1
|
Lei ZY, Li ZH, Lin DN, Cao J, Chen JF, Meng SB, Wang JL, Liu J, Zhang J, Lin BL. Med1 inhibits ferroptosis and alleviates liver injury in acute liver failure via Nrf2 activation. Cell Biosci 2024; 14:54. [PMID: 38678227 PMCID: PMC11056072 DOI: 10.1186/s13578-024-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Extensive hepatocyte mortality and the absence of specific medical therapy significantly contribute to the unfavorable prognosis of acute liver failure (ALF). Ferroptosis is a crucial form of cell death involved in ALF. In this study, we aimed to determine the impact of Mediator complex subunit 1 (Med1) on ferroptosis and its potential hepatoprotective effects in ALF. RESULTS Med1 expression is diminished in the liver of lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALF mice, as well as in hepatocytes damaged by H2O2 or TNF-α/D-GalN in vitro. Med1 overexpression mitigates liver injury and decreases the mortality rate of ALF mice by ferroptosis inhibition. The mechanism by which Med1 inhibits erastin-induced ferroptosis in hepatocytes involves the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes heme oxygenase-1 (HO-1), glutamate cysteine ligase catalytic (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, Med1 overexpression suppresses the transcription of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver of mice with LPS/D-GalN-induced ALF. CONCLUSION Overall, our research findings indicate that Med1 suppresses ferroptosis and alleviates liver injury in LPS/D-GalN-induced ALF through the activation of Nrf2. These findings substantiate the therapeutic viability of targeting the Med1-Nrf2 axis as a means of treating individuals afflicted with ALF.
Collapse
Affiliation(s)
- Zi-Ying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhi-Hui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Deng-Na Lin
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Jing Cao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Feng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shi-Bo Meng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Lei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jing Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Bing-Liang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Jin D, Kang K, Yan BZ, Zhang JN, Zheng JB, Wang ZH, Wu D, Tang YJ, Wang XT, Lai QQ, Cao Y, Wang HL, Gao Y. Combined Age with Mean Decrease Rates of Total Bilirubin and MELD Score as a Novel and Simple Clinical Predictor on 90-Day Transplant-Free Mortality in Adult Patients with Acute Liver Failure Undergoing Plasma Exchange: A Single-Center Retrospective Study. Can J Gastroenterol Hepatol 2023; 2023:6115499. [PMID: 38021269 PMCID: PMC10645502 DOI: 10.1155/2023/6115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acute liver failure (ALF), previously known as fulminant hepatic failure, has become a common, rapidly progressive, and life-threatening catastrophic hepatic disease in intensive care unit (ICU) due to the continuous increase in drug abuse, viral infection, metabolic insult, and auto-immune cause. At present, plasma exchange (PE) is the main effective alternative treatment for ALF in ICU clinical practice, and high-volume plasma exchange (HVP) has been listed as a grade I recommendation for ALF management in the American Society for Apheresis (ASFA) guidelines. However, no existing models can provide a satisfactory performance for clinical prediction on 90-day transplant-free mortality in adult patients with ALF undergoing PE. Our study aims to identify a novel and simple clinical predictor of 90-day transplant-free mortality in adult patients with ALF undergoing PE. Methods This retrospective study contained adult patients with ALF undergoing PE from the Medical ICU (MICU) in the Second Affiliated Hospital of Harbin Medical University between January 2017 and December 2020. Baseline and clinical data were collected and calculated on admission to ICU before PE, including gender, age, height, weight, body mass index (BMI), etiology, total bilirubin, direct bilirubin, indirect bilirubin, prothrombin activity, model for end-stage liver disease (MELD) score, and sequential organ failure assessment (SOFA) score. Enrolled adult patients with ALF undergoing PE were divided into a survival group and a death group at discharge and 90 days on account of medical records and telephone follow-up. After each PE, decreased rates of total bilirubin and MELD score and increased rates of prothrombin activity were calculated according to the clinical parameters. In clinical practice, different patients underwent different times of PE, and thus, mean decrease rates of total bilirubin and MELD score and mean increase rate of prothrombin activity were obtained for further statistical analysis. Results A total of 73 adult patients with ALF undergoing 204 PE were included in our retrospective study, and their transplant-free mortality at discharge and 90 days was 6.85% (5/73) and 31.51% (23/73), respectively. All deaths could be attributed to ALF-induced severe and life-threatening complications or even multiple organ dysfunction syndrome (MODS). Most of the enrolled adult patients with ALF were men (76.71%, 56/73), with a median age of 48.77 years. Various hepatitis virus infections, unknown etiology, auto-immune liver disease, drug-induced liver injury, and acute pancreatitis (AP) accounted for 75.34%, 12.33%, 6.85%, 4.11%, and 1.37% of the etiologies in adult patients with ALF, respectively. Univariate analysis showed a significant difference in age, mean decrease rates of total bilirubin and MELD score mean increase rate of prothrombin activity, decrease rates of total bilirubin and MELD score, and increase rate of prothrombin activity after the first PE between the death group and survival group. Multivariate analysis showed that age and mean decrease rates of total bilirubin and MELD score were closely associated with 90-day transplant-free mortality in adult patients with ALF undergoing PE. The 90-day transplant-free mortality was 1.081, 0.908, and 0.893 times of the original value with each one-unit increase in age and mean decrease rates of total bilirubin and MELD score, respectively. The areas under the receiver operatingcharacteristic (ROC) curve of age, mean decrease rates of total bilirubin and MELD score, and the three combined were 0.689, 0.225, 0.123, and 0.912, respectively. The cut-off values of age, mean decrease rates of total bilirubin and MELD score, and the three combined were 61.50, 3.12, 1.21, and 0.33, respectively. The specificity and sensitivity of combined age with mean decrease rates of total bilirubin and MELD score for predicting 90-day transplant-free mortality in adult patients with ALF undergoing PE were 87% and 14%. Conclusion Combined age with mean decrease rates of total bilirubin and MELD score as a novel and simple clinical predictor can accurately predict 90-day transplant-free mortality in adult patients with ALF undergoing PE, which is worthy of application and promotion in clinical practice, especially in the identification of potential transplant candidates.
Collapse
Affiliation(s)
- Di Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Bing-zhu Yan
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Jian-nan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jun-bo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Zhi-hui Wang
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin 150027, Heilongjiang Province, China
| | - Di Wu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin 150027, Heilongjiang Province, China
| | - Yu-jia Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xin-tong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi-qi Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yang Cao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Hong-liang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin 150027, Heilongjiang Province, China
- Institute of Critical Care Medicine, The Sino Russian Medical Research Center of Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
3
|
Laoprasopwattana K, Khantee P, Saelim K, Geater A. Mortality Rates of Severe Dengue Viral Infection Before and After Implementation of a Revised Guideline for Severe Dengue. Pediatr Infect Dis J 2022; 41:211-216. [PMID: 34840312 DOI: 10.1097/inf.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To compare the mortality rate of severe dengue (SD) before and after implementation of a revised SD guideline. METHODS Medical records of SD patients <15 years of age hospitalized during 1998-2020 were reviewed. The revised SD guidelines were implemented in 2016, including intensive monitoring of vital signs and intra-abdominal pressure, the release of intra-abdominal pressure in cases of abdominal compartment syndrome (ACS) and the use of N-acetyl cysteine in cases of acute liver failure. RESULTS On initial admission, organ failure including severe bleeding, acute respiratory failure, acute kidney injury and acute liver failure was not significantly different between 78 and 23 patients treated in the pre- and postrevised guideline periods, respectively. After hospitalization, the proportions of patients who developed profound shock (68.8% vs. 41.2%), multiorgan failures (60.4% vs. 73.3%), ACS (37.2% vs. 26.1%) and fatal outcome (33.3% vs. 13.0%) were also not significantly different between the pre- and postrevised guideline periods, respectively. In subgroup analysis, the mortality rates in patients with multiorgan failure (44.1% vs. 15.8%), acute respiratory failure and active bleeding (78.1% vs. 37.5%) and ACS (82.8% vs. 33.3%), respectively, were significantly higher in the pre- than the postrevised guideline periods. The durations of time before the liver function tests returned to normal levels, and the mortality rates in acute liver failure patients treated with and without N-acetyl cysteine were not significantly different. CONCLUSIONS Although following the revised guidelines could not prevent organ failure, the mortality rates in patients with multiorgan failure and/or ACS decreased significantly when following the revised guidelines.
Collapse
Affiliation(s)
| | | | | | - Alan Geater
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
4
|
Zechner C, Adams-Huet B, Gregory B, Neyra JA, Rule JA, Li X, Rakela J, Moe OW, Lee WM. Hypophosphatemia in acute liver failure of a broad range of etiologies is associated with phosphaturia without kidney damage or phosphatonin elevation. Transl Res 2021; 238:1-11. [PMID: 34298149 PMCID: PMC8572166 DOI: 10.1016/j.trsl.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022]
Abstract
Hypophosphatemia is a common and dangerous complication of acute liver failure (ALF) of various etiologies. While various mechanisms for ALF-associated hypophosphatemia have been proposed including high phosphate uptake into regenerating hepatocytes, acetaminophen (APAP)-associated hypophosphatemia was linked to renal phosphate wasting, and APAP-induced renal tubular injury was proposed as underlying mechanism. We studied 30 normophosphatemic and 46 hypophosphatemic (serum phosphate < 2.5 mg/dL) patients from the Acute Liver Failure Study Group registry with APAP- or non-APAP-induced ALF. Since kidney injury affects phosphate excretion, patients with elevated serum creatinine (>1.2 mg/dL) were excluded. Maximal amount of renal tubular phosphate reabsorption per filtered volume (TmP/GFR) was calculated from simultaneous serum and urine phosphate and creatinine levels to assess renal phosphate handling. Instead of enhanced renal phosphate reabsorption as would be expected during hypophosphatemia of non-renal causes, serum phosphate was positively correlated with TmP/GFR in both APAP- and non-APAP-induced ALF patients (R2 = 0.66 and 0.46, respectively; both P < 0.0001), indicating renal phosphate wasting. Surprisingly, there was no evidence of kidney damage based on urinary markers including neutrophil gelatinase-associated lipocalin and cystatin C even in the APAP group. Additionally, there was no evidence that the known serum phosphatonins parathyroid hormone, fibroblast growth factor 23, and α-Klotho contribute to the observed hypophosphatemia. We conclude that the observed hypophosphatemia with renal phosphate wasting in both APAP- and non-APAP-mediated ALF is likely the result of renal tubular phosphate leak from yet-to-be identified factor(s) with no evidence for proximal tubular damage or contribution of known phosphatonins.
