1
|
Chia ZJ, Kumarapperuma H, Zhang R, Little PJ, Kamato D. Smad transcription factors as mediators of 7 transmembrane G protein-coupled receptor signalling. Acta Pharmacol Sin 2025; 46:795-804. [PMID: 39506064 PMCID: PMC11950520 DOI: 10.1038/s41401-024-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Smad transcription factors are well known for their role at the core of transforming growth factor-β (TGF-β) signalling. However, recent evidence shows that the Smad transcription factors play a vital role downstream of other classes of receptors including G protein-coupled receptors (GPCR). The versatility of Smad transcription factors originated from the two regions that can be differently activated by the TGF-β receptor superfamily or through the recruitment of intracellular kinases stimulated by other receptors classes such as GPCRs. The classic GPCR signalling cascade is further expanded to conditional adoption of the Smad transcription factor under the stimulation of Akt, demonstrating the unique involvement of the Smad transcription factor in GPCR signalling pathways in disease environments. In this review, we provide a summary of the signalling pathways of the Smad transcription factors as an important downstream mediator of GPCRs, presenting exciting opportunities for discovering new therapeutic targets for diseases.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hirushi Kumarapperuma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ruizhi Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
2
|
Zhang YM, Lin CY, Li BZ, Dong WR, Shu MA. Identification and functional analysis of two drosophila mothers against decapentaplegic protein(Smad)genes and their involvement in immune responses in the red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1255-1263. [PMID: 36427760 DOI: 10.1016/j.fsi.2022.11.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Drosophila mothers against decapentaplegic proteins (Smads), the crucial signal transducers in activating downstream gene transcription through transforming growth factor beta (TGF-β) receptors, are the pleiotropic factors with important role in mediating cell proliferation, homeostasis, differentiation, apoptosis and immune response. However, whether Smads are involved in immune response in crustaceans remains unexplored. In the present study, the Smad3 and Smad4 were firstly identified and functionally characterized from the Red Swamp Crayfish Procambarus clarkii. The full-length cDNAs of pcSmad3 and pcSmad4 were 1, 670 bp and 3, 060 bp with 1, 326 bp and 1, 875 bp open reading frame (ORF), respectively. Real-time PCR analysis of the expression profiles demonstrated that pcSmad3 and pcSmad4 were predominantly expressed at in stomach, heart, and hemocytes. Notably, the expression levels of pcSmad3 and pcSmad4 both Aeromonas hydrophila and WSSV challenges were significantly altered, suggesting the involvement of pcSmad3 and pcSmad4 in innate immune responses. Knockdown of pcSmad3 and pcSmad4 in vivo dramatically activated the transcriptions of NF-κB signaling genes and anti-lipopolysaccharide factor genes. The overexpression of pcSmad3 and pcSmad4 could significantly activate NF-κB signaling in HEK293T cells. Meanwhile, the clearance of bacteria was significantly reduced with knockdown of pcSmad3 and pcSmad4 in vivo. Results indicated that pcSmad3 and pcSmad4 played an immune-regulatory role in crayfish's innate immunity, which might pave the for a better understanding of the TGF-β superfamily members in crustacean.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Expression of IL-37 Correlates With Immune Cell Infiltrate and Fibrosis in Pediatric Autoimmune Liver Diseases. J Pediatr Gastroenterol Nutr 2022; 74:742-749. [PMID: 35258491 DOI: 10.1097/mpg.0000000000003443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The activation of innate immune mechanisms is key for chronic liver injury. Interleukin-37 (IL-37) is a profound inhibitor of innate and adaptive immune responses, and its overexpression protects mice from liver inflammation and fibrosis. Here, we characterize the hepatic inflammatory infiltrate and expression of IL-37 in children with autoimmune liver diseases. METHODS We compared the inflammatory microenvironment of the liver in a retrospective cohort of children with primary sclerosing cholangitis (PSC), autoimmune sclerosing cholangitis (ASC) and autoimmune hepatitis (AIH) by immunohistochemistry. The expression of IL-37 was quantified in liver parenchyma and portal tracts. Double immunofluorescence was used for detection of IL-37 in specific cell types and colocalization with Smad3. RESULTS