1
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
2
|
Sendani AA, Farmani M, Jahankhani K, Kazemifard N, Ghavami SB, Houri H, Ashrafi F, Sadeghi A. Exploring the Anti-Inflammatory and Antioxidative Potential of Selenium Nanoparticles Biosynthesized by Lactobacillus casei 393 on an Inflamed Caco-2 Cell Line. Cell Biochem Biophys 2024; 82:3265-3276. [PMID: 39261390 DOI: 10.1007/s12013-024-01356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 09/13/2024]
Abstract
Selenium (Se) plays a crucial role in modulating inflammation and oxidative stress within the human system. Biogenic selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei (L. casei) exhibit anti-inflammatory and anti-oxidative properties, positioning them as a promising alternative to traditional supplements characterized by limited bioavailability. With this context in mind, this study investigates the impact of selenium and L. casei in ameliorating inflammation and oxidative stress using a cell line model. The study is centered on the biosynthesis of selenium nanoparticles (SeNPs) by L. casei 393 under anaerobic conditions using a solution of sodium selenite (Na2SeO3) in the bacterial culture medium. The generation of SeNPs ensued from the interaction of L. casei bacteria with selenium ions, a process characterized via transmission electron microscopy (TEM) to confirm the synthesis of SeNPs. To induce inflammation, the human colonic adenocarcinoma cell line, Caco-2 was subjected to interleukin-1 beta (IL-1β) at concentrations of 0.5 and 25 ng/ml. Subsequent analyses encompass the evaluation of SeNPs derived from L. casei, its supernatant, commercial selenium, and L. casei probiotic on Caco2 cell line. Finally, we assessed the inflammatory and oxidative stress markers. The assessment of inflammation involved the quantification of NF-κB and TGF-β gene expression levels, while oxidative stress was evaluated through the measurement of Nrf2, Keap1, NOX1, and SOD2 gene levels. L. casei successfully produced SeNPs, as confirmed by the color change in the culture medium and TEM analysis showing their uniform distribution within the bacteria. In the inflamed Caco-2 cell line, the NF-κB gene was upregulated, but treatment with L. casei-SeNPs and selenium increased TGF-β expression. Moreover, L. casei-SeNPs upregulated SOD2 and Nrf2 genes, while downregulating NOX1, Keap1, and NF-κB genes. These results demonstrated the potential of L. casei-SeNPs for reducing inflammation and managing oxidative stress in the Caco-2 cell line. The study underscores the ability of L. casei-SeNPs to reduce oxidative stress and inflammation in inflamed Caco-2 cell lines, emphasizing the effectiveness of L. casei as a source of selenium. These insights hold significant promise for the development of SeNPs derived from L. casei as potent anti-inflammatory and anti-cancer agents, paving the way for novel therapeutic applications in the field.
Collapse
Affiliation(s)
- Azadeh Aghamohammadi Sendani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gopal RK, Ganesh PS, Pathoor NN. Synergistic Interplay of Diet, Gut Microbiota, and Insulin Resistance: Unraveling the Molecular Nexus. Mol Nutr Food Res 2024; 68:e2400677. [PMID: 39548908 DOI: 10.1002/mnfr.202400677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Indexed: 11/18/2024]
Abstract
This comprehensive review explores the intricate relationship between gut microbiota, diet, and insulin resistance, emphasizing the novel roles of diet-induced microbial changes in influencing metabolic health. It highlights how diet significantly influences gut microbiota composition, with different dietary patterns fostering diverse microbial communities. These diet-induced changes in the microbiome impact human metabolism by affecting inflammation, energy balance, and insulin sensitivity, particularly through microbial metabolites like short-chain fatty acids (SCFAs). Focusing the key mediators like endotoxemia and systemic inflammation, and introduces personalized microbiome-based therapeutic strategies, it also investigates the effects of dietary components-fiber, polyphenols, and lipids-on microbiota and insulin sensitivity, along with the roles of protein intake and amino acid metabolism. The study compares the effects of Western and Mediterranean diets on the microbiota-insulin resistance axis. Therapeutic implications, including probiotics, fecal microbiota transplantation (FMT), and personalized diets, are discussed. Key findings reveal that high-fat diets, especially those rich in saturated fats, contribute to dysbiosis and increased intestinal permeability, while high-fiber diets promote beneficial bacteria and SCFAs. The review underscores the future potential of food and microbiota interventions for preventing or managing insulin resistance.
Collapse
Affiliation(s)
- Rajesh Kanna Gopal
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| | - Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
4
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
5
|
Mozaffari S, Aliari M, Emamgholipour S, Hosseini H, Amirkiasar PR, Zare M, Katsiki N, Panahi G, Sahebkar A. The effect of probiotic consumption on lipid profile, glycemic index, inflammatory markers, and liver function in NAFLD patients: A systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications 2024; 38:108780. [PMID: 38968867 DOI: 10.1016/j.jdiacomp.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND-AIM Non-alcoholic fatty liver disease (NAFLD1) is the most frequent chronic liver disorder worldwide. Currently, no pharmacological treatment has been approved for NAFLD. Probiotics have been suggested as a potential therapy for NAFLD. The aim of this systematic review and meta-analysis was to assess the impact of probiotic intake on liver tests, lipids, glycemic parameters and inflammatory markers in NAFLD patients. METHODS We searched electronic databases using related terms. Meta-analysis was performed using random-effects models. Clinical outcomes were presented as standard mean difference (SMD2) with a 95 % confidence interval (CI3). Publication bias and heterogeneity were evaluated in eligible studies. RESULTS Fifteen randomized clinical trials comprising 899 participants were included in our meta-analysis. Probiotic supplementation improved alanine transaminase [SMD -0.796; 95 % CI (-1.419, -0.172); p = 0.012], Homeostatic Model Assessment for Insulin Resistance (HOMA-IR4) [SMD -0.596; 95 % CI (-1.071, -0.121); p = 0.01] and insulin levels [SMD -1.10; 95 % CI (-2.121, -0.087); p = 0.03]. No significant effects were observed on fasting glucose, hemoglobin A1c, aspartate transaminase, lipid profile, interleukin-6 and tumor necrosis factor-α. CONCLUSIONS Probiotic intake may improve insulin sensitivity and alanine transaminase in NAFLD patients.
Collapse
Affiliation(s)
- Sadegh Mozaffari
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdeyeh Aliari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Rezaei Amirkiasar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Zare
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia 2404, Cyprus.
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Thant EP, Surachat K, Chusri S, Romyasamit C, Pomwised R, Wonglapsuwan M, Yaikhan T, Suwannasin S, Singkhamanan K. Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights. Antibiotics (Basel) 2024; 13:604. [PMID: 39061286 PMCID: PMC11273482 DOI: 10.3390/antibiotics13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
Collapse
Affiliation(s)
- Ei Phway Thant
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| |
Collapse
|
7
|
Huang J, Wang X, Li Q, Zhang P, Jing Z, Zhang J, Su H, Sun X. Effect of Mixed Probiotics on Ovalbumin-Induced Atopic Dermatitis in Juvenile Mice. Int J Microbiol 2024; 2024:7172386. [PMID: 38590774 PMCID: PMC10999295 DOI: 10.1155/2024/7172386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Atopic dermatitis is one of the most common dermatologic problems, especially in children. Given the ability of symbiotic microorganisms in modulating the immune system, probiotics administration has been studied in previous research in the management of atopic dermatitis. However, there are conflicting results between studies. In this study, we aimed to assess the effectiveness of mixed probiotics as a treatment option for atopic dermatitis induced by ovalbumin. BALB/c juvenile mice were classified and divided into the ovalbumin group, mixed probiotic group (ovalbumin + LK), and control group. Except for the control group, all mice were sensitized with ovalbumin to establish a model of atopic dermatitis. The mixed probiotics were given by gavage for 14 days. Mice body weight, skin lesions, skin inflammation, ovalbumin-specific Ig, the number of Treg and CD103+DC, and the expression level of PD-1/PD-L1 were examined. The results showed that mixed probiotics can improve body weight and alleviate skin symptoms. Mixed probiotics reduced serum Th2 inflammatory factors, eosinophils, mast cell degranulation, mast cell count, and the expression of ovalbumin-specific immunoglobulin E/G1 and increased the anti-inflammatory cytokine interleukin-10, Treg cells, CD103+DC cells, and the expression level of PD-1/PD-L1. These findings suggest that mixed probiotics could be a viable treatment option for atopic dermatitis and provide insight into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xingzhi Wang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zenghui Jing
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
8
|
Son SJ, Han AR, Sung MJ, Hong SM, Lee SH. Hermetia illucens Fermented with Lactobacillus plantarum KCCM12757P Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants (Basel) 2023; 12:1822. [PMID: 37891901 PMCID: PMC10604763 DOI: 10.3390/antiox12101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) can severely affect humans and animals and is difficult to treat. Black soldier fly (Hermetia illucens; Hi) larvae (BSFL) are a sustainable source of protein. However, no studies exist on the antioxidant and anti-inflammatory functions of BSFL or fermented BSFL with respect to IBD. In this study, riboflavin-producing Lactobacillus plantarum KCCM12757P was isolated from a fish farm tank, and in conjunction with hot water-extracted Hi (HeHi) (termed HeHi_Lp), was used to determine optimal fermentation conditions to increase vitamin B2 concentration. This in vivo study investigated the therapeutic effects and mechanistic role of HeHi_Lp in chronic colitis-induced murine models. Histological changes, inflammatory cytokine levels, and intestinal barrier function were explored. Gut microbial communities and gene expression in the nuclear factor (NF)-κB signaling pathway were also studied. HeHi_Lp remarkably reduced the disease activity index, inflammatory cytokine (inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, interleukin (IL-6 and IL-1β) levels, and increased body weight and colon length. HeHi_Lp administration significantly raised zonula occludens 1, occludin and claudin 1 and improved the composition of the gut microbiota and beneficial intestinal bacteria. These results suggest that HeHi_Lp can be used as a dietary supplement in pet food to alleviate colitis.
