privilege. Deep mutual integration between regulations of stem and immune cells is noted. Considering diversity and complexity of mutual regulation of stem cells, their microenvironment, and immune system, I suggest the term "stem system".
Collapse
Affiliation(s)
- Dmitriy V Karpenko
- Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Moscow, 125167, Russia.
| |
Collapse
|
5
|
Daido W, Nakashima T, Masuda T, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Nestin and Notch3 collaboratively regulate angiogenesis, collagen production, and endothelial-mesenchymal transition in lung endothelial cells. Cell Commun Signal 2023; 21:247. [PMID: 37735673 PMCID: PMC10512559 DOI: 10.1186/s12964-023-01099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Nestin, an intermediate filament protein, participates in various pathophysiological processes, including wound healing, angiogenesis, endothelial-mesenchymal transition (EndoMT), and fibrosis. However, the pathophysiological roles of lung nestin-expressing cells remain unclear due to conflicting reports. The objective of this study is to elucidate the characteristics and functions of lung nestin-expressing cells. METHODS We conducted a series of in vitro and in vivo experiments using endothelial cell line MS1 and nestin-GFP mice. This animal model allows for nestin-expressing cell detection without the use of anti-nestin antibodies. RESULTS Lung nestin-expressing cells occurred in approximately 0.2% of CD45- cells and was co-expressed with epithelial, endothelial, and mesenchymal cell-surface markers. Importantly, virtually all nestin-expressing cells co-expressed CD31. When compared to lung nestin-nonexpressing endothelial cells, nestin-expressing endothelial cells showed robust angiogenesis with frequent co-expression of PDGFRβ and VEGFR2. During TGFβ-mediated EndoMT, the elevation of Nes mRNA expression preceded that of Col1a1 mRNA, and nestin gene silencing using nestin siRNA resulted in further upregulation of Col1a1 mRNA expression. Furthermore, Notch3 expression was regulated by nestin in vitro and in vivo; nestin siRNA resulted in reduced Notch3 expression accompanied with enhanced EndoMT. Contrary to previous reports, neither Nes mRNA expression nor nestin-expressing cells were increased during pulmonary fibrosis. CONCLUSIONS Our study showed that (1) lung nestin-expressing cells are an endothelial lineage but are distinct from nestin-nonexpressing endothelial cells; (2) nestin regulates Notch3 and they act collaboratively to regulate angiogenesis, collagen production, and EndoMT; and (3) nestin plays novel roles in lung angiogenesis and fibrosis. Video Abstract.
Collapse
Affiliation(s)
- Wakako Daido
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Ou J, Zhen K, Wu Y, Xue Z, Fang Y, Zhang Q, Bi H, Tian X, Ma L, Liu C. Systemic lupus erythematosus and prostate cancer risk: a pool of cohort studies and Mendelian randomization analysis. J Cancer Res Clin Oncol 2023; 149:9517-9528. [PMID: 37213031 PMCID: PMC10423167 DOI: 10.1007/s00432-023-04853-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Current observational studies suggest that there may be a causal relationship between systemic lupus erythematosus (SLE) and prostate cancer (PC). However, there is contradictory evidence. This study aimed to investigate and clarify the association between SLE and PC. METHODS We searched PubMed, Embase, Web of Science, and Scopus until May 2022. A meta-analysis was conducted on the standard incidence rate (SIR) and 95% CI. Subgroup analysis was performed based on the follow-up duration, study quality, and appropriate SLE diagnosis. Mendelian randomization (MR) of the two samples was used to determine whether genetically elevated SLE was causal for PC. Summary MR data were obtained from published GWASs, which included 1,959,032 individuals. The results were subjected to sensitivity analysis to verify their reliability. RESULTS In a meta-analysis of 79,316 participants from 14 trials, we discovered that patients with SLE had decreased PC risk (SIR, 0.78; 95% CI, 0.70-0.87) significantly. The MR results showed that a one-SD increase in genetic susceptibility to SLE significantly reduced PC risk (OR, 0.9829; 95% CI, 0.9715-0.9943; P = 0.003). Additional MR analyses suggested that the use of immunosuppressants (ISs) (OR, 1.1073; 95% CI, 1.0538-1.1634; P < 0.001), but not glucocorticoids (GCs) or non-steroidal anti-inflammatory drugs (NSAIDs), which were associated with increased PC risk. The results of the sensitivity analyses were stable, and there was no evidence of directional pleiotropy. CONCLUSIONS Our results suggest that patients with SLE have a lower risk of developing PC. Additional MR analyses indicated that genetic susceptibility to the use of ISs, but not GCs or NSAIDs, was associated with increased PC risk. This finding enriches our understanding of the potential risk factors for PC in patients with SLE. Further study is required to reach more definitive conclusions regarding these mechanisms.
Collapse
Affiliation(s)
- Junyong Ou
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Kailan Zhen
- Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515 China
| | - Yaqian Wu
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Zixuan Xue
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Yangyi Fang
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Qiming Zhang
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Hai Bi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080 China
| | - Xiaojun Tian
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Peking University Health Science Center, 49 North Garden Road, Beijing, 100191 China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080 China
| |
Collapse
|
7
|
Hertig V, Villeneuve L, Calderone A. Nestin identifies a subpopulation of rat ventricular fibroblasts and participates in cell migration. Am J Physiol Cell Physiol 2023; 325:C496-C508. [PMID: 37458435 DOI: 10.1152/ajpcell.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Fibroblast progenitor cells migrate to the endocardial region during cardiogenesis, and the migration of ventricular fibroblasts to the ischemically damaged region of the infarcted adult heart is a seminal event of reparative fibrosis. The intermediate filament protein nestin is implicated in cell migration and expression identified in a subpopulation of scar-derived myofibroblasts. The present study tested the hypothesis that fibroblast progenitor cells express nestin, and the intermediate filament protein drives the migratory phenotype of ventricular fibroblasts. Transcription factor 21 (Tcf21)- and Wilms tumor 1 (WT1)-fibroblast progenitor cells identified in the epicardial/endocardial regions of the E12.5- to E13.5-day embryonic mouse heart predominantly expressed nestin. Nuclear Tcf21/WT1 staining was identified in neonatal rat ventricular fibroblasts (NNVFbs), and a subpopulation coexpressed nestin. Nuclear Tcf21/WT1 expression persisted in adult rat ventricular fibroblasts, whereas nestin protein levels were downregulated. Nestin-expressing NNVFbs exhibited a unique phenotype as the subpopulation was refractory to cell cycle reentry in response to selective stimuli. Nestin(-)- and nestin(+)-scar-derived rat myofibroblasts plated in Matrigel unmasked a migratory phenotype characterized by the de novo formation of lumen-like structures. The elongated membrane projections emanating from scar myofibroblasts delineating the boundary of lumen-like structures expressed nestin. Lentiviral short-hairpin RNA (shRNA)-mediated nestin depletion inhibited the in vitro migratory response of NNVFbs as the wound radius was significantly larger compared with NNVFbs infected with the empty lentivirus. Thus, nestin represents a marker of embryonic Tcf21/WT1(+)-fibroblast progenitor cells. The neonatal rat heart contains a distinct subpopulation of nestin-immunoreactive Tcf21/WT1(+) fibroblasts refractory to cell cycle reentry, and the intermediate filament protein may preferentially facilitate ventricular fibroblast migration during physiological/pathological remodeling.NEW & NOTEWORTHY Tcf21/WT1(+)-fibroblast progenitor cells of the embryonic mouse heart predominantly express the intermediate filament protein nestin. A subpopulation of Tcf21/WT1(+)-neonatal rat ventricular fibroblasts express nestin and are refractory to selective stimuli influencing cell cycle reentry. Scar-derived myofibroblasts plated in Matrigel elicit the formation of lumen-like structures characterized by the appearance of nestin(+)-membrane projections. Lentiviral shRNA-mediated nestin depletion in a subpopulation of neonatal rat ventricular fibroblasts suppressed the migratory response following the in vitro scratch assay.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Le TT, Oudin MJ. Understanding and modeling nerve-cancer interactions. Dis Model Mech 2023; 16:dmm049729. [PMID: 36621886 PMCID: PMC9844229 DOI: 10.1242/dmm.049729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The peripheral nervous system plays an important role in cancer progression. Studies in multiple cancer types have shown that higher intratumoral nerve density is associated with poor outcomes. Peripheral nerves have been shown to directly regulate tumor cell properties, such as growth and metastasis, as well as affect the local environment by modulating angiogenesis and the immune system. In this Review, we discuss the identity of nerves in organs in the periphery where solid tumors grow, the known mechanisms by which nerve density increases in tumors, and the effects these nerves have on cancer progression. We also discuss the strengths and weaknesses of current in vitro and in vivo models used to study nerve-cancer interactions. Increased understanding of the mechanisms by which nerves impact tumor progression and the development of new approaches to study nerve-cancer interactions will facilitate the discovery of novel treatment strategies to treat cancer by targeting nerves.