AIH is characterized by a dense lymphoplasmacytic infiltrate whereas ASC shows high numbers of granulocytes in portal tracts. IL-37 expression correlates positively with liver inflammation and fibrosis, the number of infiltrating immune cells and serum markers for hepatic inflammation. IL-37 is mainly expressed in hepatocytes, cholangiocytes and infiltrating immune cells. Double staining revealed IL-37 positivity in T helper and regulatory T cells (Treg), Kupffer (KC) and hepatic stellate cells (HSC). IL-37 colocalizes with intranuclear pSmad3L in areas of liver inflammation. CONCLUSIONS Pediatric ASC separates from PSC and AIH by a granulocyte-rich portal infiltrate. Upregulation of IL-37 with liver injury, the expression in Treg as well as KC and HSC and the colocalization of IL-37 with pSmad3L in cholangiocytes and hepatocytes suggest a modulating role to limit hepatic inflammation and fibrosis in pediatric autoimmune liver diseases.
Collapse
|
4
|
Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Viruses 2022; 14:v14040837. [PMID: 35458567 PMCID: PMC9026071 DOI: 10.3390/v14040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that caused the coronavirus disease 2019 (COVID-19) pandemic. Though previous studies have suggested that SARS-CoV-2 cellular tropism depends on the host-cell-expressed proteins, whether transcriptional regulation controls SARS-CoV-2 tropism factors in human lung cells remains unclear. In this study, we used computational approaches to identify transcription factors (TFs) regulating SARS-CoV-2 tropism for different types of lung cells. We constructed transcriptional regulatory networks (TRNs) controlling SARS-CoV-2 tropism factors for healthy donors and COVID-19 patients using lung single-cell RNA-sequencing (scRNA-seq) data. Through differential network analysis, we found that the altered regulatory role of TFs in the same cell types of healthy and SARS-CoV-2-infected networks may be partially responsible for differential tropism factor expression. In addition, we identified the TFs with high centralities from each cell type and proposed currently available drugs that target these TFs as potential candidates for the treatment of SARS-CoV-2 infection. Altogether, our work provides valuable cell-type-specific TRN models for understanding the transcriptional regulation and gene expression of SARS-CoV-2 tropism factors.
Collapse
|
5
|
Li L, Wang Q, He Y, Sun L, Yang Y, Pang X. Astragaloside IV suppresses migration and invasion of TGF-β 1-induced human hepatoma HuH-7 cells by regulating Nrf2/HO-1 and TGF-β 1/Smad3 pathways. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:397-405. [PMID: 35092472 DOI: 10.1007/s00210-021-02199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Astragaloside IV (AS-IV), one of the major compounds extract from Astragalus membranaceus, has shown attractive anti-cancer effects in certain malignancies. Oxidative stress (OS) is considered as a crucial factor in promoting the progression of hepatocellular carcinoma (HCC). In response to OS, nuclear factor erythroid 2-related factor 2 (Nrf2) upregulates and induces heme oxygenase 1 (HO-1) to combat oxidative damages. The phosphorylation of the COOH-terminal of Smad3 (pSmad3C) activates p21 to resist HCC progression, while the phosphorylation of the linker region of Smad3 (pSmad3L) up-regulates c-Myc transcription to exert promoting effect towards HCC. This study aimed to explore whether AS-IV suppresses migration and invasion of human hepatoma HuH-7 cells by regulating Nrf2/HO-1 and TGF-β1/Smad3 pathways. HuH-7 cells were induced with TGF-β1 (9 or 40 pM) to establish HCC model in vitro and pretreated with AS-IV at different concentration (5, 10, and 20 μM) for 24 h. Cell proliferation, migration, invasion, and intracellular reactive oxygen species (ROS) of HuH-7 cells were measured. The expression of Nrf2, pSmad3C, Nrf2/pNrf2, HO-1, pSmad3C/3L, c-Myc, and p21 were detected. Exposure of HuH-7 cells to TGF-β1 enhanced the cell proliferation, migration, invasion, and ROS production. Pretreatment with AS-IV (5, 10, and 20 μM) significantly reduced the cell proliferation, migration, invasion, and ROS production in HuH-7 cells. Furthermore, AS-IV increased the expressions of Nrf2/pNrf2, HO-1, pSmad3C, and p21, meanwhile reduced the expressions of pSmad3L and c-Myc. In conclusion, our study suggested that AS-IV inhibit HuH-7 cells migration and invasion, which related to activate Nrf2/HO-1 pathway, up-regulation pSmad3C/p21 pathway, and down-regulation pSmad3L/c-Myc pathway. The present research supports the notion that AS-IV may be a latent agent for the treatment of HCC.