Collapse
Affiliation(s)
- Christoph Zechner
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology. UT Southwestern Medical Center, Dallas, Texas, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Beverley Adams-Huet
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, USA; Division of Biostatistics, Population and Data Sciences, Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Blake Gregory
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Division of Primary Care, Department of Internal Medicine, Alameda Health System, Oakland, California, USA
| | - Javier A Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, USA; Division of Nephrology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jody A Rule
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xilong Li
- Division of Biostatistics, Population and Data Sciences, Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jorge Rakela
- Division of Gastroenterology and Hepatology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, USA; Division of Nephrology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
5
|
Higuera-de-la-Tijera F, Castro-Narro GE, Velarde-Ruiz Velasco JA, Cerda-Reyes E, Moreno-Alcántar R, Aiza-Haddad I, Castillo-Barradas M, Cisneros-Garza LE, Dehesa-Violante M, Flores-Calderón J, González-Huezo MS, Márquez-Guillén E, Muñóz-Espinosa LE, Pérez-Hernández JL, Ramos-Gómez MV, Sierra-Madero J, Sánchez-Ávila JF, Torre-Delgadillo A, Torres R, Marín-López ER, Kershenobich D, Wolpert-Barraza E. Asociación Mexicana de Hepatología A.C. Clinical guideline on hepatitis B. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2021; 86:403-432. [PMID: 34483073 DOI: 10.1016/j.rgmxen.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Hepatitis B virus (HBV) infection continues to be a worldwide public health problem. In Mexico, at least three million adults are estimated to have acquired hepatitis B (total hepatitis B core antibody [anti-HBc]-positive), and of those, 300,000 active carriers (hepatitis B surface antigen [HBsAg]-positive) could require treatment. Because HBV is preventable through vaccination, its universal application should be emphasized. HBV infection is a major risk factor for developing hepatocellular carcinoma. Semi-annual liver ultrasound and serum alpha-fetoprotein testing favor early detection of that cancer and should be carried out in all patients with chronic HBV infection, regardless of the presence of advanced fibrosis or cirrhosis. Currently, nucleoside/nucleotide analogues that have a high barrier to resistance are the first-line therapies.
Collapse
Affiliation(s)
- F Higuera-de-la-Tijera
- Departamento de Gastroenterología, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - G E Castro-Narro
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico.
| | - J A Velarde-Ruiz Velasco
- Departamento de Gastroenterología, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
| | - E Cerda-Reyes
- Departamento de Gastroenterología, Hospital Central Militar, Mexico City, Mexico
| | - R Moreno-Alcántar
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - I Aiza-Haddad
- Clínica de Enfermedades Hepáticas, Hospital Ángeles Lomas, Mexico City, Mexico
| | - M Castillo-Barradas
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| | - L E Cisneros-Garza
- Centro de Enfermedades Hepáticas, Hospital San José, Nuevo León, Monterrey, Mexico
| | - M Dehesa-Violante
- Fundación Mexicana para la Salud Hepática A.C. (FUNDHEPA), Mexico City, Mexico
| | - J Flores-Calderón
- Departamento de Gastroenterología, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - M S González-Huezo
- Servicio de Gastroenterología y Endoscopia Gastrointestinal, ISSSEMYM, Metepec, Estado de México, Mexico
| | - E Márquez-Guillén
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - L E Muñóz-Espinosa
- Clínica de Hígado, Departamento de Medicina Interna, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - J L Pérez-Hernández
- Departamento de Gastroenterología, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - M V Ramos-Gómez
- Departamento de Gastroenterología, Centro Médico Nacional "20 de Noviembre", ISSSTE, Mexico City, Mexico
| | - J Sierra-Madero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - J F Sánchez-Ávila
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - A Torre-Delgadillo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - R Torres
- Hospital de Infectología del Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| | | | - D Kershenobich
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | | |
Collapse
|
6
|
Outbreak of hepatitis A in a post-vaccination era: High rate of co-infection with sexually transmitted diseases. Ann Hepatol 2021; 19:641-644. [PMID: 32835862 DOI: 10.1016/j.aohep.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES After hepatitis A (HAV) mandatory immunization in 2005 in Argentina, the incidence of HAV declined drastically. However, several new autochthonous cases of HAV have been reported since 2017. We aimed to evaluate the clinical and epidemiological characteristics and possible transmission routes of affected patients. PATIENTS OR MATERIALS AND METHODS We performed a cross-sectional study of patients residing in Argentina with acute hepatitis A between 30.06.2017 and 31.12.2018. RESULTS 66 cases of HAV were registered. Fifty-six patients (86%) were males, with a mean age of 34 ± 12 years old. The most likely routes of transmission were sexual intercourse of men with men, reported by 31 patients. Additionally, 23% and 26% of patients tested positive for HIV and syphilis, respectively. In total, 35% of patients required hospitalization. When assessing outcomes, 79% had a mild presentation and 21% had a severe/fulminant presentation: one patient underwent liver transplantation, and one patient died. CONCLUSIONS Our study describes that during the study period, HAV infection affected predominantly young adults, particularly men who have sex with men. An elevated proportion of them was diagnosed with a concomitant sexually transmitted disease, and several patients had a severe presentation of the disease.
Collapse
|
7
|
Ahmad B, Ilahi I, Yousafzai AM, Attaullah M, Rahim A, Naz D, Hazrat A, Batiha GES, Nassan MA, Khalil AAK. Protective effects of Zizyphus oxyphyla on liver and kidney related serum biomarkers in (CCl4) intoxicate rabbits. BRAZ J BIOL 2021; 83:e246980. [PMID: 34468522 DOI: 10.1590/1519-6984.246980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
The study was aimed to evaluate the therapeutic effects of Zizyphus oxyphyla leaves methanolic (ZOX-LME), on serum liver, kidney and hematology along with other serum parameters in Carbon tetrachloride (CCl4) intoxicated rabbits. Experimental animals were divided into five groups, six rabbits in each. These were: group NC (normal control), group, TC (toxic control) and group ST i.e. silymarine administered group at dose rate (50) mg/kg body weight (BW). Group ET1 and group ET2 treated with (ZOX-LME) at dose 200 mg/kg BW and 400 mg/kg BW. CCl4 administration caused significant (P> 0.05) impairment in serum liver enzymes, blood factors and other serum indices. Treatment with (ZOX-LME) significantly (P<0.05) reduced and normalized the levels of serum alanine transaminase (ALT) aspartate transaminase (AST) and alkaline phosphatase (ALP) and hematological indices. Also significant (P< 0.05) reduction was observed in creatinine, urea, uric acid, blood urea nitrogen (BUN), and albumin and glucose concentrations. The altered levels of lipid profile and serum electrolytes (Ca, Mg, Cl, Na, K, and P) were significantly (P<0.05) change toward normal levels with (ZOX-LME) feeding. In addition (ZOX-LME) ingestion caused significant improvement in GSH, GST and CAT levels, while reducing the TBARS levels, exhibited antioxidant capacity. Also (ZOX-LME) showed increase inhibition against percent scavenging of 2, 2-diphenile-1-picrylehydrazyle (DPPH) free radical. Significant (P<0.05) normalizing effects were observed with high dose 400 mg/kg BW of (ZOX-LME and were equivalent to silymarine administered groups. The histological study of liver supported the hepatoprotective and renal curative activity of (ZOX-LME).
Collapse
Affiliation(s)
- B Ahmad
- University of Malakand, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - I Ilahi
- University of Malakand, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - A M Yousafzai
- Islamia College, Department of Zoology, Peshawar, Pakistan
| | - M Attaullah
- University of Malakand, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - A Rahim
- University of Malakand, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - D Naz
- University of Malakand, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - A Hazrat
- University of Malakand, Departments of Botany, Khyber Pakhtunkhwa, Pakistan
| | - G E-S Batiha
- Damanhour University, Faculty of Veterinary Medicine, Department of Pharmacology and Therapeutics, Damanhour, AlBeheira, Egypt
| | - M A Nassan
- Taif University, Turabah University College, Department of Clinical Laboratory Sciences, Taif, Saudi Arabia
| | - A A K Khalil
- National University of Medical Sciences, Department of Biological Sciences, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Higuera-de-la-Tijera F, Castro-Narro GE, Velarde-Ruiz Velasco JA, Cerda-Reyes E, Moreno-Alcántar R, Aiza-Haddad I, Castillo-Barradas M, Cisneros-Garza LE, Dehesa-Violante M, Flores-Calderón J, González-Huezo MS, Márquez-Guillén E, Muñóz-Espinosa LE, Pérez-Hernández JL, Ramos-Gómez MV, Sierra-Madero J, Sánchez-Ávila JF, Torre-Delgadillo A, Torres R, Marín-López ER, Kershenobich D, Wolpert-Barraza E. Asociación Mexicana de Hepatología A.C. Clinical guideline on hepatitis B. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2021; 86:S0375-0906(21)00061-6. [PMID: 34384668 DOI: 10.1016/j.rgmx.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection continues to be a worldwide public health problem. In Mexico, at least three million adults are estimated to have acquired hepatitis B (total hepatitis B core antibody [anti-HBc]-positive), and of those, 300,000 active carriers (hepatitis B surface antigen [HBsAg]-positive) could require treatment. Because HBV is preventable through vaccination, its universal application should be emphasized. HBV infection is a major risk factor for developing hepatocellular carcinoma. Semi-annual liver ultrasound and serum alpha-fetoprotein testing favor early detection of that cancer and should be carried out in all patients with chronic HBV infection, regardless of the presence of advanced fibrosis or cirrhosis. Currently, nucleoside/nucleotide analogues that have a high barrier to resistance are the first-line therapies.