Collapse
Affiliation(s)
- Thanh T. Le
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
9
|
Polat B, Wohlleben G, Kosmala R, Lisowski D, Mantel F, Lewitzki V, Löhr M, Blum R, Herud P, Flentje M, Monoranu CM. Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma. Cancer Cell Int 2022; 22:87. [PMID: 35183162 PMCID: PMC8858483 DOI: 10.1186/s12935-022-02510-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. Methods Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan–Meier analysis, a possible association with overall survival by marker expression was investigated. Results Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). Conclusions Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02510-4.
Collapse
|
10
|
Nestin-Expressing Cells in the Lung: The Bad and the Good Parts. Cells 2021; 10:cells10123413. [PMID: 34943921 PMCID: PMC8700449 DOI: 10.3390/cells10123413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Nestin is a member of the intermediate filament family, which is expressed in a variety of stem or progenitor cells as well as in several types of malignancies. Nestin might be involved in tissue homeostasis or repair, but its expression has also been associated with processes that lead to a poor prognosis in various types of cancer. In this article, we review the literature related to the effect of nestin expression in the lung. According to most of the reports in the literature, nestin expression in lung cancer leads to an aggressive phenotype and resistance to chemotherapy as well as radiation treatments due to the upregulation of phenomena such as cell proliferation, angiogenesis, and metastasis. Furthermore, nestin may be involved in the pathogenesis of some non-cancer-related lung diseases. On the other hand, evidence also indicates that nestin-positive cells may have a role in lung homeostasis and be capable of generating various types of lung tissues. More research is necessary to establish the true value of nestin expression as a prognostic factor and therapeutic target in lung cancer in addition to its usefulness in therapeutic approaches for pulmonary diseases.
Collapse
|
11
|
Jackson JW, Hall BL, Marzulli M, Shah VK, Bailey L, Chiocca EA, Goins WF, Kohanbash G, Cohen JB, Glorioso JC. Treatment of glioblastoma with current oHSV variants reveals differences in efficacy and immune cell recruitment. Mol Ther Oncolytics 2021; 22:444-453. [PMID: 34553031 PMCID: PMC8430372 DOI: 10.1016/j.omto.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have demonstrated efficient lytic replication in human glioblastoma tumors using immunodeficient mouse models, but early-phase clinical trials have reported few complete responses. Potential reasons for the lack of efficacy are limited vector potency and the suppressive glioma tumor microenvironment (TME). Here we compare the oncolytic activity of two HSV-1 vectors, a KOS-strain derivative KG4:T124 and an F-strain derivative rQNestin34.5v.1, in the CT2A and GL261N4 murine syngeneic glioma models. rQNestin34.5v1 generally demonstrated a greater in vivo viral burden compared to KG4:T124. However, both vectors were rapidly cleared from CT2A tumors, while virus remained ensconced in GL261N4 tumors. Immunological evaluation revealed that the two vectors induced similar changes in immune cell recruitment to either tumor type at 2 days after infection. However, at 7 days after infection, the CT2A microenvironment displayed the phenotype of an untreated tumor, while GL261N4 tumors exhibited macrophage and CD4+/CD8+ T cell accumulation. Furthermore, the CT2A model was completely resistant to virus therapy, while in the GL261N4 model rQNestin34.5v1 treatment resulted in enhanced macrophage recruitment, impaired tumor progression, and long-term survival of a few animals. We conclude that prolonged intratumoral viral presence correlates with immune cell recruitment, and both are needed to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Joseph W. Jackson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Vrusha K. Shah
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Lisa Bailey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
13
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
14
|
Titapun A, Luvira V, Srisuk T, Jareanrat A, Thanasukarn V, Thanee M, Sa-Ngiamwibool P, Padthaisong S, Duangkumpha K, Suksawat M, Loilome W, Sithithaworn P, Techasen A, Thinkhamrop B, Dzienny A, Caglayan A, Park D, Mahmud S, Khuntikeo N. High Levels of Serum IgG for Opisthorchis viverrini and CD44 Expression Predict Worse Prognosis for Cholangiocarcinoma Patients after Curative Resection. Int J Gen Med 2021; 14:2191-2204. [PMID: 34103974 PMCID: PMC8179826 DOI: 10.2147/ijgm.s306339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Background Opisthorchis viverrini (OV)-associated cholangiocarcinoma (CCA) has a high immune response with chronic inflammation and oxidative stress. CD44 and Nestin, two cancer stem cell (CSC) markers, play major roles in cancer cell survival. Effects of immune response and expression CSC markers on survival of patients with CCA remain unclear. Objective To investigate the effects of level of OV IgG together with CSC marker expression and also the combination of these markers on survival of CCA patients after curative resection. Methods All serum specimens from CCA patients who underwent curative surgery from 2005 to 2015 were examined for IgG for OV antigen by ELISA. Tissue specimens were studied for CD44 and Nestin expression. Survival analysis by Cox proportional hazard model was used for estimating hazard ratio (HR) with a 95% confidence interval (CI). Results In this study, 122 (69.3%) of 176 were positive for OV IgG, and 35 (19.9%) were considered to have high-positive OV IgG. CD44s positive expression was found in 54 (40%), CD44v6 high expression in 96 (69.6%), CD44v8-10 high expression in 87 (63.5%) and Nestin high expression in 21 (16.1%). Multivariate survival analysis found that high-positive OV IgG and late stage tumor were independent prognostic factors with the adjusted HR of 2.24 (95% CI 1.27–3.93) and 2.78 (95% CI 1.46–5.29), respectively. Subgroup analysis in early and late stage CCA showed that a combined positive OV IgG and CD44s expression with the high expression of CD44v8-10 had the significantly poorest prognosis with HR of 3.75 (95% CI 1.61–8.72) and HR of 1.76 (95% CI 1.02–3.03), respectively. Conclusion A high level of OV IgG as well as a high level of CSC markers resulted in an aggressive CCA. OV IgG level together with CSC markers can be used as the prognostic markers for CCA patients’ survival. The study of the CD44 pathway is promising for adjuvant treatment.
Collapse
Affiliation(s)
- Attapol Titapun
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Tharatip Srisuk
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jareanrat
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Vasin Thanasukarn
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| | - Malinee Thanee
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kassaporn Duangkumpha
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Bandit Thinkhamrop
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand.,Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Alexa Dzienny
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Ayse Caglayan
- Faculty of Medicine, Imperial College London, London, UK
| | - David Park
- Faculty of Medicine, Imperial College London, London, UK
| | - Simran Mahmud
- Faculty of Medicine, Imperial College London, London, UK
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Yoshimura H, Moriya M, Yoshida A, Yamamoto M, Machida Y, Ochiai K, Michishita M, Nakagawa T, Matsuda Y, Takahashi K, Kamiya S, Ishiwata T. Involvement of Nestin in the Progression of Canine Mammary Carcinoma. Vet Pathol 2021; 58:994-1003. [PMID: 34056976 DOI: 10.1177/03009858211018656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nestin, a class VI intermediate filament protein, is known to be expressed in various types of human neoplasms, including breast cancer, and is associated with their progression. However, its expression and role in canine mammary tumors remain unknown. We analyzed nestin expression in canine mammary tumors using in situ hybridization and immunohistochemistry. We also investigated its role in a canine mammary carcinoma cell line using RNA interference. Nestin expression was not observed in luminal epithelial cells of any of the 62 cases of benign mammary lesions examined, although myoepithelial cells showed its expression in most cases. In 16/50 (32%) primary mammary carcinomas and 6/15 (40%) metastases of mammary carcinomas, cytoplasmic nestin expression was detected in luminal epithelial cells. In luminal cells of primary mammary carcinomas, its expression was positively related to several pathological parameters that indicate high-grade malignancy, including histological grading (P < .01), vascular/lymphatic invasion (P < .01), Ki-67 index (P < .01), and metastasis (P < .05). Immunohistochemistry revealed that nestin expression was related to vimentin expression in mammary carcinomas (P < .01). This relationship was confirmed using reverse transcription-quantitative polymerase chain reaction using 9 cell lines derived from canine mammary carcinoma (P < .01). Finally, nestin knockdown in canine mammary carcinoma cells using small interfering RNA inhibited cell proliferation and migration based on WST-8, Boyden chamber, and cell-tracking assays. These findings suggest that nestin may at least partially mediate these behaviors of canine mammary carcinoma cells.