Collapse
Affiliation(s)
- Lili Li
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Qin Wang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yinghao He
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangjie Sun
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Yang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Xiaonan Pang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Han G, Wang Y, Liu T, Gao J, Duan F, Chen M, Yang Y, Wu C. Salvianolic acid B acts against non‑small cell lung cancer A549 cells via inactivation of the MAPK and Smad2/3 signaling pathways. Mol Med Rep 2022; 25:184. [PMID: 35348194 PMCID: PMC8985201 DOI: 10.3892/mmr.2022.12700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 11/06/2022] Open
Abstract
Salvianolic acid B (Sal B) is a potential cytotoxic polyphenol against cancer. In the present study the effect of Sal B and its molecular mechanism were investigated in the non‑small cell lung cancer (NSCLC) A549 cell line. The TGF‑β/MAPK/Smad signaling axis was explored. A549 cells were co‑cultured with and without different concentrations of Sal B (25, 50 and 100 µM respectively) and TGF‑β1 (9 pM) for 24 h. Cell epithelial‑mesenchymal transition (EMT), cell migration, cell cycle distribution, autophagy and apoptosis were assessed by western blotting (WB), wound healing assay and flow cytometry, respectively. Moreover, activation of MAPK, Smad2/3 and the downstream target, plasminogen activator inhibitor 1 (PAI‑1), were assessed by WB. The results demonstrated that Sal B inhibited TGF‑β1‑induced EMT and migration of A549 cells, hampered cell cycle progression and induced cell autophagy and apoptosis. Furthermore, Sal B inactivated MAPK signaling pathways and the phosphorylation of Smad2/3, especially the phosphorylation of Smad3 at the linker region, which resulted in decreased protein expression levels of PAI‑1 in TGF‑β1‑stimulated A549 cells. Overall, these results demonstrated that Sal B may have a potential therapeutic effect against NSCLC in vitro. The results of the present study indicated that the underlying active mechanism of Sal B in NSCLC may be closely related to the impeded activation of the MAPK and Smad2/3 signaling pathways. Therefore, Sal B may be a potential candidate NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Guanglei Han
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yongzhong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Tong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Fengyi Duan
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ming Chen
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Chinese Ministry of Education, Hefei, Anhui 230032, P.R. China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Chinese Ministry of Education, Hefei, Anhui 230032, P.R. China
| | - Chao Wu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
7
|
Wu T, Wang X, Chen M, Zhang X, Zhang J, Cheng J, Kong L, Tang M. Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice. Food Chem Toxicol 2022; 163:112971. [PMID: 35358666 DOI: 10.1016/j.fct.2022.112971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Graphene quantum dots (GQDs), as a novel graphene-based nanoparticle, presented a bright prospect in fields of biomedicine due to their excellent optical property. However, the biosafety assessment of GQDs is far behind their rapid development, which could restrict their wilder applications. This study focused on the potential adverse effects of two kinds of promising GQDs, i.e. nitrogen-doping graphene quantum dots (N-GQDs) and amino-modified graphene quantum dot (A-GQDs) on primary target organs of GNMs, including lung, liver and kidney. The intranasal instillation used here was to imitate the respiratory exposure of GQDs that is a commonly exposure route of GQDs in the environment. Although no severe damages associated with general health occurred in mice treated with GQDs, the fibrosis evidenced by statistically significant increases in the area of collagen I and TGF-ß1 and p-Smad3 expressions were observed in the lung, liver and kidney tissues. Interestingly, the fibrotic effect induced by GQDs could be effectively alleviated by a ferroptosis-specific inhibitor, which demonstrated a close relationship of fibrosis and ferroptosis. This study not only provides new insights on the toxicity mechanisms of GQDs, but also offers some efficient ways to control toxicity of GQDs, like dosage threshold and small molecular drugs.