Collapse
Affiliation(s)
- Seok Jun Son
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Ah-Ram Han
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Mi Jeong Sung
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Sun Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Jukbyeon, Uljin-gun 36315, Gyeongsangbuk-do, Republic of Korea;
| | - Sang-Hee Lee
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| |
Collapse
|
9
|
Ciccone MM, Lepera ME, Guaricci AI, Forleo C, Cafiero C, Colella M, Palmirotta R, Santacroce L. Might Gut Microbiota Be a Target for a Personalized Therapeutic Approach in Patients Affected by Atherosclerosis Disease? J Pers Med 2023; 13:1360. [PMID: 37763128 PMCID: PMC10532785 DOI: 10.3390/jpm13091360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the increasing number of studies on the relationship between the gut microbiota and atherosclerosis have led to significant interest in this subject. The gut microbiota, its metabolites (metabolome), such as TMAO, and gut dysbiosis play an important role in the development of atherosclerosis. Furthermore, inflammation, originating from the intestinal tract, adds yet another mechanism by which the human ecosystem is disrupted, resulting in the manifestation of metabolic diseases and, by extension, cardiovascular diseases. The scientific community must understand and elucidate these mechanisms in depth, to gain a better understanding of the relationship between atherosclerosis and the gut microbiome and to promote the development of new therapeutic targets in the coming years. This review aims to present the knowledge acquired so far, to trigger others to further investigate this intriguing topic.
Collapse
Affiliation(s)
- Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Mario Erminio Lepera
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Raffele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| |
Collapse
|
10
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
11
|
Gohil P, Nanavati B, Patel K, Suthar V, Joshi M, Patil DB, Joshi CG. Assessing the efficacy of probiotics in augmenting bovine reproductive health: an integrated in vitro, in silico, and in vivo study. Front Microbiol 2023; 14:1137611. [PMID: 37275132 PMCID: PMC10232901 DOI: 10.3389/fmicb.2023.1137611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The aim of this study was to isolate and characterize bovine-vaginal probiotics genotypically and phenotypically using in silico and evaluate their in vivo performance in buffaloes with endometritis. For the in vitro isolation and characterization, vaginal swabs were collected from 34 cows and 17 buffaloes, and 709 primary bacterial isolates with probiotic activity were obtained using MRS agar media. Two isolates Lactiplantibacillus plantarum KUGBRC (LPKUGBRC) and Pediococcus pentosaceus GBRCKU (PPGBRCKU) demonstrated optimum in vitro probiotic activities as compared to Lacticaseibacillus rhamnosus GG including, acid production, secretion of fatty acids and exopolysaccharide, cell surface hydrophobicity, self-aggregating and co-aggregating capacity with pathogens, anti-microbial activity and bacteriocin-like compounds against pathogens Escherichia coli and Staphylococcus aureus in cell-free supernatant and absence of hemolytic activity. Their phenotypic capacity was confirmed by analyzing the whole genome sequencing data and identifying genes and pathways associated with probiotic properties. These probiotic isolates have shown no virulence genes were discovered in their genomic study. In vivo study of 92 buffaloes suffering from clinical endometritis with purulent cervico-vaginal mucus (CVM) were randomly allocated 40 × 108 CFU/ml LPKUGBRC and PPGBRCKU and 40 ml Normal saline. The LPKUGBRC reduced the duration between administration of probiotic to induction of healthy estrus significantly. However, no effect was observed on pregnancy rate. These results suggest that LPKUGBRC and PPGBRCKU probiotic bacteria demonstrate probiotic efficiency and adaptability. Further sourced from the same niche as the targeted infection, they offer a distinct advantage in targeting the specific microbial population associated with endometritis. The findings of this study highlight the potential of LPKUGBRC and PPGBRCKU probiotics in treating endometritis and suggest further exploration of their clinical applications.
Collapse
Affiliation(s)
- Purva Gohil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Bhavya Nanavati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Kajal Patel
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Vishal Suthar
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Deepak B. Patil
- Directorate of Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
12
|
Raj K, Singh S, Chib S, Mallan S. Microbiota- Brain-Gut-Axis Relevance to Parkinson's Disease: Potential Therapeutic Effects of Probiotics. Curr Pharm Des 2022; 28:3049-3067. [PMID: 36200207 DOI: 10.2174/1381612828666221003112300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common type of neurogenerative disease among middleaged and older people, characterized by aggregation of alpha-synuclein and dopaminergic neuron loss. The microbiota- gut-brain axis is a dynamic bidirectional communication network and is involved in the pathogenesis of PD. The aggregation of misfolded protein alpha-synuclein is a neuropathological characteristic of PD, originates in the gut and migrates to the central nervous system (CNS) through the vagus nerve and olfactory bulb. The change in the architecture of gut microbiota increases the level short-chain fatty acids (SCFAs) and other metabolites, acting on the neuroendocrine system and modulating the concentrations of gamma-Aminobutyric acid (GABA), serotonin, and other neurotransmitters. It also alters the vagus and intestinal signalling, influencing the brain and behaviour by activating microglia and systemic cytokines. Both experimental and clinical reports indicate the role of intestinal dysbiosis and microbiota host interaction in neurodegeneration. Probiotics are live microorganisms that modify the gut microbiota in the small intestine to avoid neurological diseases. Probiotics have been shown in clinical and preclinical studies to be effective in the treatment of PD by balancing the gut microbiota. In this article, we described the role of gut-microbiota in the pathogenesis of PD. The article aims to explore the mechanistic strategy of the gut-brain axis and its relation with motor impairment and the use of probiotics to maintain gut microbial flora and prevent PD-like symptoms.
Collapse
Affiliation(s)
- Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Sudhanshu Mallan
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
13
|
Saha S, Rahman SMN, Alam NN. The role of probiotic supplementation on insulin resistance in obesity associated diabetes: A mini review. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Obesity and diabetes are two metabolic disorders linked by an inflammatory process named insulin resistance (IR). Various research on the role of gut microbiota in developing obesity and its associated disorders has led to the growing interest in probiotic supplementation. Considering the life-threatening complications of diabesity this mini review explored the effects of probiotic supplementation on IR in obesity associated diabetes. This review is based on recent articles from 2005-2020, studying the role of probiotic supplementation on glucose and insulin parameters in healthy and diabetic mouse model. Probiotic supplementation altered the gut microbiota composition, increased short chain fatty acid production, and decreased pro inflammatory cytokines. Additionally, they decreased intestinal permeability, circulating lipopolysaccharides and metabolic endotoxemia, hence improved insulin sensitivity and reduced obesity. Although multi-strain probiotic supplementation showed greater benefits than single strain interventions, variations in the concentration of probiotics used and the duration of treatment also influenced the results. Probiotic supplementation could manipulate the gut microbiota by reducing intestinal permeability, inflammation and ameliorate IR and obesity associated diabetes in animal models which requires further long-term clinical studies in humans.
Collapse
|
14
|
Khan I, Wei J, Li A, Liu Z, Yang P, Jing Y, Chen X, Zhao T, Bai Y, Zha L, Li C, Ullah N, Che T, Zhang C. Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. Int Microbiol 2022; 25:587-603. [PMID: 35414032 DOI: 10.1007/s10123-022-00243-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have shown good efficacy in the clinical treatment of IBD and animal models of colitis. However, how these probiotics contribute to the amelioration of IBD is largely unknown. In the current study, the DSS-induced mouse colitis model was treated with oral administration of Lactobacillus plantarum strains to investigate their effects on colitis. The results indicated that the L. plantarum strains improved dysbiosis and enhanced the abundance of beneficial bacteria related to short-chain fatty acids (SCFAs) production. Moreover, L. plantarum strains decreased the level of pro-inflammatory cytokines, i.e., IL-17A, IL-17F, IL-6, IL-22, and TNF-α and increased the level of anti-inflammatory cytokines, i.e., TGF-β, IL-10. Our result suggests that L. plantarum strains possess probiotic effects and can ameliorate DSS colitis in mice by modulating the resident gut microbiota and immune response.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Junshu Wei
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Anping Li
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Zhirong Liu
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Pingrong Yang
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Yaping Jing
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Xinjun Chen
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chenhui Li
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Pisano C, Benedetto U, Ruvolo G, Balistreri CR. Oxidative Stress in the Pathogenesis of Aorta Diseases as a Source of Potential Biomarkers and Therapeutic Targets, with a Particular Focus on Ascending Aorta Aneurysms. Antioxidants (Basel) 2022; 11:antiox11020182. [PMID: 35204065 PMCID: PMC8868543 DOI: 10.3390/antiox11020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Aorta diseases, such as ascending aorta aneurysm (AsAA), are complex pathologies, currently defined as inflammatory diseases with a strong genetic susceptibility. They are difficult to manage, being insidious and silent pathologies whose diagnosis is based only on imaging data. No diagnostic and prognostic biomarkers or markers of outcome have been known until now. Thus, their identification is imperative. Certainly, a deep understanding of the mechanisms and pathways involved in their pathogenesis might help in such research. Recently, the key role of oxidative stress (OS) on the pathophysiology of aorta disease has emerged. Here, we describe and discuss these aspects by revealing some OS pathways as potential biomarkers, their underlying limitations, and potential solutions and approaches, as well as some potential treatments.