Collapse
Affiliation(s)
| | - Maiko Moriya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Yoshida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Yamamoto
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukino Machida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | | | | - Shinji Kamiya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | |
Collapse
|
16
|
Chenari N, Khademi B, Razmkhah M. EZB-ICR Cell Line: A New Established and Characterized Oral Squamous Cell Carcinoma Cell Line From Tongue. Asian Pac J Cancer Prev 2021; 22:99-103. [PMID: 33507685 PMCID: PMC8184195 DOI: 10.31557/apjcp.2021.22.1.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Tongue cancer is one of the most aggressive forms of oral squamous cell carcinoma which needs more investigations. Herein, we aimed to establish and characterize a tongue cancer cell line. Methods: Tumor tissue was obtained from a 70-year-old woman with tongue cancer. The established cell line named as EZB-ICR and characterized for doubling time, expression of specific markers, HPV corporation and migration status using flow cytometry, immunofluorescence staining, multiplex PCR, and migration assay. Results: EZB-ICR was negative for expression of mesenchymal specific markers, cytokeratin19, pan-cytokeratin, vimentin and EPCAM, but was positive for S100 and Nestin. No appearance of human papilloma virus DNA was seen. The doubling time of EZB-ICR was 31 hours and migration assay confirmed its metastatic nature. Conclusion: To the best of our knowledge, EZB-ICR is the first tongue human cancer cell line established in Iran, and its features make it appropriate for cancer-based in vitro studies and contribute to more studies on tongue cancer.
Collapse
Affiliation(s)
- Nooshafarin Chenari
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Khademi
- Research Center of Otolaryngology Head and Neck Surgery, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Otolaryngology, School of Medicine, Shiraz University of Medical Sciences,Shiraz, Iran
| | - Mahboobeh Razmkhah
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Cancer Stem Cells in Soft-Tissue Sarcomas. Cells 2020; 9:cells9061449. [PMID: 32532153 PMCID: PMC7349510 DOI: 10.3390/cells9061449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STS) are a rare group of mesenchymal solid tumors with heterogeneous genetic profiles and clinical features. Systemic chemotherapy is the backbone treatment for advanced STS; however, STS frequently acquire resistance to standard therapies, which highlights the need to improve treatments and identify novel therapeutic targets. Increases in the knowledge of the molecular pathways that drive sarcomas have brought to light different molecular alterations that cause tumor initiation and progression. These findings have triggered a breakthrough of targeted therapies that are being assessed in clinical trials. Cancer stem cells (CSCs) exhibit mesenchymal stem cell (MSC) features and represent a subpopulation of tumor cells that play an important role in tumor progression, chemotherapy resistance, recurrence and metastasis. In fact, CSCs phenotypes have been identified in sarcomas, allied to drug resistance and tumorigenesis. Herein, we will review the published evidence of CSCs in STS, discussing the molecular characteristic of CSCs, the commonly used isolation techniques and the new possibilities of targeting CSCs as a way to improve STS treatment and consequently patient outcome.
Collapse
|
18
|
Li D, Chen QX, Zou W, Sun XW, Yu XP, Dai XH, Teng W. Acupuncture promotes functional recovery after cerebral hemorrhage by upregulating neurotrophic factor expression. Neural Regen Res 2020; 15:1510-1517. [PMID: 31997816 PMCID: PMC7059575 DOI: 10.4103/1673-5374.257532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acupuncture is widely used in the treatment of cerebral hemorrhage, and it improves outcomes in experimental animal models and patients. However, the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear. In this study, a model of intracerebral hemorrhage was produced by injecting 50 μL autologous blood into the caudate nucleus in Wistar rats. Acupuncture at Baihui (DU20) and Qubin (GB7) acupoints was performed at a depth of 1.0 inch, 12 hours after blood injection, once every 24 hours. The needle was rotated at 200 r/min for 5 minutes, For each 30-minute session, needling at 200 r/min was performed for three sessions, each lasting 5 minutes. For the positive control group, at 6 hours, and 1, 2, 3 and 7 days after induction of hemorrhage, the rats were intraperitoneally injected with 1 mL aniracetam (0.75 mg/mL), three times a day. The Bederson behavioral test was used to assess palsy in the contralateral limbs. Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia. Immunohistochemistry was performed to count the number of Nestin- and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia. Acupuncture effectively reduced hemorrhage and brain edema, elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia, and increased the number of Nestin- and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia. Together, these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors. The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center (approval No. 2017061001) on June 10, 2017.
Collapse
Affiliation(s)
- Dan Li
- Department of Acupuncture, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiu-Xin Chen
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Zou
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Teng
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
19
|
Szymańska-Chabowska A, Juzwiszyn J, Jankowska-Polańska B, Tański W, Chabowski M. Chitinase 3-Like 1, Nestin, and Testin Proteins as Novel Biomarkers of Potential Clinical Use in Colorectal Cancer: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1279:1-8. [PMID: 32170669 DOI: 10.1007/5584_2020_506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is the third most commonly diagnosed cancer in males and the second most common in females. Only 10-20% of patients are diagnosed at the early stage of disease. Recently, the role of novel biomarkers of the neoplastic process in the early detection of colorectal cancer has been widely discussed. In this review, we focused on the three novel biomarkers that are of potential clinical importance in diagnosing and monitoring colorectal cancer. Chitinase 3-like 1 protein, also known as YKL-40, and nestin and testin proteins are produced by colorectal cancer cells. YKL-40 protein is a marker of proliferation, differentiation, and tissue morphogenetic changes. The level of YKL-40 is elevated in about 20% of patients with colorectal cancer. An increased expression of nestin indicates immaturity. It is a marker of angiogenesis in neoplastic processes. Testin protein is a component of cell-cell connections and focal adhesions. The protein is produced in normal human tissues, but not in tumor tissues. Downregulation of testin increases cell motility, spread, and proliferation, and decreases apoptosis. The usefulness and role of these biomarkers, both alone and combined, in the diagnostics of colorectal cancer should be further explored as early cancer detection may substantially improve treatment outcome and patient survival.
Collapse
Affiliation(s)
- Anna Szymańska-Chabowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Juzwiszyn
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Jankowska-Polańska
- Division of Nursing in Internal Medicine, Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Tański
- Department of Internal Medicine, Fourth Military Teaching Hospital, Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Clinical Nursing, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland. .,Department of Surgery, Fourth Military Teaching Hospital, Wroclaw, Poland.
| |
Collapse
|
20
|
Abdelkareem RM, Elnashar AT, Fadle KN, Muhammad EMS. Immunohistochemical Expression of Nestin as Cancer Stem Cell marker in Gliomas. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/jnnsd.000033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
22
|
Xie P, Deng M, Sun QG, Ma YG, Zhou Y, Ming JH, Chen Q, Liu SQ, Liu JQ, Cai J, Wu F. Therapeutic effect of transplantation of human bone marrow‑derived mesenchymal stem cells on neuron regeneration in a rat model of middle cerebral artery occlusion. Mol Med Rep 2019; 20:3065-3074. [PMID: 31432152 PMCID: PMC6755237 DOI: 10.3892/mmr.2019.10536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (hBMSCs) have been revealed to be beneficial for the regeneration of tissues and cells in several diseases. The present study aimed to elucidate the mechanisms underlying the effect of hBMSC transplantation on neuron regeneration in a rat model of middle cerebral artery occlusion (MCAO). The hBMSCs were isolated, cultured and identified. A rat model of MCAO was induced via the modified Longa method. Neurological severity scores (NSS) were adopted for the evaluation of neuronal function in the model rats after cell transplantation. Next, the expression levels of nestin, β-III-tubulin (β-III-Tub), glial fibrillary acidic protein (GFAP), HNA and neuronal nuclear antigen (NeuN) were examined, as well as the positive expression rates of human neutrophil alloantigen (HNA), nestin, NeuN, β-III-Tub and GFAP. The NSS, as well as the mRNA and protein expression of nestin, decreased at the 1st, 2nd, 4 and 8th weeks, while the mRNA and protein expression of NeuN, β-III-Tub and GFAP increased with time. In addition, after treatment, the MCAO rats showed decreased NSS and mRNA and protein expression of nestin, but elevated mRNA and protein expression of NeuN, β-III-Tub and GFAP at the 2nd, 4 and 8th weeks, and decreased positive expression of HNA and nestin with enhanced expression of NeuN, β-III-Tub and GFAP. Therefore, the present findings demonstrated that hBMSC transplantation triggered the formation of nerve cells and enhanced neuronal function in a rat model of MCAO.