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Xiaomeng Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Jixiang Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| |
Collapse
|
8
|
Thielen N, Neefjes M, Wiegertjes R, van den Akker G, Vitters E, van Beuningen H, Blaney Davidson E, Koenders M, van Lent P, van de Loo F, van Caam A, van der Kraan P. Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. Int J Mol Sci 2021; 22:ijms22158124. [PMID: 34360888 PMCID: PMC8347103 DOI: 10.3390/ijms22158124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.
Collapse
Affiliation(s)
- Nathalie Thielen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Margot Neefjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Renske Wiegertjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Guus van den Akker
- Department of Orthopedic Surgery, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Elly Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Henk van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Esmeralda Blaney Davidson
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Marije Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Fons van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Arjan van Caam
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
- Correspondence:
| |
Collapse
|
9
|
Identification, molecular evolution, and expression analysis of the transcription factor Smad gene family in lamprey. Mol Immunol 2021; 136:128-137. [PMID: 34139553 DOI: 10.1016/j.molimm.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Transcription factor small mothers against decapentaplegic (Smad) family SMAD proteins are the essential intracellular signal mediators and transcription factors for transforming growth factor β (TGF-β) signal transduction pathway, which usually exert pleiotropic actions on cell physiology, including immune response, cell migration and differentiation. In this study, the Smad family was identified in the most primitive vertebrates through the investigation of the transcriptome data of lampreys. The topology of phylogenetic tree showed that the four Smads (Smad1, Smad3, Smad4 and Smad6) in lampreys were subdivided into four different groups. Meanwhile, homology analysis indicated that most Smads were conserved with typical Mad Homology (MH) 1 and MH2 domains. In addition, Lethenteron reissneri Smads (Lr-Smads) adopted general Smads folding structure and had high tertiary structural similarity with human Smads (H-Smads). Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey Smads presented dramatic differences compared with jawed vertebrates. Importantly, quantitative real-time PCR analysis demonstrated that Smads were widely expressed in lamprey, and the expression level of Lr-Smads mRNA was up-regulated with different pathogenic stimulations. Moreover, depending on the weighted gene co-expression network analysis (WGCNA), four Lr-Smads were identified as two meaningful modules (green and gray). The functional analysis of these two modules showed that they might have a correlation with ployI:C. And these genes presented strong positive correlation during the immune response from the results of Pearson's correlation analysis. In conclusion, our results would not only enrich the information of Smad family in jawless vertebrates, but also lay the foundation for immunity in further study.