Collapse
Affiliation(s)
- Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Umberto Benedetto
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK;
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
- Correspondence:
| |
Collapse
|
16
|
Cheng J, Laitila A, Ouwehand AC. Bifidobacterium animalis subsp. lactis HN019 Effects on Gut Health: A Review. Front Nutr 2022; 8:790561. [PMID: 34970580 PMCID: PMC8712437 DOI: 10.3389/fnut.2021.790561] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal gut motility is central to bowel function and gut health. The link between the gut dysmotility related disorders and dysfunctional-intestinal barriers has led to a hypothesis that certain probiotics could help in normalizing gut motility and maintain gut health. This review investigates the roles of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019™) on gut health, and its mechanisms of action in various pre-clinical and clinical studies. Research supports the hypothesis that B. lactis HN019™ has a beneficial role in maintaining intestinal barrier function during gastrointestinal infections by competing and excluding potential pathogens via different mechanisms; maintaining normal tight junction function in vitro; and regulating host immune defense toward pathogens in both in vitro and human studies. This has been observed to lead to reduced incidence of diarrhea. Interestingly, B. lactis HN019™ also supports normal physiological function in immunosenescent elderly and competes and excludes potential pathogens. Furthermore, B. lactis HN019™ reduced intestinal transit time and increased bowel movement frequency in functional constipation, potentially by modulating gut–brain–microbiota axis, mainly via serotonin signaling pathway, through short chain fatty acids derived from microbial fermentation. B. lactis HN019™ is thus a probiotic that can contribute to relieving gut dysmotility related disorders.
Collapse
Affiliation(s)
- Jing Cheng
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arja Laitila
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arthur C Ouwehand
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
17
|
Nguyen TTU, Kim HW, Kim W. Effects of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins, Inflammation, and Oxidative Stress in Hemodialysis Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2021; 10:4456. [PMID: 34640474 PMCID: PMC8509328 DOI: 10.3390/jcm10194456] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
The dysbiosis of gut microbiota may cause many complications in patients with end-stage renal disease, which may be alleviated by probiotic, prebiotic, and synbiotic supplementation. The aim of this systematic review and meta-analysis was to assess the effects of these supplementations on circulatory uremic toxins, biomarkers of inflammation, and oxidative stress in hemodialysis patients. We searched the EMBASE, MEDLINE, Web of Science, and Cochrane Library databases until 8 August 2021. Randomized controlled trials evaluating adult patients receiving hemodialysis were included. The pooled results from 23 studies with 931 hemodialysis patients indicated that interventions significantly decreased the circulating levels of p-cresyl sulfate (standardized mean difference (SMD): 0.38; 95% CI: -0.61, -0.15; p = 0.001), endotoxins (SMD: -0.58; 95% CI: -0.99, -0.18; p = 0.005), malondialdehyde (SMD: -1.16; 95% CI: -1.81, -0.52; p = 0.0004), C-reactive proteins (CRP) (SMD: -0.61; 95% CI: -0.99, -0.23; p = 0.002), and interleukin 6 (SMD: -0.92; 95% CI: -1.51, -0.33; p = 0.002), and improved the total antioxidant capacity (SMD: 0.89; 95% CI: 0.49, 1.30; p < 0.0001) and glutathione (SMD: 0.40; 95% CI: 0.14, 0.66; p = 0.003) when compared to the placebo group. Our results suggest that treatment with probiotics, prebiotics, and synbiotics may help alleviate uremic toxin levels, oxidative stress, and the inflammatory status in hemodialysis patients.
Collapse
Affiliation(s)
- Thi Thuy Uyen Nguyen
- Department of Histology, Embryology, Pathology and Forensic Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue 52000, Vietnam;
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea;
| | - Hyeong Wan Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea;
| | - Won Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
18
|
Probiotics and Trained Immunity. Biomolecules 2021; 11:biom11101402. [PMID: 34680035 PMCID: PMC8533468 DOI: 10.3390/biom11101402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The characteristics of innate immunity have recently been investigated in depth in several research articles, and original findings suggest that innate immunity also has a memory capacity, which has been named “trained immunity”. This notion has revolutionized our knowledge of the innate immune response. Thus, stimulation of trained immunity represents a therapeutic alternative that is worth exploring. In this context, probiotics, live microorganisms which when administered in adequate amounts confer a health benefit on the host, represent attractive candidates for the stimulation of trained immunity; however, although numerous studies have documented the beneficial proprieties of these microorganisms, their mechanisms of action are not yet fully understood. In this review, we propose to explore the putative connection between probiotics and stimulation of trained immunity.
Collapse
|
19
|
In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. Probiotics Antimicrob Proteins 2021; 12:517-534. [PMID: 31218544 DOI: 10.1007/s12602-019-09563-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigated the impact of probiotic Lactobacillus reuteri LR6 on the gut and systemic immunity using protein energy malnourished (PEM) murine model. Thirty male Swiss albino mice were divided into five groups: control (C), malnourished (M), probiotic fermented milk (PFM), skim milk (SM), and bacterial suspension (BS) with six mice per group. Group C was fed with conventional diet throughout the study while the other groups were fed with protein calorie restricted diet until the development of malnutrition. After development of malnutrition, group M was continued with the restricted diet while other groups were fed with re-nourished diet supplemented with PFM, SM, and BS for 1 week, respectively. Thereafter, mice were sacrificed and different histological, microbiological, and immunological parameters were studied. Probiotics feeding in PEM model as fermented product or bacterial suspension improved the intestinal health in terms of intact morphology of colonic crypts, normal goblet cells, and intact lamina propria with no inflammation in large intestine, absence of fibrosis, and no inflammation in spleen. The number of secretory IgA+ cells was significantly higher in group PFM and BS. Also, increase in the phagocytic percentage of the macrophages and bone marrow derived dendritic cells (DCs) were observed in the PFM and BS group in comparison to the group M. In comparison to the group M and SM, lactobacilli, bifidobacteria, and Firmicutes counts were significantly higher in the group PFM and BS. This study concludes that probiotic supplementation to re-nutrition diet could emerge as wonder therapeutics against PEM.