Collapse
Affiliation(s)
- Ping Xie
- Department of Chinese Traditional Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qin-Guo Sun
- Department of Chinese Traditional Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, P.R. China
| | - Yong-Gang Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiang-Hua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Qing Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Qi Liu
- Department of Radiation Oncology, The First of Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45003, P.R. China
| | - Jun Cai
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Kordić M, Tomić D, Soldo D, Hauptman D, Ježek D. Reinke's crystals in perivascular and peritubular Leydig cells of men with non-obstructive and obstructive azoospermia: a retrospective case control study. Croat Med J 2019. [PMID: 31044589 PMCID: PMC6509619 DOI: 10.3325/cmj.2019.60.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim To analyze the differences in the population of perivascular and peritubular Leydig cells (LC) and the number of Reinke's crystals (RCs) in the testicles of infertile men with non-obstructive and obstructive azoospermia. Methods This retrospective case-control study was conducted on the testicle tissue of infertile men with obstructive (n = 10) and those with non-obstructive azoospermia (n = 100). Stereological analysis was performed on 7-μm paraffin sections. Measurements were carried out by using the Weibel multipurpose test system. Results Patients with non-obstructive azoospermia had a higher total/absolute number of LCs in the perivascular space (P = 0.034). In these patients, no significant difference was found in the total and absolute number of RCs between the peritubular and perivascular space. Patients with obstructive azoospermia had around three times higher absolute number of RCs in both the peritubular and perivascular spaces (P = 0.002; P < 0.001) than non-obstructive group. Conclusion Our results suggest that in patients with non-obstructive azoospermia LCs migrated or had different densities in the peritubular and perivascular space compared with patients with obstructive azoospermia. Moreover, the lower number of RCs could imply their utilization by LCs in testosterone production.
Collapse
Affiliation(s)
| | | | | | | | - Davor Ježek
- Davor Ježek, Department of Histology and Embryology, University of Zagreb School of Medicine, Šalata 3, 10000 Zagreb, Croatia,
| |
Collapse
|
24
|
Nomura M, Matsumoto K, Shimizu Y, Ikeda M, Amano N, Nishi M, Ryo A, Nagashio R, Sato Y, Iwamura M. TROY expression is associated with pathological stage and poor prognosis in patients treated with radical cystectomy. Cancer Biomark 2019; 24:91-96. [PMID: 30475756 DOI: 10.3233/cbm-181911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND New biomarkers may help us provide individualized prognosis and allow risk-stratified clinical decision making about radical treatment. OBJECTIVES This study aimed to determine the tumor necrosis factor of receptor superfamily 19 (TROY) expression in urothelial carcinoma and its relationship to clinicopathological findings. METHODS Immunohistochemical staining for TROY was carried out in 136 archival radical cystectomy specimens with immunoreactivity being stratified on a 0-9 scale. Expression scores for TROY were further stratified into negative (score 0) and positive (score 1 or greater). Median age was 65 years, and the median follow-up period was 50.7 months. RESULTS Expression of TROY was significantly associated with the pathological stage (p= 0.019) and expression of nestin (p= 0.013). Log-rank tests indicated that expression of TROY was significantly associated with disease progression and cancer-specific mortality (p= 0.044 and 0.008, respectively). In multivariate Cox regression analysis, lymph node status was the only independent prognostic factor for disease progression and cancer-specific survival. Expression of TROY was a marginal prognostic factor for cancer-specific survival. CONCLUSIONS TROY may therefore be a new molecular marker to aid in identifying and selecting patients undergoing radical cystectomy who could potentially benefit from multimodal treatment.
Collapse
Affiliation(s)
- Megumi Nomura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Kazumasa Matsumoto
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Yuriko Shimizu
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Masaomi Ikeda
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Noriyuki Amano
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| | - Mayuko Nishi
- Department of Microbiology, School of Medicine, Yokohama City University, Yokohama 2360027, Japan
| | - Akihide Ryo
- Department of Microbiology, School of Medicine, Yokohama City University, Yokohama 2360027, Japan
| | - Ryo Nagashio
- Department of Molecular Diagnosis, School of Allied Health Sciences, Kitasato University, Sagamihara 2520373, Japan
| | - Yuichi Sato
- Department of Molecular Diagnosis, School of Allied Health Sciences, Kitasato University, Sagamihara 2520373, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara 2520374, Japan
| |
Collapse
|
25
|
Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells 2019; 8:cells8050497. [PMID: 31126068 PMCID: PMC6562751 DOI: 10.3390/cells8050497] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Intermediate filament (IF) proteins make up the largest family of cytoskeletal proteins in metazoans, and are traditionally known for their roles in fostering structural integrity in cells and tissues. Remarkably, individual IF genes are tightly regulated in a fashion that reflects the type of tissue, its developmental and differentiation stages, and biological context. In cancer, IF proteins serve as diagnostic markers, as tumor cells partially retain their original signature expression of IF proteins. However, there are also characteristic alterations in IF gene expression and protein regulation. The use of high throughput analytics suggests that tumor-associated alterations in IF gene expression have prognostic value. Parallel research is also showing that IF proteins directly and significantly impact several key cellular properties, including proliferation, death, migration, and invasiveness, with a demonstrated impact on the development, progression, and characteristics of various tumors. In this review, we draw from recent studies focused on three IF proteins most associated with cancer (keratins, vimentin, and nestin) to highlight how several “hallmarks of cancer” described by Hanahan and Weinberg are impacted by IF proteins. The evidence already in hand establishes that IF proteins function beyond their classical roles as markers and serve as effectors of tumorigenesis.
Collapse
|
26
|
Matsuda Y, Tanaka M, Sawabe M, Mori S, Muramatsu M, Mieno MN, Ishiwata T, Arai T. The stem cell-specific intermediate filament nestin missense variation p.A1199P is associated with pancreatic cancer. Oncol Lett 2019; 17:4647-4654. [PMID: 30988821 DOI: 10.3892/ol.2019.10106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/21/2019] [Indexed: 11/06/2022] Open
Abstract
The intermediate filament nestin is upregulated in stem/progenitor cells and cancers, and regulates cell proliferation, migration, invasion and stemness. The present study comparatively analyzed serial autopsies of Japanese patients (n=2,206; males, 1,225; females, 981; median, 80.7 years old; range, 33-104 years old) with malignant tumors of whole organs, with respect to the clinical information, and 5 single nucleotide polymorphisms of the nestin gene. p.A1199P associated with pancreatic cancer (odds ratio, 4.4; 95% confidence interval, 1.9-10.0, P=0.001) while it did not associate with malignant neoplasms in other organs. p.A1199P did not associate with precancerous lesions of the pancreas. Single nucleotide polymorphisms of nestin were not associated with sex, drinking, smoking, or body weight. In conclusion, the amino acid 1,199 of nestin is localized in the tail structure of the filament and polymerizes with other intermediate filament proteins. The present results suggest that missense variations of nestin affect pancreatic carcinogenesis in Japanese patients.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Makiko Naka Mieno
- Department of Medical Informatics, Center for Information, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
27
|
Pieterse Z, Amaya-Padilla MA, Singomat T, Binju M, Madjid BD, Yu Y, Kaur P. Ovarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol 2018; 106:117-126. [PMID: 30508594 DOI: 10.1016/j.biocel.2018.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is typically diagnosed at advanced stages (III or IV), with metastasis ensuing at stage III. Complete remission is infrequent and is not achieved in almost half of the women diagnosed with ovarian cancer. Consequently, management and treatment of this disease is challenging as many patients are faced with tumour recurrence disseminating to surrounding organs further complicated with acquired chemo-resistance. The cancer stem cell theory proposes the idea that a drug resistant subset of tumour cells drive tumour progression, metastasis and ultimately, recurrent disease. In the ovarian cancer field, cancer stem cells remain elusive with significant gaps in our knowledge. The characteristics and specific role of ovarian cancer stem cells in recurrence still requires further research since different studies often arrive at contradictory conclusions. Here we present a review and critical analysis of current research conducted in the field of ovarian cancer stem cells and their potential role in drug resistance including several signalling pathways within these cells that affect the viability of targeted therapies.