Collapse
Affiliation(s)
- F Higuera-de-la-Tijera
- Departamento de Gastroenterología, Hospital General de México «Dr. Eduardo Liceaga», Ciudad de México, México
| | - G E Castro-Narro
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México.
| | - J A Velarde-Ruiz Velasco
- Departamento de Gastroenterología, Hospital Civil de Guadalajara «Fray Antonio Alcalde», Guadalajara, Jalisco, México
| | - E Cerda-Reyes
- Departamento de Gastroenterología, Hospital Central Militar, Ciudad de México, México
| | - R Moreno-Alcántar
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - I Aiza-Haddad
- Clínica de Enfermedades Hepáticas, Hospital Ángeles Lomas, Ciudad de México, México
| | - M Castillo-Barradas
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional «La Raza», IMSS, Ciudad de México, México
| | - L E Cisneros-Garza
- Centro de Enfermedades Hepáticas, Hospital San José, Nuevo León, Monterrey, México
| | - M Dehesa-Violante
- Fundación Mexicana para la Salud Hepática A.C. (FUNDHEPA), Ciudad de México, México
| | - J Flores-Calderón
- Departamento de Gastroenterología, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - M S González-Huezo
- Servicio de Gastroenterología y Endoscopia Gastrointestinal, ISSSEMYM, Metepec, Estado de México, México
| | - E Márquez-Guillén
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | - L E Muñóz-Espinosa
- Clínica de Hígado, Departamento de Medicina Interna, Hospital Universitario «Dr. José E. González», Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - J L Pérez-Hernández
- Departamento de Gastroenterología, Hospital General de México «Dr. Eduardo Liceaga», Ciudad de México, México
| | - M V Ramos-Gómez
- Departamento de Gastroenterología, Centro Médico Nacional «20 de Noviembre», ISSSTE, Ciudad de México, México
| | - J Sierra-Madero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | - J F Sánchez-Ávila
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, México
| | - A Torre-Delgadillo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | - R Torres
- Hospital de Infectología del Centro Médico Nacional «La Raza», IMSS, Ciudad de México, México
| | | | - D Kershenobich
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | | |
Collapse
|
9
|
Chen Q, Wang Y, Jiao F, Cao P, Shi C, Pei M, Wang L, Gong Z. HDAC6 inhibitor ACY1215 inhibits the activation of NLRP3 inflammasome in acute liver failure by regulating the ATM/F-actin signalling pathway. J Cell Mol Med 2021; 25:7218-7228. [PMID: 34180140 PMCID: PMC8335684 DOI: 10.1111/jcmm.16751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a rare and critical medical condition. This study was designed to investigate the protective effects and underlying mechanism of ACY1215 in ALF mice. Our findings suggested that ACY1215 treatment ameliorates the pathological hepatic damage of ALF and decreases the serum levels of ALT and AST. Furthermore, ACY1215 pretreatment increased the level of ATM, γ‐H2AX, Chk2, p53, p21, F‐actin and vinculin in ALF. Moreover, ACY1215 inhibited the level of NLRP3, ASC, caspase‐1, IL‐1β and IL‐18 in ALF. The ATM inhibitor KU55933 could decrease the level of ATM, γ‐H2AX, Chk2, p53, p21, F‐actin and vinculin in ALF with ACY1215 pretreatment. The F‐actin inhibitor cytochalasin B decreased the level of F‐actin and vinculin in ALF with ACY1215 pretreatment. However, cytochalasin B had no effect on protein levels of ATM, Chk2, p53 and p21 in ALF with ACY1215 pretreatment. Cytochalasin B could dramatically increase the level of NLRP3, ASC, caspase‐1, IL‐1β and IL‐18 in ALF with ACY1215 pretreatment. These results indicated that ACY1215 exhibited hepatoprotective properties, which was associated with the inhibition of NLRP3 inflammasome, and this effect of ACY1215 was connected with upregulation of the ATM/F‐actin mediated signalling pathways.
Collapse
Affiliation(s)
- Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, China
| |
Collapse
|
10
|
Expert consensus on perioperative management of liver transplantation in adults with acute-on-chronic liver failure. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
El-Sonbaty SM, Moawed FSM, Elbakry MMM. Amphora algae with low-level ionizing radiation exposure ameliorate D-galactosamine-induced inflammatory impairment in rat kidney. ENVIRONMENTAL TOXICOLOGY 2021; 36:451-459. [PMID: 33107697 DOI: 10.1002/tox.23050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/13/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
d-Galactosamine (d-GalN) is a well-known toxin that causes many metabolic and morphological abnormalities resulting in advanced renal failure and liver damage. Occupational exposure to low-level ionizing radiation (<1 Gy) was shown to enhance cell protection via attenuating an established inflammatory process. The present study was therefore aimed to investigate the protective impact of Amphora coffaeiformis extract and low dose gamma radiation against d-GalN induced renal damage in rats. Forty-eight adult male Swiss albino rats were distributed equally into eight groups. The measurements included antioxidants activities (superoxide dismutase, catalase and glutathione peroxidase) as well as lipid peroxidation level in kidney tissue. Also, kidney function tests and inflammatory markers (tumor necrosis factor alpha and nuclear factor kappa-light-chain-enhancer of activated B cells) were measured. Additionally, relative quantification of kidney nuclear factor erythroid 2-related factor 2 (Nrf-2) gene was estimated. Histopathological examination was also performed in kidney tissue. The results revealed decreases in antioxidant activities and downregulation of Nrf-2 expression accompanied by increases in lipid peroxidation level, kidney function tests and inflammatory markers in d-GaIN group. The treatment with Amphora algal extract and low dose gamma radiation ameliorated the previous measurements which were harmony with histopathological findings. In conclusion, A coffaeiformis extract and low dose gamma radiation provided marked functional and histological effects in the treating acute renal damage induced by d-GalN in rats.
Collapse
Affiliation(s)
- Sawsan M El-Sonbaty
- Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research Department, National Center for Radiation, Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mustafa M M Elbakry
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Chen X, Shao B, Yu C, Yao Q, Ma P, Li H, Li B, Sun C. Energy disorders caused by mitochondrial dysfunction contribute to α-amatoxin-induced liver function damage and liver failure. Toxicol Lett 2021; 336:68-79. [PMID: 33098907 DOI: 10.1016/j.toxlet.2020.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/06/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Mushroom toxicity is the main branch of foodborne poisoning, and liver damage caused by amatoxin poisoning accounts for more than 90 % of deaths due to mushroom poisoning. Alpha-amatoxin (α-AMA) has been considered the primary toxin from amatoxin-containing mushrooms, which is responsible for hepatotoxicity and death. However, the mechanism underlying liver failure due to α-AMA remains unclear. This study constructed animal and cell models. In the animal experiments, we investigated liver injury in BALB/c mice at different time points after α-AMA treatment, and explored the process of inflammatory infiltration using immunohistochemistry and western blotting. Then, a metabonomics method based on gas chromatography mass spectrometry (GCMS) was established to study the effect of α-AMA on liver metabonomics. The results showed a significant difference in liver metabolism between the exposed and control mice groups that coincided with pathological and biochemical indicators. Moreover, 20 metabolites and 4 metabolic pathways related to its mechanism of action were identified, which suggested that energy disorders related to mitochondrial dysfunction may be one of the causes of death. The significant changes of trehalose and the fluctuation of LC3-II and sqstm1 p62 protein levels indicated that autophagy was also involved in the damage process, suggesting that autophagy may participate in the clearance process of damaged mitochondria after poisoning. Then, we constructed an α-AMA-induced human normal liver cells (L-02 cells) injury model. The above hypothesis was further verified by detecting cell necrosis, mitochondrial reactive oxygen species (mtROS), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (Δψ m), and cellular ATP level. Collectively, our results serve as direct evidence of elevated in vivo hepatic mitochondrial metabolism in α-AMA-exposed mice and suggest that mitochondrial dysfunction plays an important role in the early stage of α-AMA induced liver failure.
Collapse
Affiliation(s)
- Xiao Chen
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Bing Shao
- Beijing Center for Disease Control and Prevention Beijing, China.
| | - Chengmin Yu
- Yunnan Chuxiong People's Hospital, Chuxiong, Yunnan, China.
| | - Qunmei Yao
- Yunnan Chuxiong People's Hospital, Chuxiong, Yunnan, China.
| | - Peibin Ma
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Haijiao Li
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Bin Li
- Chinese Center for Disease Control and Prevention, Beijing, Beijing, China.
| | - Chengye Sun
- Chinese Center for Disease Control and Prevention, 29th Nanwei Road, Xicheng District, Beijing, 102206, China.
| |
Collapse
|
13
|
Abstract
The liver is one of the most commonly injured solid organs in blunt abdominal trauma. Non-operative management is considered to be the gold standard for the care of most blunt liver injuries. Angioembolization has emerged as an important adjunct that is vital to the success of the non-operative management strategy for blunt hepatic injuries. This procedure, however, is fraught with some possible serious complications. The success, as well as rate of complications of this procedure, is determined by degree and type of injury, hepatic anatomy and physiology, and embolization strategy among other factors. In this review, we discuss these important considerations to help shed further light on the contribution and impact of angioembolization with regards to complex hepatic injuries.
Collapse
Affiliation(s)
- Ali Cadili
- Department of Surgery, University of Connecticut, CT, USA
| | - Jonathan Gates
- Department of Surgery, University of Connecticut, CT, USA
| |
Collapse
|
14
|
Gong N, Jia C, Huang H, Liu J, Huang X, Wan Q. Predictors of Mortality During Initial Liver Transplant Hospitalization and Investigation of Causes of Death. Ann Transplant 2020; 25:e926020. [PMID: 33273447 PMCID: PMC7722774 DOI: 10.12659/aot.926020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Liver transplant (LT) remains a life-saving procedure with a high mortality rate. The present study investigated the causes of death and sought to identify predictive factors of mortality during the initial LT hospitalization. Material/Methods We retrieved data on first-time adult recipients who underwent LT between November 2017 and October 2019 receiving grafts from donation after citizen’s death. The risk factors for mortality during the initial LT hospitalization were confirmed by univariate analysis. We also analyzed the causes of death. Results We enrolled 103 recipients, including 86 males and 17 females, with a mean age of 47.7 years. Thirty-eight (36.9%) recipients were labeled as non-cholestatic cirrhosis-related indications. Approximately 8% of all recipients had diabetes prior to LT. Induction therapy was used in 11 (10.7%) recipients, along with maintenance therapy. The median model for end-stage liver disease score at LT was 32.4 (21.4–38.4). The in-hospital mortality rate of LT recipients was 6.8% (7/103), and infections were responsible for most of the deaths (6/7). The 1 remaining death resulted from primary graft failure. Univariate analysis showed recipients with postoperative pneumonia (p<0.05), acute hepatic necrosis, and intensive care unit (ICU) stay ≥7 days (both p<0.01), postoperative bacteremia, creatinine on day 3 after LT>2 mg/dL, and alanine transaminase on day 1 after LT >1800 μmol/L (all P<0.001) were much more likely to die. Conclusions In-hospital mortality of LT recipients was high, due in large part to infections. Acute hepatic necrosis, prolonged post-transplant ICU stays, certain types of postoperative infections, and postoperative liver and kidney dysfunction were potential risk factors for in-hospital mortality of LT recipients.