Collapse
|
20
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
21
|
Tang Z, Wu Z, Sun H, Zhao L, Shang M, Shi M, Jiang H, Lin Z, Zhou X, Li X, Yu X, Huang Y. The storage stability of Bacillus subtilis spore displaying cysteine protease of Clonorchis sinensis and its effect on improving the gut microbiota of mice. Appl Microbiol Biotechnol 2021; 105:2513-2526. [PMID: 33606075 DOI: 10.1007/s00253-021-11126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 01/17/2023]
Abstract
Bacillus subtilis (B. subtilis) spore can serve as an ideal vehicle for expressing heterologous antigens, and elicit specific immune responses by oral administration. In previous studies, we successfully constructed the recombinant B. subtilis spores expressing cysteine protease of Clonorchis sinensis (C. sinensis, B.s-CsCP), and confirmed that oral administration of B.s-CsCP could elicit good protective immune responses in mice. In this study, Gram staining was used to observe the morphology of B.s-CsCP in different form, and the storage of liquid spores and lyophilized spores at different temperatures was compared. The mice were orally immunized with three different doses of spores (2×108, 1×109, and 5×109 CFU/day) for three times in total at biweekly interval. Then, antibody levels of mice were measured, the safety of spores was evaluated, and the changes of gut microbiota after oral gavage of spores (1×109 dose) were investigated. Results showed that B. subtilis was a typical Gram-positive bacterium, and its spore had good resistance to chemical dye. Liquid B. subtilis spores resuspended in sterile water could be stored for a long time at 4 °C or below, while lyophilized spores could be well stored even at RT and better at lower temperatures. Oral administration of B. subtilis spores to mice could stimulate both local mucosal and systemic immune responses in a dose-dependent manner without toxic side effects. Besides, beneficial bacteria producing butyrate such as Odoribacter were increased, while potential pathogens such as Escherichia-Shigella were decreased in mice intestine. Therefore, our work further confirmed that B. subtilis spores expressing CsCP could be a promising oral vaccine against C. sinensis with the advantages of stability, safety, easy storage, and promotion of intestinal health.Key Points• Recombinant CsCP B. subtilis spores could be easily preserved in either liquid or freeze-dried state.• Oral immunization of recombinant spores in mice could increase both local and system immune levels in a dose-dependent manner.• Oral administration of recombinant spores increased the number of beneficial bacteria and reduced the number of harmful bacteria in the intestinal tract of mice.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
| | - Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Zhao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Shang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Bakhtiary M, Morvaridzadeh M, Agah S, Rahimlou M, Christopher E, Zadro JR, Heshmati J. Effect of Probiotic, Prebiotic, and Synbiotic Supplementation on Cardiometabolic and Oxidative Stress Parameters in Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. Clin Ther 2021; 43:e71-e96. [PMID: 33526314 DOI: 10.1016/j.clinthera.2020.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Chronic kidney disease (CKD) is a major health problem worldwide. Evidence supporting the use of probiotic, prebiotic, and synbiotic supplementation in the management of CKD is mixed, although some studies suggest they may be useful. A systematic review and meta-analysis was performed to evaluate the effectiveness of probiotic, prebiotic, and synbiotic supplementation for improving cardiometabolic and oxidative stress parameters in patients with CKD. METHODS A comprehensive key word search was performed in EMBASE, Medline, Scopus, Cochrane Central, and Web of Science until April 2020. Randomized controlled trials investigating the effectiveness of probiotic, synbiotic, and prebiotic supplementation for the management of adults with CKD were included. Primary outcomes were measures of cardiometabolic parameters such as cholesterol and fasting blood glucose. Secondary outcomes were measures of oxidative stress (eg, malondialdehyde levels) and body mass index. Random effects meta-analyses were used to estimate mean treatment effects. Results are reported as standardized mean differences (SMDs) and 95% CIs. FINDINGS Fourteen articles were included. In patients with CKD, probiotic, prebiotic, and synbiotic supplementation significantly reduced total cholesterol (SMD, -0.25; 95% CI, -0.46 to -0.04; I2 = 00.0%), fasting blood glucose (SMD, -0.41; 95% CI, -0.65 to -0.17; I2 = 00.0%), homeostatic model assessment of insulin resistance (SMD, -0.63; 95% CI, -0.95 to -0.30; I2 = 43.3%), insulin levels (SMD, -0.49; 95% CI, -0.90 to -0.08; I2 = 65.2%), high-sensitivity C-reactive protein levels (SMD, -0.52; 95% CI, -0.81 to -0.22; I2 = 52.7%), and malondialdehyde levels (SMD, -0.79; 95% CI, -1.22 to -0.37; I2 = 69.8%) compared with control interventions. Supplementation significantly increased the quantitative insulin sensitivity check index (SMD, 0.78; 95% CI, 0.51 to 1.05; I2 = 00.0%), total antioxidant capacity (SMD, 0.42; 95% CI, 0.18 to 0.66; I2 = 00.0%), and glutathione levels (SMD, 0.52; 95% CI, 0.19 to 0.86; I2 = 37.0%). IMPLICATIONS Probiotic, prebiotic, and synbiotic supplementation seems to be a promising intervention for improving cardiometabolic and oxidative stress parameters in patients with CKD.
Collapse
Affiliation(s)
- Mahsa Bakhtiary
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Rahimlou
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd Iran
| | - Edward Christopher
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua R Zadro
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Gayane S, Viktor P, Nikolay N. Modern concept of probiotics and principles of development of new-generation symbiotic preparations. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213204006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of this work is to review data on the biological effectiveness of probiotics, their mechanisms of action, and the prospects for the development of new-generation preparations. Scientific and practical justification of symbiotic drugs of a new generation – metabiotics as a continuation of the probiotic concept is given. The authors discuss the literature data and their own results, which allow them to propose new approaches to the creation of symbiotic drugs. The authors scientifically substantiate the main scientific provisions of the probiotic concept for the development of new-generation symbiotic drugs:
study of aspects of the cultivation of the metabolic probiotic B. bifidum strain No. 1 in appropriate nutrient media;
determination of the quantitative and qualitative composition of metabolites in the probiotic producer;
scientific and practical substantiation of the qualitative and quantitative composition of the experimental probiotic suspension as a biologically active additive;
the effect of probiotic suspension on the metabolism, the formation of microbiocenosis and nonspecific immunity. The substantiation for the creation of new feed probiotic preparations in the form of a composition of living microorganisms with molasses-based metabolites is given, which has a certain scientific and practical significance, and is promising for use in animal diets. Studies have found that to stabilize normal microflora in suckling pigs and weanlings, it is advisable to use various drugs in the form of biologically active additives of probiotic agents and their metabolites. The article provides a scientific and practical justification of a dietary supplement for correcting the microbiocenosis of the gastrointestinal tract and some factors of cellular immunity in growing young pigs based on the probiotic microorganism B. bifidum when cultivated on a nutrient medium from molasses.
Collapse
|
24
|
Yang J, Qiu Y, Hu S, Zhu C, Wang L, Wen X, Yang X, Jiang Z. Lactobacillus plantarum inhibited the inflammatory response induced by enterotoxigenic Escherichia coli K88 via modulating MAPK and NF-κB signalling in intestinal porcine epithelial cells. J Appl Microbiol 2020; 130:1684-1694. [PMID: 32870564 DOI: 10.1111/jam.14835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
AIMS To investigate the effects of Lactobacillus plantarum on inflammatory responses induced by ETEC K88 and explore the underlying molecular mechanisms. METHODS AND RESULTS Intestinal porcine cells (IPEC-1) were incubated with 0 or 1 × 108 CFU per well L. plantarum for 4 h, and then these cells were challenged with 0 or 1 × 108 CFU per well ETEC K88 for 2 h. The results showed that pre-treatment of IPEC-1 cells with L. plantarum prevented the increases in the transcript abundance of interleukin-1α (IL-1α), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α) (P < 0·05) caused by ETEC K88. Additionally, L. plantarum inhibited the reduction in peroxisome proliferator-activated receptor-γ (PPAR-γ) expression caused by ETEC K88 (P < 0·05). Moreover, L. plantarum pre-treatment downregulated the phosphorylation levels of c-Jun N-terminal kinase (JNK), extracellular regulated protein kinases 1 and 2 (ERK1/2) and p38 and the nuclear concentration of nuclear factor kappa B p65 (NF-κB p65) (P < 0·05) compared with ETEC K88 group. Silencing experiment further supported that the protective effect of L. plantarum P might mediated by suppression of ETEC-provoked activation of MAPK and NF-κB signalling pathways. CONCLUSIONS Lactobacillus plantarum inhibited the inflammatory response induced by ETEC K88 in IPEC-1 cells via modulating MAPK and NF-κB signalling. SIGNIFICANCE AND IMPACT OF THE STUDY This study elucidated the underlying mechanism in which probiotics protect against intestinal inflammation caused by ETEC K88.
Collapse
Affiliation(s)
- J Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Y Qiu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - S Hu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - C Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - X Wen
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - X Yang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Z Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
25
|
Khan AA, Nema V, Khan Z. Current status of probiotics for prevention and management of gastrointestinal cancers. Expert Opin Biol Ther 2020; 21:413-422. [PMID: 33034210 DOI: 10.1080/14712598.2021.1828858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Gastrointestinal cancers contribute to a significant number of cancer- associated mortality. The gastrointestinal tract harbors a multitude of microorganisms, known as the microbiota. Recently, the microbiota is considered to be an accessory organ resulting in several health benefits. The microbiota is involved in almost all aspects of an individual ranging from managing behavior to controlling metabolism, immune status and the response to a disease. Researchers are observing the modulation of microbiota in almost every disease, including cancer. Probiotics are microorganisms that can help to alter the host microbiota toward a healthy state thus providing benefits from many diseases including cancer. AREAS COVERED We explored the current status of the use of probiotics in cancer patients. Although probiotic bacteria can provide significant benefits to individuals suffering from cancer, the number of cancer-specific clinical products containing probiotics is not comparable to research studies showing their benefits. The lack of available products is due to several factors including a lack of risk assessment data of beneficial probiotics in cancer patients. EXPERT OPINION Laboratory investigations indicate a huge potential of probiotics for the prevention and management of gastrointestinal cancer, but more clinical studies are required to support their application in clinical settings.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India
| | - Vijay Nema
- Division of Molecular Biology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India
| | - Zakir Khan
- Department of Biomedical Sciences, Pathology and Laboratory Medicine, Cedars- Sinai Medical Centre, Los Angeles, USA
| |
Collapse
|
26
|
Rolim FR, Freitas Neto OC, Oliveira MEG, Oliveira CJ, Queiroga RC. Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Baghbani-Arani F, Asgary V, Hashemi A. Cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii display antiproliferative and antioxidant activities against HT-29 cell line. Nutr Cancer 2019; 72:1390-1399. [PMID: 31707847 DOI: 10.1080/01635581.2019.1685674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many beneficial effects of probiotic Lactobacilli on cancer prevention and therapy were previously presented. So finding probiotics with proapoptotic activities is a promising approach for cancer drug discovery. Here, the antiproliferative and antioxidant activities of cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii on HT-29 cell line were evaluated employing MTT and DPPH assays. The induction of apoptosis was assessed by Hoechst staining and flow cytometry analysis which was further confirmed by expression analysis of BCL-2, BAX, caspase-3, caspase-8, and caspase-9 genes using real-time quantitative PCR. Caspase-3 activity was also analyzed. Results showed that cell viability was significantly reduced to 42.2 ± 0.01% and 19.40 ± 0.01% by 5 and 8 mg ml-1 of L. acidophilus and L. delbrueckii extracts, respectively. Apoptosis induction was shown with both bacterial extracts. Caspase-9 and caspase-3 overexpression as well as Bax/Bcl-2 ratio increase revealed the ability of both probiotics to induce intrinsic pathway-dependent apoptosis. The extrinsic pathway was also activated by L. acidophilus. At the concentration of 198 µg ml-1, L. acidophilus and L. delbrueckii had a DPPH scavenging activity of 59.37 ± 3.97% and 71.19 ± 3.64%, respectively. Taken together, these findings provide evidence for antiproliferative, proapoptotic, and antioxidant effects driven by these probiotic lactic acid bacteria (LAB) strains.