Collapse
|
10
|
Kamato D, Do BH, Osman N, Ross BP, Mohamed R, Xu S, Little PJ. Smad linker region phosphorylation is a signalling pathway in its own right and not only a modulator of canonical TGF-β signalling. Cell Mol Life Sci 2020; 77:243-251. [PMID: 31407020 PMCID: PMC11104920 DOI: 10.1007/s00018-019-03266-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Transforming growth factor (TGF)-β signalling pathways are intensively investigated because of their diverse association with physiological and pathophysiological states. Smad transcription factors are the key mediators of TGF-β signalling. Smads can be directly phosphorylated in the carboxy terminal by the TGF-β receptor or in the linker region via multiple intermediate serine/threonine kinases. Growth factors in addition to hormones and TGF-β can activate many of the same kinases which can phosphorylate the Smad linker region. Historically, Smad linker region phosphorylation was shown to prevent nuclear translocation of Smads and inhibit TGF-β signalling pathways; however, it was subsequently shown that Smad linker region phosphorylation can be a driver of gene expression. This review will cover the signalling pathways of Smad linker region phosphorylation that drive the expression of genes involved in pathology and pathophysiology. The role of Smad signalling in cell biology is expanding rapidly beyond its role in TGF-β signalling and many signalling paradigms need to be re-evaluated in terms of Smad involvement.
Collapse
Affiliation(s)
- Danielle Kamato
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China.
| | - Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Narin Osman
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Benjamin P Ross
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Raafat Mohamed
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China
| |
Collapse
|
11
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Song LY, Ma YT, Fang WJ, He Y, Wu JL, Zuo SR, Deng ZZ, Wang SF, Liu SK. Inhibitory effects of oxymatrine on hepatic stellate cells activation through TGF-β/miR-195/Smad signaling pathway. Altern Ther Health Med 2019; 19:138. [PMID: 31221141 PMCID: PMC6585021 DOI: 10.1186/s12906-019-2560-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxymatrine (OM), a quinolizidine alkaloid extracted from a herb Sophorae Flavescentis Radix, has been used to treat liver fibrotic diseases. However, the mechanism of its anti-fibrosis effects is still unclear. TGF-β/Smad signaling and miR-195 have been proved to paly an important role in hepatic stellate cells (HSCs) activation and liver fibrosis. In this study, we investigated whether OM could inhibit HSCs activation through TGF-β1/miR-195/Smads signaling or not. METHODS First, the effects of OM on HSC-T6 in different concentrations and time points were tested by MTT assay. We choose three appropriate concentrations of OM as treatment concentrations in following experiment. By Quantitative Real-time PCR and Western Blot, then we investigated the effect of OM on miR-195, Smad7 and α-SMA's expressions to prove the correlation between OM and the TGF-β1/miR-195/Smads signaling. Last, miR-195 mimic and INF-γ were used to investigate the relation between miR-195 and OM in HSC activation. RESULTS Our results showed that the proliferation of HSC was significantly inhibited when OM concentration was higher than 200 μg/mL after 24 h, 100 μg/mL after 48 h and 10 μg/mL after 72 h. The IC50 of OM after 24, 48 and 72 h were 539, 454, 387 μg/mL respectively. OM could down-regulate miR-195 and α-SMA (P < 0.01), while up-regulate Smad7 (P < 0.05). In HSC-T6 cells transfected with miR-195 mimic and pretreated with OM, miR-195 and α-SMA were up-regulated (P < 0.05), and Smad7 was down-regulated (P < 0.05) . CONCLUSIONS Given these results, OM could inhibit TGF-β1 induced activation of HSC-T6 proliferation in a dose-dependent and time-dependent manner to some extent. We proved that OM inhibited HSC activation through down-regulating the expression of miR-195 and up-regulating Smad7.