Collapse
Affiliation(s)
- Ni Gong
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Chao Jia
- Department of Intensive Care Unit, Qingdao Municipal Hospital Group, Qingdao University, Qingdao, Shandong, China (mainland)
| | - He Huang
- Hunan International Travel Health Care Center, Changsha, Hunan, China (mainland)
| | - Jing Liu
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - XueTing Huang
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
15
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman RK, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M. Indian National Association for the Study of Liver Consensus Statement on Acute Liver Failure (Part-2): Management of Acute Liver Failure. J Clin Exp Hepatol 2020; 10:477-517. [PMID: 33029057 PMCID: PMC7527855 DOI: 10.1016/j.jceh.2020.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is not an uncommon complication of a common disease such as acute hepatitis. Viral hepatitis followed by antituberculosis drug-induced hepatotoxicity are the commonest causes of ALF in India. Clinically, such patients present with appearance of jaundice, encephalopathy, and coagulopathy. Hepatic encephalopathy (HE) and cerebral edema are central and most important clinical event in the course of ALF, followed by superadded infections, and determine the outcome in these patients. The pathogenesis of encephalopathy and cerebral edema in ALF is unique and multifactorial. Ammonia plays a crucial role in the pathogenesis, and several therapies aim to correct this abnormality. The role of newer ammonia-lowering agents is still evolving. These patients are best managed at a tertiary care hospital with facility for liver transplantation (LT). Aggressive intensive medical management has been documented to salvage a substantial proportion of patients. In those with poor prognostic factors, LT is the only effective therapy that has been shown to improve survival. However, recognizing suitable patients with poor prognosis has remained a challenge. Close monitoring, early identification and treatment of complications, and couseling for transplant form the first-line approach to manage such patients. Recent research shows that use of dynamic prognostic models is better for selecting patients undergoing liver transplantation and timely transplant can save life of patients with ALF with poor prognostic factors.
Collapse
Key Words
- ACLF, Acute on Chronic liver Failure
- AKI, Acute kidney injury
- ALF, Acute Liver Failure
- ALFED score
- ALT, alanine transaminase
- AST, aspartate transaminase
- CNS, central nervous system
- CT, Computerized tomography
- HELLP, Hemolysis, elevated liver enzymes, and low platelets
- ICH, Intracrainial hypertension
- ICP, Intracrainial Pressure
- ICU, Intensive care unit
- INR, International normalised ratio
- LAD, Liver assist device
- LDLT, Living donor liver transplantation
- LT, Liver transplantation
- MAP, Mean arterial pressure
- MELD, model for end-stage liver disease
- MLD, Metabolic liver disease
- NAC, N-acetyl cysteine
- PALF, Pediatric ALF
- WD, Wilson's Disease
- acute liver failure
- artificial liver support
- liver transplantation
- plasmapheresis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad, 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ s Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad, 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ s Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
16
|
Seetharam A. Intensive Care Management of Acute Liver Failure: Considerations While Awaiting Liver Transplantation. J Clin Transl Hepatol 2019; 7:384-391. [PMID: 31915608 PMCID: PMC6943205 DOI: 10.14218/jcth.2019.00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute liver failure is a unique clinical phenomenon characterized by abrupt deterioration in liver function and altered mentation. The development of high-grade encephalopathy and multisystem organ dysfunction herald poor prognosis. Etiologic-specific treatments and supportive measures are routinely employed; however, liver transplantation remains the only chance for cure in those who do not spontaneously recover. The utility of artificial and bioartificial assist therapies as supportive care-to allow time for hepatic recovery or as a bridge to liver transplantation-has been examined but studies have been small, with mixed results. Given the severity of derangements, intensive critical care is needed to successfully bridge patients to transplant, and evaluation of candidates occurs rapidly in parallel with serial reassessments of operative fitness. Psychosocial assessment is often suboptimal and relative contraindications to transplant, such as ventilator-dependence may be overlooked. While often employed to guide evaluation, no single prognostic model discriminates those who will spontaneously recover and those who will require transplant. The purpose of this review will be to summarize approaches in critical care, prognostic modeling, and medical evaluation of the acute liver failure transplant candidate.
Collapse
Affiliation(s)
- Anil Seetharam
- Correspondence to: Anil Seetharam, Banner Transplant and Advanced Liver Disease, University of Arizona College of Medicine, 441 N. 12th Street, 2nd Floor, Phoenix, AZ 85006, USA. Tel: +1-602-521-5800; Fax: +1-602-521-5337, E-mail:
| |
Collapse
|
17
|
Fu Z, Fan Q, Zhou Y, Zhao Y, He Z. Elimination of Intracellular Calcium Overload by BAPTA-AM-Loaded Liposomes: A Promising Therapeutic Agent for Acute Liver Failure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39574-39585. [PMID: 31589019 DOI: 10.1021/acsami.9b13690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the past few decades, intracellular calcium overload has been shown to induce cell death through multiple signaling pathways. In this study, we used BAPTA-AM, a well-known membrane-permeable Ca2+ chelator, to prevent cell injury by allaying the intracellular calcium overload. We explored the clinical potentials of BAPTA-AM-loaded liposome (BAL) in the treatment of the acute liver failure (ALF) mouse model, which is characterized by severe hepatic necrosis and apoptosis. We discovered that BAL can significantly inhibit D-GalN-induced LO2 cell damage as it increased cell viability by 60% and downregulated the LPS-stimulated inflammatory response in RAW 264.7 macrophages by reversing the morphological change and modulating TNF-α and NF-κB expressions. Through systemic administration, BAL can rapidly accumulate in damaged liver tissue and exhibit excellent treatment effects on the D-GalN/LPS-induced ALF mouse model, including elevation of the survival rate (from 10 to 80%), recovery of normal liver indexes and liver health indicators, improvement of liver blood microcirculation (increased the blood flow volume by 80% and flow rate by 60%), and blood coagulation. The underlying hepatoprotective effect of BAL is presumably based on the antinecrosis and antiapoptosis abilities attributed to its inhibition on oxidative stress, restriction on TNF-α receptor, and mitochondria-mediated apoptotic pathway by effectively clearing the overloaded intercellular calcium. BAL holds great potential as a new therapeutic strategy for ALF treatment, and its prominent cell rescue ability provides ample opportunities for the treatment of many other diseases that are characterized by rapid and massive cell damage.
Collapse
Affiliation(s)
- Zailin Fu
- Department of Pharmacy , The First People's Hospital of Yuhang District , Hangzhou 310000 , P. R. China
- Department of Pharmacy , Zhejiang University of Technology , Hangzhou 310000 , P. R. China
| | - Qiaomei Fan
- Department of Pharmacy , The First Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou 310000 , P. R. China
- Department of Pharmacy , Zhejiang University of Technology , Hangzhou 310000 , P. R. China
| | - Yang Zhou
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Yi Zhao
- Wisconsin Institute for Discovery and Department of Biomedical Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53715 , United States
| | - Zhiyu He
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
18
|
Zagoura D, Trohatou O, Makridakis M, Kollia A, Kokla N, Mokou M, Psaraki A, Eliopoulos AG, Vlahou A, Roubelakis MG. Functional secretome analysis reveals Annexin-A1 as important paracrine factor derived from fetal mesenchymal stem cells in hepatic regeneration. EBioMedicine 2019; 45:542-552. [PMID: 31303498 PMCID: PMC6642415 DOI: 10.1016/j.ebiom.2019.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (MSCs) and their secreted molecules exert beneficial effects in injured tissues by promoting tissue regeneration and angiogenesis and by inhibiting inflammation and fibrosis. We have previously demonstrated that the therapeutic activity of fetal MSCs derived from amniotic fluid (AF-MSCs) and their hepatic progenitor-like cells (HPL) is mediated by paracrine effects in a mouse model of acute hepatic failure (AHF). METHODS Herein, we have combined proteomic profiling of the AF-MSCs and HPL cell secretome with ex vivo and in vivo functional studies to identify specific soluble factors, which underpin tissue regeneration in AHF. FINDINGS The anti-inflammatory molecule Annexin-A1 (ANXA1) was detected at high levels in both AF-MSC and HPL cell secretome. Further functional analyses revealed that the shRNA-mediated knock-down of ANXA1 in MSCs (shANXA1-MSCs) decreased their proliferative, clonogenic and migratory potential, as well as their ability to differentiate into HPL cells. Liver progenitors (oval cells) from AHF mice displayed reduced proliferation when cultured ex vivo in the presence of conditioned media from shANXA1-MSCs compared to control MSCs secretome. Intra-hepatic delivery of conditioned media from control MSCs but not shANXA1-MSCs reduced liver damage and circulating levels of pro-inflammatory cytokines in AHF. INTERPRETATION Collectively, our study uncovers secreted Annexin-A1 as a novel effector of MSCs in liver regeneration and further underscores the potential of cell-free therapeutic strategies for liver diseases. FUND: Fondation Santé, GILEAD Asklipeios Grant, Fellowships of Excellence - Siemens, IKY, Reinforcement of Postdoctoral Researchers, IKY.
Collapse
Affiliation(s)
- Dimitra Zagoura
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania Trohatou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Kollia
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolitsa Kokla
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marika Mokou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Adriana Psaraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Greece
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Greece.
| |
Collapse
|
19
|
Will JS, Snyder CJ, Westerfield KL. N-Acetylcysteine (NAC) for the Prevention of Liver Failure in Heat Injury-Mediated Ischemic Hepatitis. Mil Med 2019; 184:565-567. [DOI: 10.1093/milmed/usz022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Exertional Heat Illness with associated ischemic hepatitis (IH) is a common occurrence among military trainees; however, few specific therapies exist if unresponsive to appropriate supportive measures.
A 27-year-old basic combat trainee presented with altered mental status, renal insufficiency, rhabdomyolysis, and a core temp of 107.9 °F after collapsing during a run, leading to the diagnosis of heat stroke. While the patient’s azotemia and creatinine kinase levels rapidly improved with aggressive intravenous hydration, transaminases continued to increase to nearly 155 times the upper limit of normal. Further laboratory evaluation revealed coagulopathy and thrombocytopenia suggestive of acute liver failure (ALF). On hospital day three, the patient was started on N-acetylcysteine (NAC). Evaluation for infectious and autoimmune etiologies of ALF was unremarkable; thus, the patient’s symptomatology was attributed to IH resulting from heat stroke. Liver function normalized on NAC.