Collapse
Affiliation(s)
- Fahimeh Baghbani-Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Vahid Asgary
- Research and Development Laboratory, Javid Biotechnology Institute, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Pylypenko SV, Koval AA. Antioxidant protection enzyme activity in the blood serum and large intestinal mucosa of rats with prolonged gastric hypochlorhydria and given multiprobiotics. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The activity of antioxidant protection enzymes in the blood serum and colon mucosa in rats was studied under the conditions of 28-days administration of omeprazole on its own and omeprazole together with multiprobiotics "Symbiter" and "Apibact". Physiological and biochemical study methods were applied. It was found that after omeprazole administration, the activity of superoxide dismutase in the blood serum decreased, and the activity of catalase increased compared to the control. With the co-administration of omeprazole and multiprobiotics, the activity of superoxide dismutase increased compared to the group of rats that received omeprazole only during the same time, but remained less compared to the control group. The content of reduced glutathione in the blood serum of rats after administration of omeprazole decreased, the activity of glutathione peroxidase and glutathione transferase increased, and the activity of glutathione reductase decreased compared to the control. With co-administration of omeprazole and multiprobiotics, the serum RG content was at the control level, the activity of glutathione reductase exceeded the control values. The activity of glutathione reductase decreased compared to the group receiving omeprazole only. The activity of glutathione reductase increased and did not differ from the control values. In the colon mucosa, superoxide dismutase and catalase activity decreased compared to control. With the combined administration of omeprazole and multiprobiotics, superoxide dismutase and catalase activity increased and even exceeded the control values. With the administration of omeprazole, the reduced glutathione content in the colon mucosa was lower than that in the control. The activity of glutathione peroxidase increased and glutathione transferase and activity of glutathione reductase decreased compared to the control. With co-administration of omeprazole and multiprobiotics to rats, the reduced glutathione content increased compared to the group of rats administered omeprazole only, and even exceeded that in the control.
Collapse
|
29
|
Cukkemane A, Kumar P, Sathyamoorthy B. A metabolomics footprint approach to understanding the benefits of synbiotics in functional foods and dietary therapeutics for health, communicable and non-communicable diseases. Food Res Int 2019; 128:108679. [PMID: 31955779 DOI: 10.1016/j.foodres.2019.108679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
Abstract
Gut microbiota have been shown to affect various cellular and host response elements such as immunological, neurological, energy, storage, etc. In recent years, this has led to rapid expansion in dietary products containing probiotics, prebiotics and combination thereof in synbiotics. While benefits of consuming functional foods derived from probiotics strains have been demonstrated for various metabolites, a detailed analysis of the biochemical footprints and their benefits remain under-studied. Herein, using a combination of NMR metabolomics, microbial techniques and cell-culture assays, we have characterized metabolite profiles of probiotic viz. Lactobacillus delbruekii ATCC 9649, Lactobacillus casei ATCC 335, Lactobacillus plantarum NRC 716 and Bacillus coagulans ATCC 12425 cultures in fermented milk. We identified predominance of sugars, small chain fatty acids, organic acids and branched chain amino acids from natural abundance 13C NMR studies. Additionally, we identified myriad metabolites and their respective pathways using 1H NMR spectroscopy. Based on our findings, synbiotic fermented dairy products were customized with co-cultures and complemented with pro- and pre- biotics. Furthermore, we demonstrate epithelial cell interaction and anti-microbial activity of L. plantarum based ferment against a range of bacterial pathogens highlighting possible biochemical mechanisms for anti-microbial activity, quorum sensing, gut colonization and other beneficial factors that may be crucial. Furthermore, we propose plausible explanation against non-communicable diseases such as tumor-inhibitory, anti-proliferative and pro-apoptotic effects which has direct implications for dietary therapeutics.
Collapse
Affiliation(s)
- Abhishek Cukkemane
- Department of Chemistry, Academic Building - II, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India; Cuukky Natural Science Pvt Ltd, 7 Padma Building, Padam Housing Society, Bibwevadi, Pune 411037, Maharashtra, India.
| | - Prashant Kumar
- Department of Chemistry, Academic Building - II, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Academic Building - II, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
30
|
Li Z, Bao N, Ren T, Han Y, Jiang Z, Bai Z, Hu Y, Ding J. The effect of a multi-strain probiotic on growth performance, non-specific immune response, and intestinal health of juvenile turbot, Scophthalmus maximus L. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1393-1407. [PMID: 30989456 DOI: 10.1007/s10695-019-00635-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Probiotic is well known because of its health benefit on the host, including improve growth, treat disease, and enhance immunity. Currently, probiotic has been widely used in aquaculture. However, there is little information about the effect of probiotic on turbot. Therefore, an effort was made to explore the effect of a multi-strain probiotic on growth performance, non-specific immune response, and intestinal health of juvenile turbot, Scophthalmus maximus L. One hundred eighty juvenile turbot (20.04 ± 0.23 g) were randomly divided into three groups (T0, T1, T2), and fed diet were formulated to contain 0%, 1%, and 5% multi-strain probiotic, respectively. Sixty days after the feeding experiment, the growth performance, body composition, enzyme activities, and intestinal microorganism of turbot were analyzed. T2 and T1 showed better growth performance and significant higher (P < 0.05) enzyme activities than T0 (except lysozyme). Moreover, the IV (intestinal villus), IW (intestinal wall), and GC (goblet cell) were well modulated in probiotic treatments. Furthermore, Lactobacillus was found colonized in the intestine of the group fed with 5% multi-strain probiotic. These results suggested adding dietary multi-strain probiotic could positively affect for turbot aquaculture.
Collapse
Affiliation(s)
- Zequn Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Ning Bao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Tongjun Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| | - Yuzhe Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Zhuoan Bai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Jingyun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Rural Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
31
|
Bonavina L, Arini A, Ficano L, Iannuzziello D, Pasquale L, Aragona SE, Ciprandi G, On Digestive Disorders ISG. Abincol® (Lactobacillus plantarum LP01, Lactobacillus lactis subspecies cremoris LLC02, Lactobacillus delbrueckii LDD01), an oral nutraceutical, pragmatic use in patients with chronic intestinal disorders. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:8-12. [PMID: 31292420 PMCID: PMC6776171 DOI: 10.23750/abm.v90i7-s.8649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 06/27/2019] [Indexed: 12/03/2022]
Abstract
Chronic intestinal disorders (CID), including inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, irritable bowel syndrome (IBS), and diverticular disease (DD), are diseases that relapse episodes. There is evidence that patients with CID have intestinal dysbiosis, so probiotics may counterbalance the impaired microbiota. Therefore, the current survey evaluated the efficacy and safety of Abincol®, an oral nutraceutical containing a probiotic mixture with Lactobacillus plantarum LP01 (1 billion of living cells), Lactobacillus lactis subspecies cremoris LLC02 (800 millions of living cells), and Lactobacillus delbrueckii LDD01 (200 millions of living cells), in 3,460 outpatients (1,660 males and 1,800 females, mean age 55 years) with chronic intestinal disorders. Patients took 1 stick/daily for 8 weeks. Abincol® significantly diminished the presence and the severity of intestinal symptoms and improved stool form. In conclusion, the current survey suggests that Abincol® may be considered an effective and safe therapeutic option in the management of patients with chronic intestinal disorders.
Collapse
|
32
|
Nie C, Xie F, Ma N, Bai Y, Zhang W, Ma X. Nutrients Mediate Bioavailability and Turnover of Proteins in Mammals. Curr Protein Pept Sci 2019; 20:661-665. [DOI: 10.2174/1389203720666190125111235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
As a major component of biologically active compounds in the body, proteins contribute to the synthesis of body tissues for the renewal and growth of the body. The high level of dietary protein and the imbalance of amino acid (AA) composition in mammals result in metabolic disorders, inefficient utilization of protein resources and increased nitrogen excretion. Fortunately, nutritional interventions can be an effective way of attenuating the nitrogen excretion and increasing protein utilization, which include, but are not limited to, formulating the AA balance and protein-restricted diet supplementing with essential AAs, and adding probiotics in the diet. This review highlights recent advances in the turnover of dietary proteins and mammal’s metabolism for health, in order to improve protein bioavailability through nutritional approach.