Collapse
|
13
|
MicroRNA-195 Activates Hepatic Stellate Cells In Vitro by Targeting Smad7. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1945631. [PMID: 28929107 PMCID: PMC5591989 DOI: 10.1155/2017/1945631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Background and Aim Aberrant activation of the TGF-β1/Smad pathway contributes to the activation of hepatic stellate cells (HSCs). MicroRNA-195 has been shown to regulate the activation of HSCs. The aim of this study was to investigate the role of miRNA-195 in HSCs activation. Methods A liver fibrotic rat model induced by diethylnitrosamine was established. Dual luciferase reporter assays were performed to verify that Smad7 was the target of miRNA-195. The expression levels of miR-195, Smad7, and α-SMA in HSC-T6 transfected, respectively, with miR-195 mimic, inhibitor, or control were measured by qRT-PCR. The protein expression of Smad7 was detected by Western blot analysis. Results Enhanced miR-195 and decreased Smad7 were observed in diethylnitrosamine-induced liver fibrotic rats (P < 0.05). Dual luciferase reporter assays showed that the miR-195 mimic significantly suppressed the luciferase activity of a reporter plasmid carrying the binding site of miR-195 on the 3′UTR of Smad7 (P < 0.05). The miR-195 mimics activated HSCs, further elevated miR-195 and α-SMA (P < 0.01), and reduced the Smad7 level (P < 0.05). The miR-195 inhibitors blocked the activation of HSCs, reduced the expression of miR-195 and α-SMA (P < 0.01), and upregulated the expression of Smad7 (P < 0.05). Conclusion Collectively, we demonstrated that miRNA-195 activated HSCs by targeting Smad7.
Collapse
|
14
|
Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci Rep 2016; 6:34790. [PMID: 27703224 PMCID: PMC5050511 DOI: 10.1038/srep34790] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway.
Collapse
|
15
|
Rauff B, Douglas MW. Role of fibrogenic and inflammatory cytokines in HCV-induced fibrosis. Future Virol 2015. [DOI: 10.2217/fvl.15.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HCV is one of the main causative agents of liver fibrosis and hepatocellular carcinoma. Liver inflammation resulting from HCV infection triggers fibrosis. In HCV-related fibrosis, differentiated hepatic stellate cells (HSCs) known as myofibroblasts participate in the fibrogenic and inflammatory response. TGF-β1 and CTGF, released from these HSCs, have been implicated as master cytokines mediating HCV induced hepatic fibrosis. PDGF is another potent mitogen, which facilitates the progression of liver fibrosis by enhancing the proliferation and migration of HSCs. In addition to these major cytokines, the release of TNF-α, IL-6, IL-1b and IL-10 by immune cells also promotes the effect of HCV induced fibrosis. Targeting these cytokines may offer the potential for treatments to prevent or cure fibrosis.
Collapse
Affiliation(s)
- Bisma Rauff
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW, Australia
- Centre for Infectious Diseases & Microbiology, Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney at Westmead Hospital, NSW, Australia
| |
Collapse
|
16
|
Qian F, He M, Duan W, Mao L, Li Q, Yu Z, Zhou Z, Zhang Y. Cross regulation between hypoxia-inducible transcription factor-1α (HIF-1α) and transforming growth factor (TGF)-ß1 mediates nickel oxide nanoparticles (NiONPs)-induced pulmonary fibrosis. Am J Transl Res 2015; 7:2364-2378. [PMID: 26807184 PMCID: PMC4697716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Numerous analyses including in vivo and in vitro experiments have demonstrated that inhalation exposure of NiONPs can result in pulmonary fibrosis. However, the potential mechanisms of this pathological process remain elusive. Here, we investigate the role of HIF-1α and TGF-ß1 in NiONPs-induced pulmonary fibrosis with a focus on the interplay of the above two proteins. In vivo, male Sprague&Dawley rats were exposed to NiONPs and pulmonary fibrosis was demonstrated using H&E staining and immunochemistry of αSMA. In vitro, NiONPs contributed to cell proliferation and increased expressions of collagen-1 and αSMA in human fetal lung fibroblasts. Both HIF-1α and TGF-ß1 were upregulated by NiONPs treatment. Inhibition of HIF-1α reduced TGF-ß1 expression and downregulation of TGF-ß1 reduced HIF-1α protein level. Mechanism investigation revealed that TGF-ß1 affects nuclear translocation activity of HIF-1α. Taken together, these finding provide evidence that HIF-1α and TGF-ß1 act in synergy to foster NiONPs-induced pulmonary fibrosis, and the cross talk between them is a pivotal mechanism of pulmonary fibrosis.