Heat Injury is common among US Army recruits and results in thousands of hospitalizations in recent years. IH is characterized by diffuse hepatocyte necrosis following an episode of hemodynamic instability, and is an established sequela of Heat Injury. The mortality of IH among critically ill patients has been estimated to be as high as 60%, with those demonstrating coagulopathy especially at risk. NAC is shown to improve the transplant-free survival rate in non-acetaminophen related ALF, consistent with its proposed mechanisms of improving hepatic blood flow and conjugating toxic metabolites. NAC therapy should be considered early in the course of heat injury-mediated IH to reduce reperfusion injury, improving transplant free outcomes.
Collapse
Affiliation(s)
- Joshua S Will
- Martin Army Community Hospital, 6600 Van Aalst Blvd, Fort Benning, GA
| | | | | |
Collapse
|
20
|
Acute Liver Failure: From Textbook to Emergency Room and Intensive Care Unit With Concomitant Established and Modern Novel Therapies. J Clin Gastroenterol 2019; 53:89-101. [PMID: 30575637 DOI: 10.1097/mcg.0000000000001162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute liver failure is a rare hepatic emergent situation that affects primarily young people and has often a catastrophic or even fatal outcome. Definition of acute liver failure has not reached a universal consensus and the interval between the appearance of jaundice and hepatic encephalopathy for the establishment of the acute failure is a matter of debate. Among the wide variety of causes, acetaminophen intoxication in western societies and viral hepatitis in the developing countries rank at the top of the etiology list. Identification of the clinical appearance and initial management for the stabilization of the patient are of vital significance. Further advanced therapies, that require intensive care unit, should be offered. The hallmark of treatment for selected patients can be orthotopic liver transplantation. Apart from well-established treatments, novel therapies like hepatocyte or stem cell transplantation, additional new therapeutic strategies targeting acetaminophen intoxication and/or hepatic encephalopathy are mainly experimental, and some of them do not belong, yet, to clinical practice. For clinicians, it is substantial to have the alertness to timely identify the patient and transfer them to a specialized center, where more treatment opportunities are available.
Collapse
|
21
|
A20 rescues hepatocytes from apoptosis through the NF-κB signaling pathway in rats with acute liver failure. Biosci Rep 2019; 39:BSR20180316. [PMID: 30446523 PMCID: PMC6328859 DOI: 10.1042/bsr20180316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Acute liver failure (ALF) is a disease of acute derangements in the hepatic synthetic function with defects involving innate immune responses, which was reported to be negatively regulated by tumor necrosis factor α-induced protein 3 (A20). Herein, the present study was conducted to investigate the effects the A20 protein on the proliferation and apoptosis of hepatocytes through the nuclear factor (NF)-κB signaling pathway in the rat models simulating ALF. Methods: Male Wistar rats were used to simulate ALF in the model rats. Next, the positive expression of A20 and Caspase-3 proteins was measured in liver tissues. Rat hepatocytes were separated and subjected to pyrrolidine dithiocarbamate (PDTC, inhibitor of NF-κB pathway) or A20 siRNA. Additionally, both mRNA and protein levels of A20, NF-κB, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), and receptor-interacting protein 1 (RIP1) were determined. Finally, we detected the hepatocyte proliferation, cell cycle entry, and apoptosis. Results: ALF rats displayed a lower positive expression of A20 protein and a higher expression of Caspase-3 protein. Furthermore, A20 was down-regulated, while NF-κB, TRAF6, and RIP1 were all up-regulated in ALF rats. Notably, A20 inhibited activation of NF-κB signaling pathway. The blockade of NF-κB signaling pathway enhanced proliferation and cell cycle progression of hepatocytes, whereas inhibited apoptosis of hepatocytes. On the contrary, A20 siRNA reversed the above situation. Conclusion: A20 inhibits apoptosis of hepatocytes and promotes the proliferation through the NF-κB signaling pathway in ALF rats, potentially providing new insight into the treatment of ALF.
Collapse
|
22
|
Montrief T, Koyfman A, Long B. Acute liver failure: A review for emergency physicians. Am J Emerg Med 2018; 37:329-337. [PMID: 30414744 DOI: 10.1016/j.ajem.2018.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Acute liver failure (ALF) remains a high-risk clinical presentation, and many patients require emergency department (ED) management for complications and stabilization. OBJECTIVE This narrative review provides an evidence-based summary of the current data for the emergency medicine evaluation and management of ALF. DISCUSSION While ALF remains a rare clinical presentation, surveillance data suggest an overall incidence between 1 and 6 cases per million people every year, accounting for 6% of liver-related deaths and 7% of orthotopic liver transplants (OLT) in the U.S. The definition of ALF includes neurologic dysfunction, an international normalized ratio ≥ 1.5, no prior evidence of liver disease, and a disease course of ≤26 weeks, and can be further divided into hyperacute, acute, and subacute presentations. There are many underlying etiologies, including acetaminophen toxicity, drug induced liver injury, and hepatitis. Emergency physicians will be faced with several complications, including encephalopathy, coagulopathy, infectious processes, renal injury, and hemodynamic instability. Critical patients should be evaluated in the resuscitation bay, and consultation with the transplant team for appropriate patients improves patient outcomes. This review provides several guiding principles for management of acute complications. Using a pathophysiological-guided approach to the management of ALF associated complications is essential to optimizing patient care. CONCLUSIONS ALF remains a rare clinical presentation, but has significant morbidity and mortality. Physicians must rapidly diagnose these patients while evaluating for other diseases and complications. Early consultation with a transplantation center is imperative, as is identifying the underlying etiology and initiating symptomatic care.
Collapse
Affiliation(s)
- Tim Montrief
- University of Miami, Jackson Memorial Hospital/Miller School of Medicine, Department of Emergency Medicine, 1611 N.W. 12th Avenue, Miami, FL 33136, United States
| | - Alex Koyfman
- The University of Texas Southwestern Medical Center, Department of Emergency Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | - Brit Long
- Brooke Army Medical Center, Department of Emergency Medicine, 3841 Roger Brooke Dr, Fort Sam Houston, TX 78234, United States.
| |
Collapse
|
23
|
Rodrigues-Filho EM, Fernandes R, Garcez A. SOFA in the first 24 hours as an outcome predictor of acute liver failure. Rev Bras Ter Intensiva 2018; 30:64-70. [PMID: 29742228 PMCID: PMC5885233 DOI: 10.5935/0103-507x.20180012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To describe a cohort of patients with acute liver failure and to analyze the demographic and clinical factors associated with mortality. METHODS Retrospective cohort study in which all patients admitted for acute liver failure from July 28, 2012, to August 31, 2017, were included. Clinical and demographic data were collected using the Epimed System. The SAPS 3, SOFA, and MELD scores were measured. The odds ratios and 95% confidence intervals were estimated. Receiver operating characteristics curves were obtained for the prognostic scores, along with the Kaplan-Meier survival curve for the score best predicting mortality. RESULTS The majority of the 40 patients were female (77.5%), and the most frequent etiology was hepatitis B (n = 13). Only 35% of the patients underwent liver transplantation. The in-hospital mortality rate was 57.5% (95%CI: 41.5 - 73.5). Among the scores investigated, only SOFA remained associated with risk of death (OR = 1.37; 95%CI 1.11 - 1.69; p < 0.001). After SOFA stratification into < 12 and ≥ 12 points, survival was higher in patients with SOFA <12 (log-rank p < 0.001). CONCLUSION SOFA score in the first 24 hours was the best predictor of fatal outcome.
Collapse
Affiliation(s)
- Edison Moraes Rodrigues-Filho
- Unidade de Terapia Intensiva de Transplantes, Hospital Dom Vicente Scherer, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rogério Fernandes
- Grupo de Transplante Hepático, Hospital Dom Vicente Scherer, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Anderson Garcez
- Programa de Pós-Graduação em Saúde Coletiva, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil
| |
Collapse
|
24
|
Xiong QF, Xiong T, Huang P, Zhong YD, Wang HL, Yang YF. Early predictors of acute hepatitis B progression to liver failure. PLoS One 2018; 13:e0201049. [PMID: 30048531 PMCID: PMC6062084 DOI: 10.1371/journal.pone.0201049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/07/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIMS 1~4% of acute hepatitis B (AHB) cases in adults progresses to acute liver failure (ALF).The predictors of ALF and prognosis for patients with ALF are not clear. This study investigated some of predictive and prognostic factors for AHB progression to ALF. METHODS A retrospective analysis was used to assess the clinical and laboratory features of 293 patients diagnosed with AHB; the patients were divided into the following two groups: ALF (n = 13) and non-ALF (n = 280). RESULTS In total,13 of the 293 (4.43%) patients developed ALF (10 recovered、3 died). The variables of age, anti-HBc IgM titers≥10 S/CO, HBeAg negativity, and total bilirubin (TB) at admission were significantly higher in ALF patients than in non-ALF patients. Compared to non-ALF patients, ALF patients had significantly lower values for prothrombin time activity (PTA), serum albumin, and HBV DNA. At discharge, ALF patients had lower TB normalization rates and much faster clearance of HBsAg, HBeAg and HBVDNA than non-ALF patients. In multivariate analysis, TB≥5×upper limit of normal (ULN) and HBeAg negative status were independent predictors for ALF development at admission, with 84.6% sensitivity, 85.7% specificity, a likelihood ratio of 5.91 and an area under the receiver operating characteristics curve (AUROC) of 0.850.Those who died had lower levels of peak PTA (<20%) and higher levels of peak hepatic encephalopathy (HE) grade (III-IV) than those who recovered. CONCLUSIONS Of the patients with ALF, 23.1% died. TB≥5×ULN and HBeAg negative status were the most effective and practicable factors distinguishing ALF from AHB at admission before the onset of encephalopathy. Peak PTA<20% and/or HE grade III-IV were independent predictors of a high probability of death or a need for transplantation.