Collapse
Affiliation(s)
- Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Fei Xie
- State key Lab of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yueyu Bai
- Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
33
|
Dai S, Pan M, El-Nezami HS, Wan JMF, Wang MF, Habimana O, Lee JCY, Louie JCY, Shah NP. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota. J Food Sci 2019; 84:1854-1863. [PMID: 31206699 DOI: 10.1111/1750-3841.14661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/13/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022]
Abstract
Lactobacillus rhamnosus strain ASCC 1520 with high soy isoflavone transformation ability was used to ferment soymilk and added to the diet of mice. The impact of L. rhamnosus fermentation on soy isoflavone metabolites and intestinal bacterial community, in conjunction with fecal enzyme activity and short-chain fatty acids (SCFA) excretion was evaluated. Antibiotics intervention resulted in a decrease in fecal enzyme activities and SCFA. Although long-term intake of soymilk or L. rhamnosus-fermented soymilk did not affect the fecal β-glucuronidase and β-galactosidase activities, it improved the β-glucosidase activity when antibiotics were concomitantly administered. Soymilk or fermented soymilk administration increased the isoflavone metabolites (O-DMA and equol) excreted in urine. Antibiotics decreased the daidzein excretion and its metabolites but showed little effect on glycitein and genistein excretion. Principal coordinates analysis (PCoA) of the 16s rRNA gene sequencing data found a remarkable shift in gut microbiota after soymilk administration and antibiotics treatment. Matastats test of the relative abundance of bacterial taxa revealed Odoribacter (Bacteroidales family), Lactobacillus (Lactobacillales order), and Alistipes (Rikenellaceae family) were enriched in soymilk while bacterial taxa from Bacteroides and Lactobacillus were enriched in L. rhamnosus-fermented soymilk. Furthermore, there was less decrease in bacterial taxa with fermented soymilk group even when antibiotics were concomitantly administered. Overall, this study revealed that the gut microbiota of a healthy host is enough for the whole isoflavone metabolism under normal conditions. Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used. PRACTICAL APPLICATION: Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used.
Collapse
Affiliation(s)
- Shuhong Dai
- Dept. of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, P. R. China, 518054.,Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Mingfang Pan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Hani S El-Nezami
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jennifer M F Wan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - M F Wang
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Olivier Habimana
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jetty C Y Lee
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jimmy C Y Louie
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
34
|
Complete Genome Sequence of Lactobacillus reuteri PNW1, a Promising Probiotic Candidate. Microbiol Resour Announc 2019; 8:MRA00034-19. [PMID: 30834362 PMCID: PMC6386563 DOI: 10.1128/mra.00034-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 11/24/2022] Open
Abstract
This study reports the whole-genome sequence of Lactobacillus reuteri PNW1 isolated from gastrointestinal tracts of weaned piglets of the indigenous South African Windsnyer pig breed. A total of 5.2 GB data comprising 8,209,104 paired-end reads were generated. This study reports the whole-genome sequence of Lactobacillus reuteri PNW1 isolated from gastrointestinal tracts of weaned piglets of the indigenous South African Windsnyer pig breed. A total of 5.2 GB data comprising 8,209,104 paired-end reads were generated. The assembled genome is 2,430,215 bp long in 420 contigs with 39% G+C content.
Collapse
|
35
|
Le Barz M, Daniel N, Varin TV, Naimi S, Demers-Mathieu V, Pilon G, Audy J, Laurin É, Roy D, Urdaci MC, St-Gelais D, Fliss I, Marette A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity. FASEB J 2018; 33:4921-4935. [PMID: 30596521 DOI: 10.1096/fj.201801672r] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the growing evidence that gut dysfunction, including changes in gut microbiota composition, plays a critical role in the development of inflammation and metabolic diseases, the identification of novel probiotic bacteria with immunometabolic properties has recently attracted more attention. Herein, bacterial strains were first isolated from dairy products and human feces and then screened in vitro for their immunomodulatory activity. Five selected strains were further analyzed in vivo, using a mouse model of diet-induced obesity. C57BL/6 mice were fed a high-fat high-sucrose diet, in combination with 1 of 3 Lactobacillus strains (Lb38, L. plantarum; L79, L. paracasei/casei; Lb102, L. rhamnosus) or Bifidobacterium strains (Bf26, Bf141, 2 different strains of B. animalis ssp. lactis species) administered for 8 wk at 109 colony-forming units/d. Whereas 3 strains showed only modest (Lb38, Bf26) or no (L79) effects, Lb102 and Bf141 reduced diet-induced obesity, visceral fat accretion, and inflammation, concomitant with improvement of glucose tolerance and insulin sensitivity. Further analysis revealed that Lb102 and Bf141 enhanced intestinal integrity markers in association with selective changes in gut microbiota composition. We have thus identified 2 new potential probiotic bacterial strains with immunometabolic properties to alleviate obesity development and associated metabolic disturbances.-Le Barz, M., Daniel, N., Varin, T. V., Naimi, S., Demers-Mathieu, V., Pilon, G., Audy, J., Laurin, E., Roy, D., Urdaci, M. C., St-Gelais, D., Fliss, I, Marette, A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity.
Collapse
Affiliation(s)
- Mélanie Le Barz
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Unité Mixte de Recherche 5248, Laboratory of Microbiology and Applied Biochemistry, University of Bordeaux, Gradignan, France
| | - Noëmie Daniel
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Thibault V Varin
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Sabrine Naimi
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada
| | - Véronique Demers-Mathieu
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada.,Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Julie Audy
- Agropur Cooperative, Saint-Hubert, Quebec, Canada; and
| | | | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Maria C Urdaci
- Unité Mixte de Recherche 5248, Laboratory of Microbiology and Applied Biochemistry, University of Bordeaux, Gradignan, France
| | - Daniel St-Gelais
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada.,Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, Canada
| | - Ismaïl Fliss
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.,Dairy Science and Technology Research Centre, Laval University, Quebec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute Research Centre, Laval University, Québec, Canada.,Institute of Nutrition and Functional Foods, Laval University, Québec, Canada
| |
Collapse
|
36
|
Mohammed H, Varoni EM, Cochis A, Cordaro M, Gallenzi P, Patini R, Staderini E, Lajolo C, Rimondini L, Rocchetti V. Oral Dysbiosis in Pancreatic Cancer and Liver Cirrhosis: A Review of the Literature. Biomedicines 2018; 6:biomedicines6040115. [PMID: 30544974 PMCID: PMC6316311 DOI: 10.3390/biomedicines6040115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
The human body is naturally colonized by a huge number of different commensal microbial species, in a relatively stable equilibrium. When this microbial community undergoes dysbiosis at any part of the body, it interacts with the innate immune system and results in a poor health status, locally or systemically. Research studies show that bacteria are capable of significantly influencing specific cells of the immune system, resulting in many diseases, including a neoplastic response. Amongst the multiple different types of diseases, pancreatic cancer and liver cirrhosis were significantly considered in this paper, as they are major fatal diseases. Recently, these two diseases were shown to be associated with increased or decreased numbers of certain oral bacterial species. These findings open the way for a broader perception and more specific investigative studies, to better understand the possible future treatment and prevention. This review aims to describe the correlation between oral dysbiosis and both pancreatic cancer and liver cirrhotic diseases, as well as demonstrating the possible diagnostic and treatment modalities, relying on the oral microbiota, itself, as prospective, simple, applicable non-invasive approaches to patients, by focusing on the state of the art. PubMed was electronically searched, using the following key words: "oral microbiota" and "pancreatic cancer" (PC), "liver cirrhosis", "systemic involvement", and "inflammatory mediators". Oral dysbiosis is a common problem related to poor oral or systemic health conditions. Oral pathogens can disseminate to distant body organs via the local, oral blood circulation, or pass through the gastrointestinal tract and enter into the systemic circulation. Once oral pathogens reach an organ, they modify the immune response and stimulate the release of the inflammatory mediators, this results in a disease. Recent studies have reported a correlation between oral dysbiosis and the increased risk of pancreatic and liver diseases and provided evidence of the presence of oral pathogens in diseased organs. The profound impact that microbial communities have on human health, provides a wide domain towards precisely investigating and clearly understanding the mechanism of many diseases, including cancer. Oral microbiota is an essential contributor to health status and imbalance in this community was correlated to oral and systemic diseases. The presence of elevated numbers of certain oral bacteria, particularly P. gingivalis, as well as elevated levels of blood serum antibodies, against this bacterial species, was associated with a higher risk of pancreatic cancer and liver cirrhosis incidence. Attempts are increasingly directed towards investigating the composition of oral microbiome as a simple diagnostic approach in multiple diseases, including pancreatic and liver pathosis. Moreover, treatment efforts are concerned in the recruitment of microbiota, for remedial purposes of the aforementioned and other different diseases. Further investigation is required to confirm and clarify the role of oral microbiota in enhancing pancreatic and liver diseases. Improving the treatment modalities requires an exertion of more effort, especially, concerning the microbiome engineering and oral microbiota transplantation.