Collapse
Affiliation(s)
- Zalitha Pieterse
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | | | - Terence Singomat
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Mudra Binju
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Bau Dilam Madjid
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Yu Yu
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Pritinder Kaur
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia.
| |
Collapse
|
28
|
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki N, Ishiwata S, Ishikawa N, Takubo K, Arai T, Aida J. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res 2018; 24:797-805. [PMID: 29948612 DOI: 10.1007/s12253-018-0420-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Hisashi Yoshimura
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-0022, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shunji Ishiwata
- Division of Medical Pharmaceutics & Therapeutics, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
29
|
He S, Lin J, Lin L, Xu Y, Feng J. Shikonin‑mediated inhibition of nestin affects hypoxia‑induced proliferation of pulmonary artery smooth muscle cells. Mol Med Rep 2018; 18:3476-3482. [PMID: 30066896 DOI: 10.3892/mmr.2018.9333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/21/2018] [Indexed: 11/06/2022] Open
Abstract
The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is of importance in pulmonary vascular remodeling. Shikonin, a naphthoquinone compound extracted from the Chinese medicinal herb Lithospermum erythrorhizon, inhibits the proliferation of rat smooth muscle cells (SMCs). The present study was designed to investigate the effects of shikonin on the proliferation of rat PASMCs and the possible mechanisms involved. Rat PASMCs were cultured under the following five treatment conditions: Normal control; hypoxia for 24 h; hypoxia + 1 µM shikonin for 24 h; hypoxia + 2 µM shikonin for 24 h; and hypoxia + 4 µM shikonin for 24 h. The viability of PASMCs was measured using the Cell Counting Kit‑8 assay, the mRNA expression of nestin (NES) in each group was measured by reverse transcription‑polymerase chain reaction and the protein expression of NES was measured by western blotting. The proliferation of hypoxic PASMCs transfected with NES‑specific small interfering (si)RNA decreased compared with the non‑transfected group. These results indicated that hypoxia induced the proliferation of PASMCs through the enhancement of NES expression. The treatment of hypoxic PASMCs with shikonin resulted in a significant downregulation of NES expression and the inhibition of PASMC proliferation.
Collapse
Affiliation(s)
- Susu He
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Jian Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Ling Lin
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Youzu Xu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| | - Jiaxi Feng
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
30
|
Angelucci C, D'Alessio A, Lama G, Binda E, Mangiola A, Vescovi AL, Proietti G, Masuelli L, Bei R, Fazi B, Ciafrè SA, Sica G. Cancer stem cells from peritumoral tissue of glioblastoma multiforme: the possible missing link between tumor development and progression. Oncotarget 2018; 9:28116-28130. [PMID: 29963265 PMCID: PMC6021333 DOI: 10.18632/oncotarget.25565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/19/2018] [Indexed: 12/15/2022] Open
Abstract
In glioblastoma multiforme (GBM), cancer stem cells (CSCs) are thought to be responsible for gliomagenesis, resistance to treatment and recurrence. Unfortunately, the prognosis for GBM remains poor and recurrence frequently occurs in the peritumoral tissue within 2 cm from the tumor edge. In this area, a population of CSCs has been demonstrated which may recapitulate the tumor after surgical resection. In the present study, we aimed to characterize CSCs derived from both peritumoral tissue (PCSCs) and GBM (GCSCs) in order to deepen their significance in GBM development and progression. The stemness of PCSC/GCSC pairs obtained from four human GBM surgical specimens was investigated by comparing the expression of specific stem cell markers such as Nestin, Musashi-1 and SOX2. In addition, the growth rate, the ultrastructural features and the expression of other molecules such as c-Met, pMet and MAP kinases, involved in cell migration/invasion, maintenance of tumor stemness and/or resistance to treatments were evaluated. Since it has been recently demonstrated the involvement of the long non-coding RNAs (lncRNAs) in the progression of gliomas, the expression of H19 lncRNA, as well as of one of its two mature products miR-675-5p was evaluated in neurospheres. Our results show significant differences between GCSCs and PCSCs in terms of proliferation, ultrastructural peculiarities and, at a lower extent, stemness profile. These differences might be important in view of their potential role as a therapeutic target.
Collapse
Affiliation(s)
- Cristiana Angelucci
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Gina Lama
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Elena Binda
- Cancer Stem Cells Unit, IRCSS Casa Sollievo della Sofferenza, ISBReMIT-Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Opera di San Pio da Pietrelcina, S. Giovanni Rotondo, Foggia, Italy
| | - Annunziato Mangiola
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Angelo L Vescovi
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy.,IRCSS Casa Sollievo della Sofferenza, ISBReMIT-Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Opera di San Pio da Pietrelcina, S. Giovanni Rotondo, Foggia, Italy.,Hyperstem SA, Lugano, Switzerland
| | - Gabriella Proietti
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara Fazi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
31
|
Nowak A, Dziegiel P. Implications of nestin in breast cancer pathogenesis (Review). Int J Oncol 2018; 53:477-487. [PMID: 29901100 DOI: 10.3892/ijo.2018.4441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present review was to summarize the current knowledge of the involvement of nestin in breast cancer (BC) pathogenesis. Nestin is a member of the class VI family of intermediate filament proteins, originally identified as a marker of neural stem cells and subsequently demonstrated to be expressed in BC and other cancer types. In normal breast tissue, nestin is expressed in the basal/myoepithelial cells of the mammary gland. In BC, nestin identifies basal-like tumours and predicts aggressive behaviour and poor prognosis. Nestin expression has also been detected in BC stem cells and newly-formed tumour vessels, being a factor in promoting invasion and metastasis. The present review provides an up-to-date overview of the involvement of nestin in processes facilitating BC pathogenesis and progression.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
32
|
Manousopoulou A, Hayden A, Mellone M, Garay-Baquero DJ, White CH, Noble F, Lopez M, Thomas GJ, Underwood TJ, Garbis SD. Quantitative proteomic profiling of primary cancer-associated fibroblasts in oesophageal adenocarcinoma. Br J Cancer 2018; 118:1200-1207. [PMID: 29593339 PMCID: PMC5943522 DOI: 10.1038/s41416-018-0042-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) form the major stromal component of the tumour microenvironment (TME). The present study aimed to examine the proteomic profiles of CAFs vs. normal fibroblasts (NOFs) from patients with oesophageal adenocarcinoma to gain insight into their pro-oncogenic phenotype. METHODS CAFs/NOFs from four patients were sub-cultured and analysed using quantitative proteomics. Differentially expressed proteins (DEPs) were subjected to bioinformatics and compared with published proteomics and transcriptomics datasets. RESULTS Principal component analysis of all profiled proteins showed that CAFs had high heterogeneity and clustered separately from NOFs. Bioinformatics interrogation of the DEPs demonstrated inhibition of adhesion of epithelial cells, adhesion of connective tissue cells and cell death of fibroblast cell lines in CAFs vs. NOFs (p < 0.0001). KEGG pathway analysis showed a significant enrichment of the insulin-signalling pathway (p = 0.03). Gene ontology terms related with myofibroblast phenotype, metabolism, cell adhesion/migration, hypoxia/oxidative stress, angiogenesis, immune/inflammatory response were enriched in CAFs vs. NOFs. Nestin, a stem-cell marker up-regulated in CAFs vs. NOFs, was confirmed to be expressed in the TME with immunohistochemistry. CONCLUSIONS The identified pathways and participating proteins may provide novel insight on the tumour-promoting properties of CAFs and unravel novel adjuvant therapeutic targets in the TME.
Collapse
Affiliation(s)
| | - Annette Hayden
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana J Garay-Baquero
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cory H White
- Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Merck Exploratory Science Center, Cambridge, MA, USA
| | - Fergus Noble
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Monette Lopez
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Timothy J Underwood
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Spiros D Garbis
- Institute for Life Sciences, University of Southampton, Southampton, UK.