Collapse
Affiliation(s)
- Qing-Fang Xiong
- Liver Disease Department, The Second Hospital of Nanjing, affiliated to Medical School of South-East University, China
- * E-mail: (QX); (YY)
| | - Tian Xiong
- Department of Anesthesiology, Beijing Aerospace General Hospital, Beijing 100076, China
| | - Ping Huang
- Liver Disease Department, The Second Hospital of Nanjing, affiliated to Medical School of South-East University, China
| | - Yan-Dan Zhong
- Liver Disease Department, The Second Hospital of Nanjing, affiliated to Medical School of South-East University, China
| | - Hua-Li Wang
- Liver Disease Department, The Second Hospital of Nanjing, affiliated to Medical School of South-East University, China
| | - Yong-Feng Yang
- Liver Disease Department, The Second Hospital of Nanjing, affiliated to Medical School of South-East University, China
- * E-mail: (QX); (YY)
| |
Collapse
|
25
|
Abstract
Acute liver failure (ALF) is an uncommon syndrome with a highly variable and unpredictable clinical course. The initial diagnostic evaluation is typically performed in a non-intensive care unit (ICU) setting, like the emergency department or general hospital ward. Prompt restoration of intravascular volume with intravenous fluids and correction of electrolyte, metabolic, and acid-base disturbances are important initial interventions in the management of ALF and can be safely accomplished in non-ICU settings in many patients. Similarly, therapies such as administration of N-acetylcysteine for acetaminophen-induced ALF and other cause-specific interventions can also be administered in non-ICU settings, thus minimizing delay.
Collapse
Affiliation(s)
- Andres F Carrion
- Texas Tech University Health Sciences Center El Paso, 4800 Alberta Avenue, El Paso, TX 79905, USA.
| | - Paul Martin
- Gastroenterology and Hepatology, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
| |
Collapse
|
26
|
Li YW, Zhang C, Sheng QJ, Bai H, Ding Y, Dou XG. Mesenchymal stem cells rescue acute hepatic failure by polarizing M2 macrophages. World J Gastroenterol 2017; 23:7978-7988. [PMID: 29259373 PMCID: PMC5725292 DOI: 10.3748/wjg.v23.i45.7978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/01/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether M1 or M2 polarization contributes to the therapeutic effects of mesenchymal stem cells (MSCs) in acute hepatic failure (AHF).
METHODS MSCs were transfused into rats with AHF induced by D-galactosamine (DGalN). The therapeutic effects of MSCs were evaluated based on survival rate and hepatocyte proliferation and apoptosis. Hepatocyte regeneration capacity was evaluated by the expression of the hepatic progenitor surface marker epithelial cell adhesion molecule (EpCAM). Macrophage polarization was analyzed by M1 markers [CD68, tumor necrosis factor alpha (TNF-α), interferon-γ (IFN-γ), inducible nitric oxide synthase (INOS)] and M2 markers [CD163, interleukin (IL)-4, IL-10, arginase-1 (Arg-1)] in the survival and death groups after MSC transplantation.
RESULTS The survival rate in the MSC-treated group was increased compared with the DPBS-treated control group (37.5% vs 10%). MSC treatment protected rats with AHF by reducing apoptotic hepatocytes and promoting hepatocyte regeneration. Immunohistochemical analysis showed that MSC treatment significantly increased the expression of EpCAM compared with the control groups (P < 0.001). Expression of EpCAM in the survival group was significantly up-regulated compared with the death group after MSC transplantation (P = 0.003). Transplantation of MSCs significantly improved the expression of CD163 and increased the gene expression of IL-10 and Arg-1 in the survival group. IL-4 concentrations were significantly increased compared to the death group after MSC transplantation (88.51 ± 24.51 pg/mL vs 34.61 ± 6.6 pg/mL, P < 0.001). In contrast, macrophages showed strong expression of CD68, TNF-α, and INOS in the death group. The concentration of IFN-γ was significantly increased compared to the survival group after MSC transplantation (542.11 ± 51.59 pg/mL vs 104.07 ± 42.80 pg/mL, P < 0.001).
CONCLUSION M2 polarization contributes to the therapeutic effects of MSCs in AHF by altering levels of anti-inflammatory and pro-inflammatory factors.
Collapse
Affiliation(s)
- Yan-Wei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Qiu-Ju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Han Bai
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Xiao-Guang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| |
Collapse
|
27
|
Bissell BD, Davis JE, Flannery AH, Adkins DA, Thompson Bastin ML. Aggressive Treatment of Life-Threatening Hypophosphatemia During Recovery From Fulminant Hepatic Failure: A Case Report. J Intensive Care Med 2017; 33:375-379. [PMID: 29088996 DOI: 10.1177/0885066617738715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute liver failure secondary to acetaminophen overdose can be a life-threatening condition, characterized by severe electrolyte derangements. Hepatocyte regeneration is associated with phosphorous utilization and is a known complication of liver recovery following injury. We report the case of profound, life-threatening hypophosphatemia following recovery from acute fulminant liver failure. As the liver enzymes normalized, serum phosphorous levels plummeted. Our patient required an aggressive, individualized phosphorus replacement regimen, which resulted in a continuous infusion of intravenous (IV) sodium phosphate, titrated to a maximum rate of 30 mmol/h or 0.5 mmol/kg/h. The patient required over 400 mmol of total IV and oral phosphorous over the course of 48 hours. An aggressive approach to phosphorous replacement was done safely and effectively. Traditional replacement protocols are not adequate to sustain patients with this degree of hypophosphatemia. This is the first report to utilize a continuous infusion of phosphate with a maximum reported rate (0.5 mmol/kg/h). Our report summarizes a novel and safe approach for clinicians to maximally support these patients through high-dose, continuous infusion phosphorous administration.
Collapse
Affiliation(s)
- Brittany D Bissell
- 1 Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| | - Jason E Davis
- 1 Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| | - Alexander H Flannery
- 1 Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA.,2 Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - David A Adkins
- 3 Division of Critical Care and Pulmonology, West Virginia University College of Medicine, Morgantown, WV, USA
| | - Melissa L Thompson Bastin
- 1 Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA.,2 Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, Lexington, KY, USA
| |
Collapse
|
28
|
Consensus Report by the Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplantation Consortium Joint Working Committees on Supportive Care Guidelines for Management of Veno-Occlusive Disease in Children and Adolescents, Part 3: Focus on Cardiorespiratory Dysfunction, Infections, Liver Dysfunction, and Delirium. Biol Blood Marrow Transplant 2017; 24:207-218. [PMID: 28870776 DOI: 10.1016/j.bbmt.2017.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022]
Abstract
Some patients with veno-occlusive disease (VOD) have multiorgan dysfunction, and multiple teams are involved in their daily care in the pediatric intensive care unit. Cardiorespiratory dysfunction is critical in these patients, requiring immediate action. The decision of whether to use a noninvasive or an invasive ventilation strategy may be difficult in the setting of mucositis or other comorbidities in patients with VOD. Similarly, monitoring of organ functions may be very challenging in these patients, who may have fulminant hepatic failure with or without hepatic encephalopathy complicated by delirium and/or infections. In this final guideline of our series on supportive care in patients with VOD, we address some of these questions and provide evidence-based recommendations on behalf of the Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplantation Consortium Joint Working Committees.
Collapse
|
29
|
FK866 attenuates acute hepatic failure through c-jun-N-terminal kinase (JNK)-dependent autophagy. Sci Rep 2017; 7:2206. [PMID: 28526886 PMCID: PMC5438370 DOI: 10.1038/s41598-017-02318-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
FK866 exhibits a protective effect on D-galactosamine (GaIN)/lipopolysaccharide (LPS) and concanavalin A (ConA)-induced acute liver failure (ALF), but the mechanism by which FK866 affords this benefit has not yet been elucidated. Autophagy has a protective effect on acute liver injury. However, the contribution of autophagy to FK866-conferred hepatoprotection is still unclear. This study aimed to investigate whether FK866 could attenuate GaIN/LPS and ConA-induced ALF through c-jun-N-terminal kinase (JNK)-dependent autophagy. In vivo, Mice were pretreated with FK866 at 24, 12, and 0.5 h before treatment with GaIN/LPS and ConA. 3-methyladenine (3MA) or rapamycin were used to determine the role of autophagy in FK866-conferred hepatoprotection. In primary hepatocytes, autophagy was inhibited by 3MA or autophagy-related protein 7 (Atg7) small interfering RNA (siRNA). JNK was suppressed by SP600125 or Jnk siRNA. FK866 alleviated hepatotoxicity and increased autophagy while decreased JNK activation. Suppression of autophagy abolished the FK866-conferred protection. Inhibition of JNK increased autophagy and exhibited strongly protective effect. Collectively, FK866 could ameliorate GaIN/LPS and ConA-induced ALF through induction of autophagy while suppression of JNK. These findings suggest that FK866 acts as a simple and applicable preconditioning intervention to protect against ALF; autophagy and JNK may also provide therapeutic targets for ALF treatment.
Collapse
|
30
|
Lai J, Liu Y, Pan C, Lin C, Sun F, Huang Z, Lin Y, Zhou R, Lin Y, Zhou Y. Interleukin-1 receptor antagonist expression is inversely associated with outcomes of hepatitis B-related acute-on-chronic liver failure. Exp Ther Med 2017; 13:2867-2875. [PMID: 28587352 PMCID: PMC5450678 DOI: 10.3892/etm.2017.4361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Interleukin-1 receptor antagonist (IL-1ra) is a naturally occurring anti-inflammatory antagonist of the proinflammatory cytokine IL-1, a critical factor in many inflammatory diseases. The aim of the present study was to investigate the role of IL-1ra in hepatitis B-related acute-on-chronic liver failure (HB-ACLF). Serum cytokine concentrations were measured using a Q-Plex array in 31 patients with HB-ACLF, 28 patients with acute hepatitis B (AHB), 31 patients with chronic hepatitis B (CHB) and 15 healthy control patients (HCs). Additionally, peripheral blood mononuclear cells (PBMCs) from patients with HB-ACLF were incubated with PBS or lipopolysaccharide and/or different concentrations of recombinant human IL-1ra (rhIL-1ra) in vitro. Cytokines in the supernatant were measured using a Q-Plex array. The median serum IL-1ra level in patients with HB-ACLF was 186.46 (350.22) pg/ml, which was significantly higher than all other groups (AHB, P=0.012; CHB, P<0.001; HCs, P<0.001). However, the ratio of IL-1ra/IL-1β was significantly lower in the HB-ACLF group compared with the AHB group (P=0.048). Median serum IL-1ra levels in patients with AHB were also significantly increased compared with those in the CHB (P<0.001) and HC (P<0.001) groups. Patients who succumbed to mortality within 3 months of the study were found to have significantly lower IL-1ra concentrations (P=0.02) and IL-1ra/IL-1β ratios (P=0.007) compared with surviving patients with HB-ACLF. Furthermore, serum IL-1ra concentrations were negatively associated with the Model for End-stage Liver Disease score (r=−0.870; P<0.001). Cytokine secretion by PBMCs in vitro was significantly inhibited in a dose-dependent manner by rhIL-1ra (125–500 ng/ml; all P<0.05). These results suggest that IL-1ra is associated with the development of liver inflammation, which is reduced in patients with HB-ACLF and inversely associated with disease severity.