Collapse
Affiliation(s)
- Hiba Mohammed
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
- Fondazione Novara Sviluppo, 28100 Novara, Italy.
| | - Elena Maria Varoni
- Department of Biomedical Sciences, Surgery and Dentistry, Università degli Studi di Milano, 20142 Milano, Italy.
| | - Andrea Cochis
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), 28100 Novara, Italy.
| | - Massimo Cordaro
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Patrizia Gallenzi
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Edoardo Staderini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Carlo Lajolo
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), 28100 Novara, Italy.
| | - Vincenzo Rocchetti
- Fondazione Novara Sviluppo, 28100 Novara, Italy.
- Department of Clinical and Experimental Medicine, Università del Piemonte Orientale UPO, 28100 Novara, Italy.
| |
Collapse
|
37
|
Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, Li Y, Yu D, Liu S, Wang Y, Li W. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benef Microbes 2018; 9:743-754. [DOI: 10.3920/bm2017.0142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacillus is widely used in the livestock industry. This study was designed to evaluate the effects of probiotic Bacillus amyloliquefaciens SC06 (Ba), originally isolated from soil, in piglets diet as an alternative to antibiotics (aureomycin), mainly on intestinal epithelial barrier and immune function. Ninety piglets were divided into three groups: G1 (containing 150 mg/kg aureomycin in the diet); G2 (containing 75 mg/kg aureomycin and 1×108 cfu/kg Ba in the diet); G3 (containing 2×108 cfu/kg Ba in the diet without any antibiotics). The results showed that, compared with the antibiotic group (G1), villus length, crypt depth and villus length/crypt depth ratio of intestine significantly increased in the G2 and G3 groups. In addition, intestinal villi morphology, goblet-cell number, mitochondria structure and tight junction proteins of intestinal epithelial cells in G2 and G3 were better than in G1. The relative gene expression of intestinal mucosal defensin-1, claudin3, claudin4, and human mucin-1 in G3 was significantly lower, while the expression of villin was significantly higher than in the antibiotic group. Probiotic Ba could significantly decrease serum interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, and IL-4 levels, whereas increase tumour necrosis factor (TNF)-α and IL-6 secretion. Ba could also significantly decrease cytokines TNF-α, IFN-γ, IL-1β, and IL-4 level in liver, whereas it significantly increased IFN-α. Furthermore, replacing antibiotics with Ba also significantly down-regulated gene expression of TNF and IL-1α in intestinal mucosa, but up-regulated IL-6 and IL-8 transcription. Dietary addition of Ba could significantly reduce the gene expression of nuclear factor kappa beta (NFκB)-p50 and Toll-like receptor (TLR)6, while there was no significant difference for that of myeloid differentiation primary response 88, TNF receptor-associated factor-6, nucleotide-binding oligomerisation domain-containing protein 1, TLR2, TLR4, and TLR9. Taken together, our findings demonstrated that probiotic Ba could increase the intestinal epithelial cell barrier and immune function by improving intestinal mucosa structure, tight junctions and by activating the TLRs signalling pathway.
Collapse
Affiliation(s)
- W. Du
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - H. Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Mei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - X. Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - L. Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - Y. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - D. Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - S. Liu
- National Animal Husbandry Service, Building 20, Maizidian St, Chaoyang District, 100125 Beijing, China P.R
| | - Y. Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| | - W. Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China P.R
| |
Collapse
|
38
|
Fontané L, Benaiges D, Goday A, Llauradó G, Pedro-Botet J. Influence of the microbiota and probiotics in obesity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:271-279. [PMID: 29804899 DOI: 10.1016/j.arteri.2018.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Gut microbiota plays a key role in the control of body weight. In the present review the different ways in which it can modify the energy homeostasis of the host are exposed, based on its capacity to modify the metabolism of the individual and its contribution in the energy consumption regulation. With the current evidence, it is not clear what microbiota profile is associated with the presence of obesity, although in animal models it seems to be related to a higher proportion of bacteria of the Firmicutes phylum, to the detriment of those of the Bacteroidetes phylum. Other factors clearly involved would be the diversity in the gut microbiota or its possible functional changes. More studies in humans are needed to clarify how dysbiosis can influence weight control. On the other hand, probiotics directly affect the gut microbiota, modulating its composition and, possibly, its functionality. A large number of studies in humans have evaluated the impact of probiotics on obesity. Although this intervention may have a potentially beneficial effect, more effort is needed to clarify which strains of probiotics should be recommended, at what dose and for how long.
Collapse
Affiliation(s)
- Laia Fontané
- Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona, España
| | - David Benaiges
- Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona, España; Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, España; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España.
| | - Albert Goday
- Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona, España; Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, España; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España
| | - Gemma Llauradó
- Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona, España; Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, España; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España
| | - Juan Pedro-Botet
- Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona, España; Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, España; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, España
| |
Collapse
|
39
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Effect of riboflavin-producing bacteria against chemically induced colitis in mice. J Appl Microbiol 2017; 124:232-240. [PMID: 29080295 DOI: 10.1111/jam.13622] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
Abstract
AIM To assess the anti-inflammatory effect associated with individual probiotic suspensions of riboflavin-producing lactic acid bacteria (LAB) in a colitis murine model. METHODS AND RESULTS Mice intrarectally inoculated with trinitrobenzene sulfonic acid (TNBS) were orally administered with individual suspensions of riboflavin-producing strains: Lactobacillus (Lact.) plantarum CRL2130, Lact. paracasei CRL76, Lact. bulgaricus CRL871 and Streptococcus thermophilus CRL803; and a nonriboflavin-producing strain or commercial riboflavin. The extent of colonic damage and inflammation and microbial translocation to liver were evaluated. iNOs enzyme was analysed in the intestinal tissues and cytokine concentrations in the intestinal fluids. Animals given either one of the four riboflavin-producing strains showed lower macroscopic and histologic damage scores, lower microbial translocation to liver, significant decreases of iNOs+ cells in their large intestines and decreased proinflammatory cytokines, compared with mice without treatment. The administration of pure riboflavin showed similar benefits. Lact. paracasei CRL76 accompanied its anti-inflammatory effect with increased IL-10 levels demonstrating other beneficial properties in addition to the vitamin production. CONCLUSION Administration of riboflavin-producing strains prevented the intestinal damage induced by TNBS in mice. SIGNIFICANCE AND IMPACT OF THE STUDY Riboflavin-producing phenotype in LAB represents a potent tool to select them for preventing/treating IBD.
Collapse
Affiliation(s)
- R Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - G Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - A de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - J G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
40
|
Plongbunjong V, Graidist P, Knudsen KEB, Wichienchot S. Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vijitra Plongbunjong
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Potchanapond Graidist
- Department of Biomedical Science; Faculty of Medicine; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Knud Erik Bach Knudsen
- Department of Animal Science; Faculty of Science and Technology; Aarhus University; 8830 Tjele Denmark
| | - Santad Wichienchot
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| |
Collapse
|
41
|
Garg S, Singh T, Reddi S, Malik R, Kapila S. Intervention of probiotic L. reuteri fermented milk as an adjuvant to combat protein energy malnourishment induced gut disturbances in albino mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Ferrer M, Raczkowska BA, Martínez-Martínez M, Barbas C, Rojo D. Phenotyping of gut microbiota: Focus on capillary electrophoresis. Electrophoresis 2017; 38:2275-2286. [DOI: 10.1002/elps.201700056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis; Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
| | - Beata Anna Raczkowska
- Department of Endocrinology; Diabetology and Internal Medicine, Medical University of Bialystok; Bialystok Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO); Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe; Madrid Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO); Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe; Madrid Spain
| |
Collapse
|
43
|
Plessas S, Nouska C, Karapetsas A, Kazakos S, Alexopoulos A, Mantzourani I, Chondrou P, Fournomiti M, Galanis A, Bezirtzoglou E. Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chem 2017; 226:102-108. [DOI: 10.1016/j.foodchem.2017.01.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 01/15/2023]
|
44
|
Shariaty Z, Mahmoodi Shan GR, Farajollahi M, Amerian M, Behnam Pour N. The effects of probiotic supplement on hemoglobin in chronic renal failure patients under hemodialysis: A randomized clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:74. [PMID: 28717371 PMCID: PMC5508504 DOI: 10.4103/jrms.jrms_614_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/10/2016] [Accepted: 03/11/2017] [Indexed: 12/20/2022]
Abstract
Background: Chronic inflammation is one of the causes of anemia in chronic renal failure patients under hemodialysis. Probiotics probably establish a balance between pro- and anti-inflammatory cytokines. The study was conducted to determine the effects of probiotic supplementation on hemoglobin (Hb) in hemodialysis patients. Materials and Methods: A parallel clinical trial was conducted in which patients were randomly allocated into two groups. The intervention group (n = 18) was given a 500 mg probiotic supplement (a capsule) every day whereas the control group (n = 18) received placebo (a capsule), both for 3 months. Hb levels and C-reactive protein (CRP) levels were measured for three periods. The data were analyzed in SPSS-16 using statistical tests including the t-test and repeated-measures ANOVA. Results: In the probiotic supplementation group, the mean Hb was 9.22 ± 1.04 mg/dl before the intervention and reached 10.85 ± 1.177 mg/dl afterward, while in the placebo group, the mean Hb level was 9.38 ± 0.97 mg/dl before the intervention and reached 10.03 ± 1.97 mg/dl afterward (P > 0.05). During the study, the placebo caused to increase of Hb temporary, but in longer term, the effect of probiotic was more manifested. Hb levels increased in both groups although the change was not statistically significant (P > 0.05). The findings showed no significant differences between the two groups in either the pre- or post-intervention CRP levels (P = 0.239). Conclusion: Probiotic supplementation decreased Hb fluctuations in hemodialysis patients but did not result in a significant increase in Hb levels. Similar studies are therefore recommended to be conducted with a prolonged duration of the study or an increased probiotic dose with larger sample size to complete the results of the present study.