Collapse
Affiliation(s)
- Fenghua Qian
- Department of Hematology, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Weixia Duan
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Lin Mao
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Qian Li
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical UniversityChongqing 400038, China
| | - Yong Zhang
- Department of Hematology, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
17
|
Lytle KA, Depner CM, Wong CP, Jump DB. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr-/- mice by targeting the TGFβ-Smad3 pathway. J Lipid Res 2015; 56:1936-46. [PMID: 26315048 PMCID: PMC4583081 DOI: 10.1194/jlr.m061275] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/27/2015] [Indexed: 02/07/2023] Open
Abstract
DHA (22:6,ω3), but not EPA (20:5,ω3), attenuates Western diet (WD)-induced hepatic fibrosis in a Ldlr(-/-) mouse model of nonalcoholic steatohepatitis. We examined the molecular basis for the differential effect of dietary EPA and DHA on WD-induced hepatic fibrosis. DHA was more effective than EPA at preventing WD-induced effects on hepatic transcripts linked to fibrosis, including collagen 1A1 (Col1A1), transforming growth factor-β (TGFβ) signaling and proteins involved in remodeling the extracellular matrix, including metalloproteases, tissue inhibitors of metalloproteases, and lysyl oxidase subtypes. Examination of the TGFβ pathway showed that mice fed the WD supplemented with either olive oil or EPA had a significant (≥2.5-fold) increase in hepatic nuclear abundance of phospho-mothers against decapentaplegic homolog (Smad)3 when compared with mice fed the reference diet (RD); Smad3 is a key regulator of Col1A1 expression in stellate cells. In contrast, mice fed the WD supplemented with DHA had no increase in phospho-Smad3 when compared with mice fed the RD. Changes in hepatic phospho-Smad3 nuclear content correlated with proCol1A1 mRNA and protein abundance. Pretreatment of human LX2 stellate cells with DHA, but not other unsaturated fatty acids, blocked TGFβ1-mediated induction of Col1A1. In conclusion, DHA attenuates WD-induced fibrosis by targeting the TGFβ-Smad3-Col1A1 pathway in stellate cells.
Collapse
Affiliation(s)
- Kelli A. Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Christopher M. Depner
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Carmen P. Wong
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Donald B. Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
18
|
Boye A, Wu C, Jiang Y, Wang J, Wu J, Yang X, Yang Y. Compound Astragalus and Salvia miltiorrhiza extracts modulate MAPK-regulated TGF-β/Smad signaling in hepatocellular carcinoma by multi-target mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:219-228. [PMID: 25934513 DOI: 10.1016/j.jep.2015.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus Bunge (Leguminosae) and Salvia miltiorrhiza Bunge (Lamiaceae) are two important Chinese herbs with a long history of extensive ethnobotanical usage in the treatment of liver-related diseases over many centuries. Presently, these two herbs are being used either as a single herbal formulation or a composite formula for the treatment of liver related conditions. In response, recent studies on these two herbs have focused on elucidating their mechanisms of action, particularly with regards to their anti-hepatocarcinogenic effects. Previously, we have reported that Compound Astragalus and Salvia miltiorrhiza extract (CASE), a synergized composite extract from Astragalus membranaceus and Salvia miltiorrhiza ameliorates liver fibrosis and hepatocellular carcinoma (HCC) by modulating the TGF-β/Smad pathway. Meanwhile, MAPK activation and MAPK-dependent linker phosphorylation of Smad2/3 and their preferential nuclear import are crucial for overall oncogenic role of TGF-β/Smad signaling in HCC. To elucidate further, we studied the effect of CASE on the MAPK pathway and how it affects MAPK-dependent regulation of TGF-β/Smad signaling using both cell and animal models of HCC. MATERIALS AND METHODS We used immunofluorescence and western blot techniques to monitor effect of CASE on the activation of the MAPKs (pERK, pJNK