Collapse
Affiliation(s)
- Jinglan Lai
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yuming Liu
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Chen Pan
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Chun Lin
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Fang Sun
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zuxiong Huang
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yong Lin
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Rui Zhou
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yuanbao Lin
- Department of Infectious Disease, Infectious Disease Hospital of Fuzhou, Meng Chao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
31
|
Bei Y, Song Y, Wang F, Dimitrova-Shumkovska J, Xiang Y, Zhao Y, Liu J, Xiao J, Yang C. miR-382 targeting PTEN-Akt axis promotes liver regeneration. Oncotarget 2016; 7:1584-97. [PMID: 26636539 PMCID: PMC4811482 DOI: 10.18632/oncotarget.6444] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
Liver regeneration is a highly orchestrated process which can be regulated by microRNAs (miRNAs, miRs), though the mechanisms are largely unclear. This study was aimed to identify miRNAs responsible for hepatocyte proliferation during liver regeneration. Here we detected a marked elevation of miR-382 in the mouse liver at 48 hrs after partial hepatectomy (PH-48h) using microarray analysis and qRT-PCRs. miR-382 overexpression accelerated the proliferation and the G1 to S phase transition of the cell cycle both in mouse NCTC1469 and human HL7702 normal liver cells, while miR-382 downregulation had inverse effects. Moreover, miR-382 negatively regulated PTEN expression and increased Akt phosphorylation both in vitro and in vivo. Using PTEN siRNA and Akt activator/inhibitor, we further found that PTEN inhibition and Akt phosphorylation were essential for mediating the promotive effect of miR-382 in the proliferation and cell growth of hepatocytes. Collectively, our findings identify miR-382 as a promoter for hepatocyte proliferation and cell growth via targeting PTEN-Akt axis which might be a novel therapeutic target to enhance liver regeneration capability.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yang Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jasmina Dimitrova-Shumkovska
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Department of Experimental Biochemistry and Physiology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Skopje, Republic of Macedonia
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biochemistry, Nanjing University, Nanjing, China
| | - Yingying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingqi Liu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Jang SY, Chang JY. Pathophysiology and Treatment of Cerebral Edema in Acute Liver Failure. JOURNAL OF NEUROCRITICAL CARE 2016. [DOI: 10.18700/jnc.160088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Éboli LPDCB, Netto AAS, Azevedo RAD, Lanzoni VP, Paula TSD, Goldenberg A, Gonzalez AM. Evaluating the best time to intervene acute liver failure in rat models induced by d-galactosamine. Acta Cir Bras 2016; 31:783-792. [DOI: 10.1590/s0102-865020160120000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022] Open
|
34
|
Melgaço JG, Soriani FM, Sucupira PHF, Pinheiro LA, Vieira YR, de Oliveira JM, Lewis-Ximenez LL, Araújo CCV, Pacheco-Moreira LF, Menezes GB, Cruz OG, Vitral CL, Pinto MA. Changes in cellular proliferation and plasma products are associated with liver failure. World J Hepatol 2016; 8:1370-1383. [PMID: 27917263 PMCID: PMC5114473 DOI: 10.4254/wjh.v8.i32.1370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To study the differences in immune response and cytokine profile between acute liver failure and self-limited acute hepatitis.
METHODS Forty-six patients with self-limited acute hepatitis (AH), sixteen patients with acute liver failure (ALF), and twenty-two healthy subjects were involved in this study. The inflammatory and anti-inflammatory products in plasma samples were quantified using commercial enzyme-linked immunoassays and quantitative real-time PCR. The cellular immune responses were measured by proliferation assay using flow cytometry. The groups were divided into viral- and non-viral-induced self-limited AH and ALF. Thus, we worked with five groups: Hepatitis A virus (HAV)-induced self-limited acute hepatitis (HAV-AH), HAV-induced ALF (HAV-ALF), non-viral-induced self-limited acute hepatitis (non-viral AH), non-viral-induced acute liver failure (non-viral ALF), and healthy subjects (HC). Comparisons among HAV and non-viral-induced AH and ALF were performed.
RESULTS The levels of mitochondrial DNA (mtDNA) and the cytokines investigated [interleukin (IL)-6, IL-8, IL-10, interferon gamma, and tumor necrosis factor] were significantly increased in ALF patients, independently of etiology (P < 0.05). High plasma mtDNA and IL-10 were the best markers associated with ALF [mtDNA: OR = 320.5 (95%CI: 14.42-7123.33), P < 0.0001; and IL-10: OR = 18.8 (95%CI: 1.38-257.94), P = 0.028] and death [mtDNA: OR = 12.1 (95%CI: 2.57-57.07), P = 0.002; and IL-10: OR = 8.01 (95%CI: 1.26-50.97), P = 0.027]. In the cellular proliferation assay, NKbright, NKT and regulatory T cells (TReg) predominated in virus-specific stimulation in HAV-induced ALF patients with an anergic behavior in the cellular response to mitotic stimulation. Therefore, in non-viral-induced ALF, anergic behavior of activated T cells was not observed after mitotic stimulation, as expected and as described by the literature.
CONCLUSION mtDNA and IL-10 may be predictors of ALF and death. TReg cells are involved in immunological disturbance in HAV-induced ALF.
Collapse
|
35
|
Zhao B, Zhang HY, Xie GJ, Liu HM, Chen Q, Li RF, You JP, Yang S, Mao Q, Zhang XQ. Evaluation of the efficacy of steroid therapy on acute liver failure. Exp Ther Med 2016; 12:3121-3129. [PMID: 27882127 DOI: 10.3892/etm.2016.3720] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
The effects of corticosteroids in the treatment of patients with acute or subacute liver failure (ALF or SALF) are controversial. The aims of the present study were to evaluate the efficacy of corticosteroids in improving spontaneous survival (SS) rate in patients with ALF and SALF, and to determine the groups with the highest rates of response to, and the most effective timing of, corticosteroid administration. A retrospective analysis was performed of all patients with ALF and SALF who were hospitalized in the Department of Infectious Diseases, Southwest Hospital, Chongqing, China from 2000-2012. The most common result of this was SS. A total of 238 patients were studied, including 73 patients with ALF (n=34 steroids, n=39 no steroids) and 165 patients with SALF (n=21 steroids, n=144 no steroids). Corticosteroids improved rates of SS in patients with liver failure (steroids vs. no steroids, 38.2 vs. 20.2%; P=0.011), including patients with ALF (steroids vs. no steroids, 29.4 vs. 5.1%; P=0.013) and with SALF (steroids vs. no steroids, 52.4 vs. 24.3%; P=0.013), patients with viruses (steroids vs. no steroids, 32.4 vs. 14.1%; P=0.042) and patients without viruses (steroids vs. no steroids, 50.0 vs. 24.1%; P=0.043). SS rates were extremely low for patients with coma grade 4 or Model for End-stage Liver Disease (MELD) scores ≥35 (2.2 vs. 11.8%; P=0.180). A significantly improved rate of SS associated with steroid use was observed among patients who had alanine aminotransferase (ALT) levels ≥30 × the upper limit of normal and coma grade <4 and MELD scores <35 (65.0 vs. 17.4%; P=0.002). SS associated with steroid use was significantly higher in patients with an illness duration ≤2 weeks compared with patients with an illness duration >2 weeks (51.4 vs. 15.0%; P=0.010). Corticosteroids improved the prognosis of patients with ALF and SALF. The highest rates of response were observed in patients with a lower MELD score and coma grade but who had extremely high ALT levels. The most effective treatment time was within 2 weeks of the onset of symptoms.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hui-Yan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gui-Juan Xie
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hui-Min Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qing Chen
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Rui-Feng Li
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian-Ping You
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Sha Yang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xu-Qing Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
36
|
Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J Clin Transl Hepatol 2016; 4:131-42. [PMID: 27350943 PMCID: PMC4913076 DOI: 10.14218/jcth.2015.00052] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/07/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatic injury and subsequent hepatic failure due to both intentional and non-intentional overdose of acetaminophen (APAP) has affected patients for decades, and involves the cornerstone metabolic pathways which take place in the microsomes within hepatocytes. APAP hepatotoxicity remains a global issue; in the United States, in particular, it accounts for more than 50% of overdose-related acute liver failure and approximately 20% of the liver transplant cases. The pathophysiology, disease course and management of acute liver failure secondary to APAP toxicity remain to be precisely elucidated, and adverse patient outcomes with increased morbidity and mortality continue to occur. Although APAP hepatotoxicity follows a predictable timeline of hepatic failure, its clinical presentation might vary. N-acetylcysteine (NAC) therapy is considered as the mainstay therapy, but liver transplantation might represent a life-saving procedure for selected patients. Future research focus in this field may benefit from shifting towards obtaining antidotal knowledge at the molecular level, with focus on the underlying molecular signaling pathways.
Collapse
Affiliation(s)
- Eric Yoon
- Rutgers New Jersey Medical School, University Hospital, Newark, New Jersey, USA
| | - Arooj Babar
- Rutgers New Jersey Medical School, University Hospital, Newark, New Jersey, USA
| | - Moaz Choudhary
- Rutgers New Jersey Medical School, University Hospital, Newark, New Jersey, USA
| | - Matthew Kutner
- Rutgers New Jersey Medical School, University Hospital, Newark, New Jersey, USA
| | | |
Collapse
|
37
|
Hannawi Y, Abers MS, Geocadin RG, Mirski MA. Abnormal movements in critical care patients with brain injury: a diagnostic approach. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:60. [PMID: 26975183 PMCID: PMC4791928 DOI: 10.1186/s13054-016-1236-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abnormal movements are frequently encountered in patients with brain injury hospitalized in intensive care units (ICUs), yet characterization of these movements and their underlying pathophysiology is difficult due to the comatose or uncooperative state of the patient. In addition, the available diagnostic approaches are largely derived from outpatients with neurodegenerative or developmental disorders frequently encountered in the outpatient setting, thereby limiting the applicability to inpatients with acute brain injuries. Thus, we reviewed the available literature regarding abnormal movements encountered in acutely ill patients with brain injuries. We classified the brain injury into the following categories: anoxic, vascular, infectious, inflammatory, traumatic, toxic-metabolic, tumor-related and seizures. Then, we identified the abnormal movements seen in each category as well as their epidemiologic, semiologic and clinicopathologic correlates. We propose a practical paradigm that can be applied at the bedside for diagnosing abnormal movements in the ICU. This model seeks to classify observed abnormal movements in light of various patient-specific factors. It begins with classifying the patient’s level of consciousness. Then, it integrates the frequency and type of each movement with the availability of ancillary diagnostic tests and the specific etiology of brain injury.