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
33
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
34
|
Tamura R, Ohara K, Sasaki H, Morimoto Y, Yoshida K, Toda M. Histopathological vascular investigation of the peritumoral brain zone of glioblastomas. J Neurooncol 2017; 136:233-241. [PMID: 29188530 DOI: 10.1007/s11060-017-2648-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022]
Abstract
To date, no histopathological vascular investigation focusing on peritumoral brain zone (PBZ) has been reported for glioblastoma. We analyzed 10 newly diagnosed cases of glioblastomas. For these PBZs, histopathological investigation was performed by hematoxylin-eosin (H&E) staining and immunohistochemistry was analyzed for CD31, CD34, Factor VIII, VEGF, VEGFR-1/2, Ki67, p53 and nestin. Although it was difficult to identify PBZ by H&E, Ki67 and p53 staining, there were apparent differences in nestin staining among PBZ, tumor core (TC), and normal zone (NZ). Therefore, in this study, we divided PBZ from TC and NZ by nestin staining. Differences in histological features, microvessel density, expression of VEGF and its receptors were assessed for PBZ, TC and NZ. The microvessel density, as determined by counting CD31, CD34 and VEGF receptors, and VEGF-A expression were lower in PBZ than TC. The expression patterns for CD31, CD34 and VEGF receptors in vessels show dissociation in PBZ. In addition, the vascular characteristics of the PBZ may correlate with findings of radiographic imaging. We provide the first clinicopathological evidence that PBZ exhibits unique angiogenic characteristics. These in situ observations will help to elucidate the mechanisms of tumor recurrence.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
35
|
Zhao L, Li J, Liu M, Zhou H, Zou H, Wei Y, Sun K, Li G, Li S, Pang L. The clinicopathological parameters significance of CD133 and Nestin in epithelial ovarian cancer: a meta-analysis. Future Oncol 2017; 13:2555-2570. [PMID: 29168665 DOI: 10.2217/fon-2017-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This meta-analysis was conducted to evaluate the association of CD133 and Nestin with epithelial ovarian cancer. Databases (PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, Wanfang) were searched for relevant studies updated in August 2017. CD133 and Nestin expression were estimated by immunohistochemistry. Statistical analysis was performed by RevMan. A total of 18 studies were included in this meta-analysis. High expression of both CD133 and Nestin was associated with late International Federation of Gynecology and Obstetrics stage (p < 0.00001), larger size of residual cancer (p < 0.05). CD133 overexpression was also associated with higher histological grade (p = 0.0006) and lymph node metastases (p < 0.00001). Nestin overexpression was associated with a higher rate of treatment resistance (p = 0.0007). Positive expression of CD133 and Nestin may be associated with aggressive biological behaviors in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jun Li
- Department of Ultrasound, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Manli Liu
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hongrun Zhou
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yutao Wei
- Department of Thoracic & Cardiovascular Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Kunming Sun
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ganxiong Li
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology & Key Laboratory of Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China.,Department of Pathology, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
36
|
Nestin expression in breast cancer: association with prognosis and subtype on 3641 cases with long-term follow-up. Breast Cancer Res Treat 2017; 168:107-115. [PMID: 29159761 DOI: 10.1007/s10549-017-4583-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Basal-like breast cancers, originally recognized by gene expression profiling, can be clinically identified using immunohistochemical (IHC) definitions that require estrogen receptor (ER) negativity. However, some basal cases are ER positive and are mistakenly considered to be luminal by standard IHC approaches, leading to suboptimal treatment choices. Nestin, an intermediate filament expressed in many stem cells, is a recently identified positive marker of basal-like phenotype independent of ER status. In this study, we evaluated its clinical associations and prognostic capacity in a large breast cancer cohort. METHODS A tissue microarray series of clinically annotated invasive breast cancers with 12.6-year median follow-up was assessed for nestin expression by IHC. Kaplan-Meier and Cox regression models were used to evaluate the prognostic significance of nestin status, for the primary endpoint of breast cancer-specific survival (BCSS). RESULTS Among 3641 cases interpretable for nestin by IHC, positive staining was found in 371 cases (10%) and was significantly associated with poor prognostic factors including other markers of basal-like differentiation. Patients with nestin-positive tumors had a significantly lower 10 year BCSS (HR 1.97, 95% CI 1.62-2.40; P < 0.001). Importantly, within the large group of 2323 ER+ cases, nestin positivity identified a subgroup of 120 patients (5%) with a significantly inferior 10-year BCSS (HR 1.50, 95% CI 1.10-2.13; P = 0.02). CONCLUSIONS Nestin IHC positivity is associated with the poor clinical outcomes and reduced survival rates that characterize the gene expression basal-like subtype. This easily applicable tool identifies ER+ poor prognosis basal phenotype patients that are currently being missed by "Triple negative" or "Core basal" IHC definitions.
Collapse
|
37
|
Hertig V, Matos-Nieves A, Garg V, Villeneuve L, Mamarbachi M, Caland L, Calderone A. Nestin expression is dynamically regulated in cardiomyocytes during embryogenesis. J Cell Physiol 2017; 233:3218-3229. [PMID: 28834610 DOI: 10.1002/jcp.26165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional factors implicated in the expression of the intermediate filament protein nestin in cardiomyocytes during embryogenesis remain undefined. In the heart of 9,5-10,5 day embryonic mice, nestin staining was detected in atrial and ventricular cardiomyocytes and a subpopulation co-expressed Tbx5. At later stages of development, nestin immunoreactivity in cardiomyocytes gradually diminished and was absent in the heart of 17,5 day embryonic mice. In the heart of wild type 11,5 day embryonic mice, 54 ± 7% of the trabeculae expressed nestin and the percentage was significantly increased in the hearts of Tbx5+/- and Gata4+/- embryos. The cell cycle protein Ki67 and transcriptional coactivator Yap-1 were still prevalent in the nucleus of nestin(+) -cardiomyocytes identified in the heart of Tbx5+/- and Gata4+/- embryonic mice. Phorbol 12,13-dibutyrate treatment of neonatal rat ventricular cardiomyocytes increased Yap-1 phosphorylation and co-administration of the p38 MAPK inhibitor SB203580 led to significant dephosphorylation. Antagonism of dephosphorylated Yap-1 signalling with verteporfin inhibited phorbol 12,13-dibutyrate/SB203580-mediated nestin expression and BrdU incorporation of neonatal cardiomyocytes. Nestin depletion with an AAV9 containing a shRNA directed against the intermediate filament protein significantly reduced the number of neonatal cardiomyocytes that re-entered the cell cycle. These findings demonstrate that Tbx5- and Gata4-dependent events negatively regulate nestin expression in cardiomyocytes during embryogenesis. By contrast, dephosphorylated Yap-1 acting via upregulation of the intermediate filament protein nestin plays a seminal role in the cell cycle re-entry of cardiomyocytes. Based on these data, an analogous role of Yap-1 may be prevalent in the heart of Tbx5+/- and Gata4+/- mice.
Collapse
Affiliation(s)
- Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Adrianna Matos-Nieves
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and the Heart Center, Nationwide Children's Hospital, OH Department of Pediatrics, The Ohio State University, OH Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Maya Mamarbachi
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Laurie Caland
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.,Department of Pharmacology & Physiology, Université de Montréal, Québec, Montréal, Canada
| |
Collapse
|
38
|
Krüger K, Wik E, Knutsvik G, Nalwoga H, Klingen TA, Arnes JB, Chen Y, Mannelqvist M, Dimitrakopoulou K, Stefansson IM, Birkeland E, Aas T, Tobin NP, Jonassen I, Bergh J, Foulkes WD, Akslen LA. Expression of Nestin associates with BRCA1 mutations, a basal-like phenotype and aggressive breast cancer. Sci Rep 2017; 7:1089. [PMID: 28439082 PMCID: PMC5430803 DOI: 10.1038/s41598-017-00862-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/15/2017] [Indexed: 12/28/2022] Open
Abstract
We here examined whether Nestin, by protein and mRNA levels, could be a predictor of BRCA1 related breast cancer, a basal-like phenotype, and aggressive tumours. Immunohistochemical staining of Nestin was done in independent breast cancer hospital cohorts (Series I-V, total 1257 cases). Also, TCGA proteomic data (n = 103), mRNA microarray data from TCGA (n = 520), METABRIC (n = 1992), and 6 open access breast cancer datasets (n = 1908) were analysed. Patients with Nestin protein expression in tumour cells more often had BRCA1 germline mutations (OR 8.7, p < 0.0005, Series III), especially among younger patients (<40 years at diagnosis) (OR 16.5, p = 0.003). Nestin protein positivity, observed in 9–28% of our hospital cases (Series I-IV), was independently associated with reduced breast cancer specific survival (HR = 2.0, p = 0.035) and was consistently related to basal-like differentiation (by Cytokeratin 5, OR 8.7–13.8, p < 0.0005; P-cadherin OR 7.0–8.9, p < 0.0005; EGFR staining, OR 3.7–8.2, p ≤ 0.05). Nestin mRNA correlated significantly with Nestin protein expression (ρ = 0.6, p < 0.0005), and high levels were seen in the basal-like intrinsic subtype. Gene expression signalling pathways linked to high Nestin were explored, and revealed associations with stem-like tumour features. In summary, Nestin was strongly associated with germline BRCA1 related breast cancer, a basal-like phenotype, reduced survival, and stemness characteristics.