and pp38) in TGF-β1-stimulated hepatic stellate cells (HSCs), HepG2 cells and also diethylnitrosamine (DEN)-induced HCC in rats. Also phosphorylation and subcellular distribution of pSmad2/3, Smad4 and Imp7/8 in TGF-β1-stimulated HSC and HepG2 cells were monitored. The expression of pERK, pJNK, pp38 and PAI-1 gene were monitored by using western blot technique. The effect of CASE on domain-specific phosphorylation of Smad2/3 and their subcellular distribution, and the expression of Smad4 and its subcellular distribution in TGF-β1-stimulated HSCs and HepG2 cells were evaluated by using immunofluorescence technique. And the expression of Imp7/8 and their subcellular distribution were assessed by both immunofluorescence and western blot techniques, while PAI-1 gene expression was assessed by western blot RESULTS In vitro, CASE in a concentration-dependent manner increased the expression of pp38 but decreased the expression of pERK and pJNK; however, in vivo, CASE in a dose dependent manner decreased the expression of pERK, pJNK as well as pp38. Also, CASE concentration dependently inhibited pSmad2C/L, pSmad3L, Smad4, Imp7/8 and their nuclear import; it had no effect on pSmad3C in HepG2 cells; significantly decreased PAI-1 gene expression in both in vitro and in vivo. CONCLUSIONS CASE blocked MAPK activation, MAPK-dependent linker phosphorylation of Smad2/3, Smad4 expression, Imp7 expression and their nuclear import leading to significant down-regulation of PAI-1 gene expression; further highlighting the multi-target anti-HCC effect of CASE and its potential drug candidature.
Collapse
Affiliation(s)
- Alex Boye
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yufeng Jiang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiyu Wang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Jiajun Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaochuan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
19
|
Jiang Y, Wu C, Boye A, Wu J, Wang J, Yang X, Yang Y. MAPK inhibitors modulate Smad2/3/4 complex cyto-nuclear translocation in myofibroblasts via Imp7/8 mediation. Mol Cell Biochem 2015; 406:255-62. [PMID: 25968067 DOI: 10.1007/s11010-015-2443-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathway-dependent linker phosphorylation of Smad2/3 and subsequent formation of Smad2/3/4 complex and its nuclear translocation are crucial for dysregulated transforming growth factor beta (TGF)-β/Smad signaling in liver fibrosis. Abrogation of this critical step of TGF-β/Smad signaling leading to liver fibrosis could provide new insights for future therapy, but the mechanisms remain incompletely understood. In pursuit, we investigated the subcellular expression and nuclear trafficking of the rate limiting Smad2/3/4 complex in exogenous TGF-β1-stimulated myofibroblasts (MFBs) using three MAPK-specific inhibitors. Our results showed that exogenous TGF-β1 stimulation of MFBs produced both increased protein expression and nuclear translocation of phosphorylated (p)-Smad2C/L, oncogenic pSmad3L, Smad4, importin7/8 (Imp7/8), and plasminogen activator inhibitor (PAI)-1 (Protein and mRNA), while decreased Smad7 protein expression. However, the MAPK-specific inhibitors differentially reversed these observations; for instance, ERK-specific inhibitor blocked the expression and nuclear translocation of pSmad2C/L, while both JNK and p38-specific inhibitors blocked the expression and nuclear translocation of pSmad2C/L and oncogenic pSmad3L. The MAPK-specific inhibitors had no significant effect on the total protein expression of Smad4, but rather significantly blocked its nuclear translocation. All the MAPK-specific inhibitors restored Smad7 expression and also decreased Imp7/8 and PAI-1 (Protein and mRNA) expression. Evidently, the MAPK-specific inhibitors blocked Smad2/3/4 complex formation via restoration of inhibitory Smad7 expression and blockade of Smad3L phosphorylation, while they blocked nuclear translocation of Smad2/3/4 complex through inhibition of Imp7/8 leading to decreased PAI-1 (Protein and mRNA) expression.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei, 230032, China
| | | | | | | | | | | | | |
Collapse
|