Collapse
Affiliation(s)
- Yousef Hannawi
- Neurosciences Critical Care Division, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA. .,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA. .,Present address: Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, USA.
| | - Michael S Abers
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marek A Mirski
- Neurosciences Critical Care Division, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Abstract
Although rare, death from amanitin exposure poses a significant health risk and a diagnostic challenge to the clinician due to its rarity. This is one of the few conditions to be voluntarily reported by healthcare professionals. No antidote exists for this poisoning and, perhaps due to its rarity or lack of attention, the United States has lagged behind Europe for almost three decades in treatment, diagnostics and experimentation. This regrettable fact warrants the formation of a centralized agency for education, the advancement of research and the collection of data, to provide better treatment for the population.
Collapse
Affiliation(s)
- Michael R Smith
- Department of Surgery, St. Barnabas Hospital, Bronx, NY, USA and
| | - Robert L Davis
- Department of Surgery, Lutheran Medical Center, Brooklyn, NY, USA
| |
Collapse
|
39
|
Li L, Zeng Z, Qi Z, Wang X, Gao X, Wei H, Sun R, Tian Z. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model. Sci Rep 2015; 5:13687. [PMID: 26345133 PMCID: PMC4561890 DOI: 10.1038/srep13687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
Bone-marrow transplantation (BMT) can repopulate the liver through BM-derived hepatocyte (BMDH) generation, although the underlying mechanism remains unclear. Using fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mice as a liver-failure model, we confirmed that BMDHs were generated by fusion of BM-derived CD11b(+)F4/80(+)myelomonocytes with resident Fah(-/-) hepatocytes. Hepatic NK cells became activated during BMDH generation and were the major IFN-γ producers. Indeed, both NK cells and IFN-γ were required for BMDH generation since WT, but not NK-, IFN-γ-, or IFN-γR1-deficient BM transplantation successfully generated BMDHs and rescued survival in Fah(-/-) hosts. BM-derived myelomonocytes were determined to be the IFN-γ-responding cells. The IFN-γ-IFN-γR interaction contributed to the myelomonocyte-hepatocyte fusion process, as most of the CD11b(+) BMDHs in mixed BM chimeric Fah(-/-) hosts transplanted with a 1:1 ratio of CD45.1(+) WT and CD45.2(+) Ifngr1(-/-) BM cells were of CD45.1(+) WT origin. Confirming these findings in vitro, IFN-γ dose-dependently promoted the fusion of GFP(+) myelomonocytes with Fah(-/-) hepatocytes due to a direct effect on myelomonocytes; similar results were observed using activated NK cells. In conclusion, BMDH generation requires NK cells to facilitate myelomonocyte-hepatocyte fusion in an IFN-γ-dependent manner, providing new insights for treating severe liver failure.
Collapse
Affiliation(s)
- Lu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhutian Zeng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ziping Qi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xin Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010070, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
40
|
Degand T, Monnet E, Durand F, Grandclement E, Ichai P, Borot S, Qualls CR, Agin A, Louvet A, Dumortier J, Francoz C, Dumoulin G, Di Martino V, Dorin R, Thevenot T. Assessment of adrenal function in patients with acute hepatitis using serum free and total cortisol. Dig Liver Dis 2015; 47:783-9. [PMID: 26077885 DOI: 10.1016/j.dld.2015.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/11/2015] [Accepted: 05/16/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adrenal dysfunction is frequently reported in severe acute hepatitis using serum total cortisol. AIMS Because 90% of serum cortisol is bound to proteins that are altered during stress, we investigated the effect of decreased cortisol-binding proteins on serum total and free cortisol in severe acute hepatitis. METHODS 43 severe and 31 non-severe acute hepatitis and 29 healthy controls were enrolled consecutively and studied prospectively. Baseline (T0) and cosyntropin-stimulated (T60) serum total and free cortisol concentrations were measured. RESULTS T0 and T60 serum total cortisol did not differ significantly between severe, non-severe hepatitis and healthy controls. Conversely, serum free cortisol (T0p=0.012; T60p<0.001) concentrations increased from healthy controls to severe hepatitis, accompanied by a decrease in corticosteroid-binding globulin and albumin (all p<0.001). In acute hepatitis (n=74), patients with "low" corticosteroid-binding globulin (<28mg/L) had higher T0 serum free cortisol than others (103.1 [61.2-157] vs. 56.6 [43.6-81.9]nmol/L, p=0.0024). Analysis of covariance showed that at equal concentration of total cortisol, the free cortisol concentration was significantly higher in severe than in non-severe hepatitis (p<0.001) or healthy controls (p<0.001). CONCLUSIONS In severe hepatitis, the decrease in cortisol-binding proteins impairs correct diagnosis of adrenal dysfunction. This could be corrected by measuring or estimating free cortisol.
Collapse
Affiliation(s)
- Thibault Degand
- Hepatology and Digestive Intensive Care Unit, University Hospital of Besançon, France; EA UPRES 3186 « Agents Pathogènes et Inflammation » of Franche-Comté University, France
| | - Elisabeth Monnet
- Hepatology and Digestive Intensive Care Unit, University Hospital of Besançon, France; EA UPRES 3186 « Agents Pathogènes et Inflammation » of Franche-Comté University, France
| | | | - Emilie Grandclement
- Laboratory for Endocrinology and Metabolism, University Hospital of Besançon, France
| | - Philippe Ichai
- Hepatobiliary Unit and Liver Intensive Care, Paul Brousse University Hospital AP-HP, Villejuif cedex, France
| | - Sophie Borot
- Department of Endocrinology, University Hospital of Besançon, France
| | - Clifford R Qualls
- Clinical Translational Science Center, University of New Mexico Health Science Center, USA
| | - Arnaud Agin
- ICube, UMR 7357, University of Strasbourg and CNRS, FMTS, Strasbourg, France
| | - Alexandre Louvet
- Department of Hepatogastroenterology, University Hospital of Lille, France
| | - Jérôme Dumortier
- Department of Hepatogastroenterology, University Hospital Edouard Herriot of Lyon, France
| | | | - Gilles Dumoulin
- Laboratory for Endocrinology and Metabolism, University Hospital of Besançon, France
| | - Vincent Di Martino
- Hepatology and Digestive Intensive Care Unit, University Hospital of Besançon, France; EA UPRES 3186 « Agents Pathogènes et Inflammation » of Franche-Comté University, France
| | - Richard Dorin
- Department of Medicine, New Mexico VA Medical Center and University of New Mexico Health Science Center, USA
| | - Thierry Thevenot
- Hepatology and Digestive Intensive Care Unit, University Hospital of Besançon, France; EA UPRES 3186 « Agents Pathogènes et Inflammation » of Franche-Comté University, France.
| |
Collapse
|
41
|
Abstract
Hepatic encephalopathy (HE) is associated with cerebral edema (CE), increased intracranial pressure (ICP), and subsequent neurologic complications; it is the most important cause of morbidity and mortality in fulminant hepatic failure. The goal of therapy should be early diagnosis and treatment of HE with measures to reduce CE. A combination of clinical examination and diagnostic modalities can aid in prompt diagnosis. ICP monitoring and transcranial Doppler help diagnose and monitor response to treatment. Transfer to a transplant center and intensive care unit admission with airway management and reduction of CE with hypertonic saline, mannitol, hypothermia, and sedation are recommended as a bridge to liver transplantation.
Collapse
|
42
|
Diaz G, Levitsky J, Oniscu G. Meeting report of the 2014 joint international congress of the International Liver Transplantation Society, Liver Intensive Care Group of Europe, and European Liver and Intestinal Association. Liver Transpl 2015; 21:991-1000. [PMID: 25857840 DOI: 10.1002/lt.24144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/30/2015] [Indexed: 01/13/2023]
Abstract
The 2014 Annual Meeting of the International Liver Transplantation Society was held in London, England. This was the 20th meeting of the Society and was marked by a joint meeting including the European Liver and Intestinal Association as well as the Liver Intensive Care Group of Europe. The meeting included symposia, invited lectures, debates, oral presentations, and posters. The principal themes were living donation, expanding the deceased donor pool, machine preservation, and new oral therapies for hepatitis C virus. This report highlights the scientific discussions of this meeting.
Collapse
Affiliation(s)
- Geraldine Diaz
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL
| | - Josh Levitsky
- Department of Gastroenterology and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gabriel Oniscu
- Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
|
44
|
Panackel C, Thomas R, Sebastian B, Mathai SK. Recent advances in management of acute liver failure. Indian J Crit Care Med 2015; 19:27-33. [PMID: 25624647 PMCID: PMC4296407 DOI: 10.4103/0972-5229.148636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute liver failure (ALF) is a life-threatening illness, where a previously normal liver fails within days to weeks. Sudden loss of synthetic and detoxification function of liver results in jaundice, encephalopathy, coagulopathy, and multiorgan failure. The etiology of ALF varies demographically. The mortality of ALF is as high as 40-50%. The initial care of patients with ALF depends on prompt recognition of the condition and early detection of etiology. Management includes intensive care support, treatment of specific etiology if present and early detection of candidates for liver transplantation. Liver transplantation remains the only therapeutic intervention with proven survival benefit in patients with irreversible ALF. Living related liver transplantation, auxiliary liver transplantation, and ABO-incompatible liver transplantation are coming up in a big way. Liver assist devices and hepatocyte transplant remain experimental and further advances are required. Public health measures to control hepatitis A, B, E, and drug-induced liver injury will reduce the incidence and mortality of ALF.
Collapse
Affiliation(s)
- Charles Panackel
- From: Department of Gastroenterology and Liver Transplantation, Medical Trust Hospital, Cochin, Ernakulam, Kerala, India
| | - Rony Thomas
- From: Department of Gastroenterology and Liver Transplantation, Medical Trust Hospital, Cochin, Ernakulam, Kerala, India
| | - Benoy Sebastian
- From: Department of Gastroenterology and Liver Transplantation, Medical Trust Hospital, Cochin, Ernakulam, Kerala, India
| | - Sunil K. Mathai
- From: Department of Gastroenterology and Liver Transplantation, Medical Trust Hospital, Cochin, Ernakulam, Kerala, India
| |
Collapse
|