Collapse
Affiliation(s)
- Kristi Krüger
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Hawa Nalwoga
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Tor A Klingen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Vestfold Hospital, Tønsberg, Norway
| | - Jarle B Arnes
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ying Chen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Vestfold Hospital, Tønsberg, Norway.,Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Monica Mannelqvist
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - Konstantina Dimitrakopoulou
- Centre for Cancer Biomarkers CCBIO and Computational Biology Unit, Department of Informatics, University of, Bergen, Norway
| | - Ingunn M Stefansson
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Even Birkeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Inge Jonassen
- Centre for Cancer Biomarkers CCBIO and Computational Biology Unit, Department of Informatics, University of, Bergen, Norway
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - William D Foulkes
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, 546 Pine Avenue West, Montreal, QC, H2W 1S6, Canada
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, Norway. .,Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
39
|
Tampaki EC, Tampakis A, Nonni A, Kontzoglou K, Patsouris E, Kouraklis G. Nestin and cluster of differentiation 146 expression in breast cancer: Predicting early recurrence by targeting metastasis? Tumour Biol 2017; 39:1010428317691181. [PMID: 28347241 DOI: 10.1177/1010428317691181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the relationship between the expression of stem-cell markers nestin and cluster of differentiation 146 with clinicopathological characteristics in breast cancer and to determine whether a prognostic impact of nestin and CD146 expression exists regarding occurrence of disease relapse in breast cancer. A total of 141 patients who were histologically diagnosed with breast cancer and underwent radical operations from November 2006 to October 2013 in Laiko General Hospital, National and Kapodistrian University of Athens, were enrolled in the study. CD146 and nestin protein expression were evaluated using immunohistochemistry. Nestin expression was observed in 18.4% (26/141) of the cases, while CD146 expression was observed in 35.5% (50/141) of the cases. Nestin expression is significantly higher in younger patients with breast cancer. Nestin and CD146 expression were not correlated with the tumor size and the presence of lymph node metastasis. On the contrary, a significantly higher expression of nestin and CD146 was observed with triple-negative cancers (p < 0.0001 for both markers), low differentiated tumors (p = 0.021 for nestin and p = 0.008 for CD146), and increased Ki-67 expression (p = 0.007 for nestin and p < 0.0001 for CD146). The nestin-positive group of patients and the CD146-positive group of patients presented significantly higher rates of disease recurrence (log-rank test, p = 0.022 for nestin and p = 0.003 for CD146) with a distant metastasis, 30 months after the primary treatment. CD146 but not nestin, however, predicted independently (p = 0.047) disease recurrence. Nestin and CD146 are expressed in breast cancer cells with highly aggressive potency. They might contribute to disease relapse in breast cancer by activating the epithelial-mesenchymal transition pathway and assist tumor neovascularization.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | | | - Afroditi Nonni
- 3 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Efstratios Patsouris
- 3 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory Kouraklis
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
40
|
Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y, Li D. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer 2017; 16:52. [PMID: 28245823 PMCID: PMC5331747 DOI: 10.1186/s12943-017-0624-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanical properties of epithelial to mesenchymal transition (EMT) and a pancreatic cancer subpopulation with stem cell properties have been increasingly recognized as potent modulators of the effective of therapy. In particular, pancreatic cancer stem cells (PCSCs) are functionally important during tumor relapse and therapy resistance. In this review we have surveyed recent advances in the role of EMT and PCSCs in tumor progression, metastasis and treatment resistance, and the mechanisms of integrated with biochemical signals and the underlying pathways involved in treatment resistance of pancreatic cancer. These findings highlight the importance of confirming stem-cells markers and complex molecular signaling pathways controlling EMT and cancer stem cells in pancreatic cancer during tumor formation, progression, and response to therapy.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Furao Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Rezaei M, Hosseini A, Nikeghbalian S, Ghaderi A. Establishment and characterization of a new human acinar cell carcinoma cell line, Faraz-ICR, from pancreas. Pancreatology 2017; 17:303-309. [PMID: 28215484 DOI: 10.1016/j.pan.2017.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Basic research in the field of acinar cell carcinoma (ACC) as a rare neoplasm of the pancreas is dependent on the availability of pragmatic model such as new pancreatic cancer cell lines. Thus, establishment and characterization of new pancreatic cancer cell lines from ACC origin are deemed important. METHODS Faraz-ICR cell line was derived from a 58-years old woman with pancreatic acinar cell carcinoma by the collagenase digestion protocol. We characterized the cell line by examining its morphology and cytostructural and functional profile. RESULTS Faraz-ICR has a doubling time of 35 hours and grows in soft agar with a colony-forming efficiency of 25%. The cell had nearly normal pattern of chromosomes in karyotype analysis and Comparative Genomic Hybridization (CGH) array analysis. Evaluation of cells by flowcytometry showed that Faraz-ICR is negative for EpCAM and mesenchymal markers in different passages, and has epithelial nature. Immunofluorescence staining revealed that cells were strongly positive for vimentin, desmin, ezrin, S100, nestin and they were negative for pan-cytokeratins, chromogranin and alpha smooth muscle actin. CONCLUSIONS We were able to establish a new pancreatic carcinoma cell line with partial aspects of Epithelial-mesenchymal transition and aggressiveness. This cell line might be suitable for studying various anticancer drugs and protein profile aiming to see any possible tumor associated marker for ACC.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Department of Surgery, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
42
|
Zambo I, Hermanova M, Zapletalova D, Skoda J, Mudry P, Kyr M, Zitterbart K, Sterba J, Veselska R. Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. Cancer Biomark 2017; 17:107-16. [PMID: 27314299 DOI: 10.3233/cbm-160623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nestin, CD133 and ABCG2 are recently discussed as putative markers, co-expression of which might determine a cancer stem cell (CSC) phenotype in sarcomas. OBJECTIVE Our study is focused on immunohistochemical analysis of nestin, CD133 and ABCG2 expression in rhabdomyosarcoma, Ewing sarcoma and osteosarcoma. Furthermore, we also analyzed the possible correlation of nestin, CD133 and ABCG2 expression levels with the patient outcome to identify potential prognostic values of these three putative CSC markers in the same cohorts. METHODS Using immunohistochemistry, expression of nestin, CD133 and ABCG2 was analyzed in 24 rhabdomyosarcoma, 22 Ewing sarcoma and 10 osteosarcoma tissue samples and expression levels of these markers were correlated with clinical outcome. RESULTS High nestin levels indicate poor prognosis in patients with Ewing sarcoma (P = 0.001), and high CD133 expression is associated with shorter survival in rhabdomyosarcoma patients (P = 0.002). In contrast, no significant relationship was found between ABCG2 expression and the clinical outcome. CONCLUSIONS Our analysis represents the first complex study of these three putative CSCs markers together in three different types of pediatric sarcomas and showed their possible prognostic values in these tumors.