Collapse
Affiliation(s)
- Zahra Shariaty
- Department of Nephrology, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Gholam Reza Mahmoodi Shan
- Nursing Research Center, Health Management and Social Development Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehran Farajollahi
- Department of Nephrology, 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Monireh Amerian
- Department of Nephrology, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naser Behnam Pour
- Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
45
|
Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A. Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients 2017; 9:555. [PMID: 28555037 PMCID: PMC5490534 DOI: 10.3390/nu9060555] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Probiotics and synbiotics are used to treat chronic diseases, principally due to their role in immune system modulation and the anti-inflammatory response. The present study reviewed the effects of probiotics and synbiotics on intestinal chronic diseases in in vitro, animal, and human studies, particularly in randomized clinical trials. The selected probiotics exhibit in vitro anti-inflammatory properties. Probiotic strains and cell-free supernatants reduced the expression of pro-inflammatory cytokines via action that is principally mediated by toll-like receptors. Probiotic administration improved the clinical symptoms, histological alterations, and mucus production in most of the evaluated animal studies, but some results suggest that caution should be taken when administering these agents in the relapse stages of IBD. In addition, no effects on chronic enteropathies were reported. Probiotic supplementation appears to be potentially well tolerated, effective, and safe in patients with IBD, in both CD and UC. Indeed, probiotics such as Bifidobacterium longum 536 improved the clinical symptoms in patients with mild to moderate active UC. Although it has been proposed that probiotics can provide benefits in certain conditions, the risks and benefits should be carefully assessed before initiating any therapy in patients with IBD. For this reason, further studies are required to understand the precise mechanism by which probiotics and synbiotics affect these diseases.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada 18071, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, Granada 18016, Spain.
- Instituto de Investigación Biosanitaria ibs., GRANADA, Complejo Hospitalario Universitario de Granada, Granada 18014, Spain.
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada 18071, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, Granada 18016, Spain.
- Instituto de Investigación Biosanitaria ibs., GRANADA, Complejo Hospitalario Universitario de Granada, Granada 18014, Spain.
| | - Laura Maria Vilchez-Padial
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, Granada 18016, Spain.
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada 18071, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Armilla, Granada 18016, Spain.
- Instituto de Investigación Biosanitaria ibs., GRANADA, Complejo Hospitalario Universitario de Granada, Granada 18014, Spain.
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
46
|
Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J, Geng Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 2017; 7:45176. [PMID: 28349964 PMCID: PMC5368635 DOI: 10.1038/srep45176] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Gut-derived bacterial lipopolysaccharide (LPS) and subsequent hepatic toll-like receptor 4 (TLR4) activation have been recognized to be involved in the onset of diet-induced nonalcoholic fatty liver disease (NAFLD), but little is known about the variation of LPS and TLR4 during the progression of NAFLD. Probiotics were able to inhibit proliferation of harmful bacteria and improve gastrointestinal barrier function. However, it's unclear whether LPS/TLR4 is involved in the protection effect of probiotics on NAFLD. In this study, we described characteristic of gut microbiota structure in the progression of NAFLD, and we also analyzed the relationship between gut microbiota and LPS/TLR4 in this process. Furthermore, we applied probiotics intervention to investigate the effect of probiotics on gut flora structure, intestinal integrity, serum LPS, liver TLR4 and liver pathology. Our results showed that serum LPS and liver TLR4 were highly increased during progression of NAFLD, with gut flora diversity and gut mircobiological colonization resistance (B/E) declining. Furthermore, probiotics could improve gut microbiota structure and liver pathology. Probiotics could also downregulate serum LPS and liver TLR4. Our results suggested that both gut flora alteration and endotoxemia may be involved in the progression of NAFLD. Probiotics may delay the progression of NAFLD via LPS/TLR4 signaling.
Collapse
Affiliation(s)
- Li Xue
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Juntao He
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ning Gao
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaokang Wu
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zeshi Liu
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiali Liu
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiru Xu
- Department of Immunology and Pathogenic Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Geng
- Department of Laboratory, The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
47
|
The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease. Parasit Vectors 2016; 9:648. [PMID: 27993173 PMCID: PMC5170900 DOI: 10.1186/s13071-016-1928-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/04/2016] [Indexed: 12/23/2022] Open
Abstract
Background Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. Methods We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores’ surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson’s trichrome. Results The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Conclusions Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic specific immune responses were elicited by oral administration of B.s-CotC-CsCP spores. The spores effectively promoted intestinal health by inducing secretion of acidic mucins, with no other side effects to the liver or intestine. Oral administration of spores expressing CsCP could provide effective protection against C. sinensis. This study may be a cornerstone for development of antiparasitic agents or vaccines against clonorchiasis based on B. subtilis spore expressing CsCP on the surface. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1928-0) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Del Carmen S, de Moreno de LeBlanc A, Levit R, Azevedo V, Langella P, Bermúdez-Humarán LG, LeBlanc JG. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol 2016; 42:122-129. [PMID: 27912148 DOI: 10.1016/j.intimp.2016.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
The association between inflammatory bowel diseases and colorectal cancer is well documented. The genetic modification of lactic acid bacteria as a tool to increase the anti-inflammatory potential of these microorganisms has also been demonstrated. Thus the aim of the present work was to evaluate the anti-cancer potential of different genetically modified lactic acid bacteria (GM-LAB) producing antioxidant enzymes (catalase or superoxide dismutase) or the anti-inflammatory cytokine IL-10 (protein or DNA delivery) using a chemical induced colon cancer murine model. Dimethilhydrazine was used to induce colorectal cancer in mice. The animals received GM-LAB producing anti-oxidant enzymes, IL-10 or a mixture of different GM-LAB. Intestinal damage, enzyme activities and cytokines were evaluated and compared to the results obtained from mice that received the wild type strains from which derived the GM-LAB. All the GM-LAB assayed showed beneficial effects against colon cancer even though they exerted different mechanisms of action. The importance to select LAB with innate beneficial properties as the progenitor strain was demonstrated with the GM-LAB producing anti-oxidant enzymes. In addition, the best effects for the mixtures GM-LAB that combine different anti-inflammatory mechanism. Results indicate that mixtures of selected LAB and GM-LAB could be used as an adjunct treatment to decrease the inflammatory harmful environment associated to colorectal cancer, especially for patients with chronic intestinal inflammation who have an increased risk to develop colorectal cancer.
Collapse
Affiliation(s)
- Silvina Del Carmen
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000ILC, Argentina
| | | | - Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000ILC, Argentina
| | - Vasco Azevedo
- Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350 Jouy-en-Josas, France; Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350 Jouy-en-Josas, France; Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán T4000ILC, Argentina.
| |
Collapse
|
49
|
Levit R, de Giori GS, de Moreno de LeBlanc A, LeBlanc JG. Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Benef Microbes 2016; 8:65-72. [PMID: 27873546 DOI: 10.3920/bm2016.0063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are idiopathic diseases of the gastrointestinal tract characterised by recurrent inflammation that require lifelong treatments. It has been shown that certain strains of lactic acid bacteria (LAB) can produce specific health-promoting compounds in foods or in the gastrointestinal tract that can in turn prevent and/or treat IBD. This study was designed to evaluate the possible therapeutic potential of soymilk fermented by the riboflavin-producing strain Lactobacillus plantarum CRL 2130 in a trinitrobenzene sulfonic induced colitis mouse model. Mice that received soymilk fermented by L. plantarum CRL 2130 showed a decrease in weight loss, lower damage scores in their large intestines, lower microbial translocation to liver and decreased cytokines levels in their intestinal fluids compared to animals that received unfermented soymilk or soymilk fermented by a non-riboflavin-producing L. plantarum strain. This is the first report that demonstrates that a riboflavin-producing LAB was able to prevent experimental colitis in a murine model.
Collapse
Affiliation(s)
- R Levit
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| | - G Savoy de Giori
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina.,2 Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Calle Batalla de Ayacucho 471, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - A de Moreno de LeBlanc
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| | - J G LeBlanc
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
50
|
Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics - Advances and challenges. Adv Drug Deliv Rev 2016; 105:44-54. [PMID: 27158095 PMCID: PMC5093770 DOI: 10.1016/j.addr.2016.04.032] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/21/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
Abstract
The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota.
Collapse
Affiliation(s)
- Mark Mimee
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA
| | - Robert J Citorik
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA
| | - Timothy K Lu
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA.
| |
Collapse
|