Collapse
Affiliation(s)
- Iva Zambo
- Department of Pathological Anatomy, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Marketa Hermanova
- Department of Pathological Anatomy, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Danica Zapletalova
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jan Skoda
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Zitterbart
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Renata Veselska
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
43
|
Suresh A, Kuriakose MA, Mohanta S, Siddappa G. Carcinogenesis and Field Cancerization in Oral Squamous Cell Carcinoma. CONTEMPORARY ORAL ONCOLOGY 2017:1-30. [DOI: 10.1007/978-3-319-14911-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Sarcomatoid adrenocortical carcinoma: a comprehensive pathological, immunohistochemical, and targeted next-generation sequencing analysis. Hum Pathol 2016; 58:113-122. [DOI: 10.1016/j.humpath.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
|
45
|
Yin Z, Hu JJ, Yang L, Zheng ZF, An CR, Wu BB, Zhang C, Shen WL, Liu HH, Chen JL, Heng BC, Guo GJ, Chen X, Ouyang HW. Single-cell analysis reveals a nestin + tendon stem/progenitor cell population with strong tenogenic potentiality. SCIENCE ADVANCES 2016; 2:e1600874. [PMID: 28138519 PMCID: PMC5262457 DOI: 10.1126/sciadv.1600874] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/20/2016] [Indexed: 05/12/2023]
Abstract
The repair of injured tendons remains a formidable clinical challenge because of our limited understanding of tendon stem cells and the regulation of tenogenesis. With single-cell analysis to characterize the gene expression profiles of individual cells isolated from tendon tissue, a subpopulation of nestin+ tendon stem/progenitor cells (TSPCs) was identified within the tendon cell population. Using Gene Expression Omnibus datasets and immunofluorescence assays, we found that nestin expression was activated at specific stages of tendon development. Moreover, isolated nestin+ TSPCs exhibited superior tenogenic capacity compared to nestin- TSPCs. Knockdown of nestin expression in TSPCs suppressed their clonogenic capacity and reduced their tenogenic potential significantly both in vitro and in vivo. Hence, these findings provide new insights into the identification of subpopulations of TSPCs and illustrate the crucial roles of nestin in TSPC fate decisions and phenotype maintenance, which may assist in future therapeutic strategies to treat tendon disease.
Collapse
Affiliation(s)
- Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Jia-jie Hu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Yang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ze-Feng Zheng
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng-rui An
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing-bing Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Can Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Liang Shen
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huan-huan Liu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-lin Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Guo-ji Guo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Corresponding author. (H.-W.O.); (X.C.)
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author. (H.-W.O.); (X.C.)
| |
Collapse
|
46
|
Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: Novel therapeutic targets for cancer. Pathol Int 2016; 66:601-608. [PMID: 27510923 DOI: 10.1111/pin.12447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Despite the development of various therapeutic approaches, recurrence and metastasis remain major problems for patients with advanced cancer. Recent studies have shown that cancer stem cells (CSCs) play an important role in cancer aggressiveness. In cancer tissues, a small number of CSCs are able to self-renew and differentiate into heterogeneous cancer cells. CSCs usually remain in the resting phase of the cell cycle and possess efficient drug efflux pathways. Thus, they are resistant to chemoradiotherapy and surviving CSCs contribute to recurrence. During cancer metastasis, CSCs undergo epithelial-mesenchymal transition (EMT), thereby acquiring mesenchymal features, migrating to adjacent stromal tissues, and invading blood or lymph vessels. Recent studies showed that EMT-inducible factors also enhance or induce CSC-like features in cancer cells. These findings suggest that EMT is closely correlated with cancer recurrence and metastasis. Inhibition of nestin, a CSC marker, reduces the aggressiveness of several types of cancer. Suppression of the mesenchymal variant of fibroblast growth factor (FGFR)-2, FGFR-2 IIIc, and regulation of the EMT using epithelial splicing regulatory protein 1 (ESRP1) are effective in the treatment of immunodeficient mice with pancreatic cancer. The roles of CSCs and EMT in cancer and possible therapies are discussed in this review.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
47
|
Meus MA, Hertig V, Villeneuve L, Jasmin JF, Calderone A. Nestin Expressed by Pre-Existing Cardiomyocytes Recapitulated in Part an Embryonic Phenotype; Suppressive Role of p38 MAPK. J Cell Physiol 2016; 232:1717-1727. [DOI: 10.1002/jcp.25496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Marc-Andre Meus
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| | - Vanessa Hertig
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| | - Louis Villeneuve
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences; University of the Sciences in Philadelphia; Philadelphia Pennsylvania
| | - Angelino Calderone
- Montreal Heart Institute; Université de Montréal; Montréal Québec Canada
- Département de Physiologie Moléculaire et Intégrative; Université de Montréal; Montréal Québec Canada
| |
Collapse
|
48
|
Parajuli P, Anand R, Mandalaparty C, Suryadevara R, Sriranga PU, Michelhaugh SK, Cazacu S, Finniss S, Thakur A, Lum LG, Schalk D, Brodie C, Mittal S. Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal. Oncotarget 2016; 7:6121-35. [PMID: 26755664 PMCID: PMC4868744 DOI: 10.18632/oncotarget.6847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/26/2015] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common primary brain tumor and one of the most lethal solid tumors. Mechanistic studies into identification of novel biomarkers are needed to develop new therapeutic strategies for this deadly disease. The objective for this study was to explore the potential direct impact of IL-17-IL-17R interaction in gliomas. Immunohistochemistry and flow cytometry analysis of 12 tumor samples obtained from patients with high grade gliomas revealed that a considerable population (2-19%) of cells in all malignant gliomas expressed IL-17RA, with remarkable co-expression of the glioma stem cell (GSC) markers CD133, Nestin, and Sox2. IL-17 enhanced the self-renewal of GSCs as determined by proliferation and Matrigel® colony assays. IL-17 also induced cytokine/chemokine (IL-6, IL-8, interferon-γ-inducible protein [IP-10], and monocyte chemoattractant protein-1 [MCP-1]) secretion in GSCs, which were differentially blocked by antibodies against IL-17R and IL-6R. Western blot analysis showed that IL-17 modulated the activity of signal transducer and activator of transcription 3 (STAT3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), glycogen synthase kinase-3β (GSK-3β) and β-catenin in GSCs. While IL-17R-mediated secretion of IL-6 and IL-8 were significantly blocked by inhibitors of NF-κB and STAT3; NF-κB inhibitor was more potent than STAT3 inhibitor in blocking IL-17-induced MCP-1 secretion. Overall, our results suggest that IL-17-IL-17R interaction in GSCs induces an autocrine/paracrine cytokine feedback loop, which may provide an important signaling component for maintenance/self-renewal of GSCs via constitutive activation of both NF-κB and STAT3. The results also strongly implicate IL-17R as an important functional biomarker for therapeutic targeting of GSCs.
Collapse
Affiliation(s)
- Prahlad Parajuli
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Rohit Anand
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Raviteja Suryadevara
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Preethi U. Sriranga
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Sharon K. Michelhaugh
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Archana Thakur
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Lawrence G. Lum
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
- Departments of Internal Medicine, Immunology and Microbiology, and Pediatrics, Wayne State University, Detroit, MI, USA
| | - Dana Schalk
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Chaya Brodie
- Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
49
|
Lv D, Lu L, Hu Z, Fei Z, Liu M, Wei L, Xu J. Nestin Expression Is Associated with Poor Clinicopathological Features and Prognosis in Glioma Patients: an Association Study and Meta-analysis. Mol Neurobiol 2016; 54:727-735. [DOI: 10.1007/s12035-016-9689-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
|
50
|
Abstract
Tumor neovascularization acquires their vessels through a number of processes including angiogenesis, vasculogenesis, vascular remodeling, intussusception, and possibly vascular mimicry in certain tumors. The end result of the tumor vasculature has been quantified by counting the number of immunohistochemically identified microvessels in areas of maximal vascularity, so-called hot spot. Other techniques have been developed such as Chalkley counting and the use of image analysis systems that are robust and reproducible as well as being more objective. Many of the molecular pathways that govern tumor neovascularization have been identified and many reagents are now available to study these tissue sections. These include angiogenic growth factors and their receptors and cell adhesion molecules, proteases, and markers of activated, proliferating, cytokine-stimulated, or angiogenic vessels, such as CD105. It is also possible to differentiate quiescent from active vessels. Other reagents that can identify proteins involved in microenvironmental influences such as hypoxia have also been generated. Although the histological assessment of tumor vascularity is used mostly in the research context, it may also have clinical applications if appropriate methodology and trained observers perform the studies.
Collapse
Affiliation(s)
- Jia-Min Pang
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia
| | - Nicholas Jene
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, 2 St Andrews Place, Melbourne, 3002, Australia.
| |
Collapse
|