1
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Bader H, Yamin S, Alshahwan H, Farraj H, Maghnam J, Omar YA. Association between Metabolic-Dysfunction-Associated Steatotic Liver Disease and Hepatic Cancer: Current Concepts and Future Challenges. J Clin Med 2024; 13:3132. [PMID: 38892843 PMCID: PMC11172711 DOI: 10.3390/jcm13113132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: This study systematically reviewed the association between metabolic-dysfunction-associated steatotic liver disease (MASLD) and the development of hepatic cancer. Previous research has highlighted MASLD as a predisposing condition. Aim: To collect recent global data on the relationship between MASLD and hepatic cancer. Methods: A systematic review was conducted, which included an analysis of studies on the relationship between MASLD and the incidence of hepatic cancers, focusing on the role of fibrosis and MASLD severity as predictors of cancer risk. Following standard methodological frameworks for the assessment of longitudinal studies, the review gathered information on fibrosis scores, hepatocellular carcinoma (HCC) incidence, and other types of hepatic neoplasms. Results: A total of 522 studies were initially identified, of which 6 studies were appropriate for the review. They collectively revealed that the stage of fibrosis in MASLD is a significant independent predictor of mortality and liver-related events, with higher fibrosis stages correlating with greater risk. Longitudinal data showed that increases in FIB-4 scores were linked to a higher risk of developing HCC and cirrhosis. MASLD was also associated with an increased risk of non-hepatic cancers such as colorectal cancer in males and breast cancer in females. The severity of MASLD was found to be a modifiable risk factor for biliary tract cancer (BTC), with the risk further amplified by diabetes. Moreover, lifestyle factors and comorbidities, such as smoking and diabetes, were identified as modifiers of cancer risk in MASLD patients. Conclusions: The systematic review identified the association between MASLD and an elevated risk of hepatic cancer, establishing a clear link between the severity of liver fibrosis and the incidence of HCC and other hepatic neoplasms. This supports the need for screening for hepatic cancer in patients with MASLD, particularly in the presence of advanced fibrosis or other risk-modifying factors.
Collapse
Affiliation(s)
- Husam Bader
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.B.); (Y.A.O.)
| | - Saif Yamin
- School of Medicine, University of Jordan, Amman 11942, Jordan;
| | | | - Husam Farraj
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Joud Maghnam
- School of Medicine, Al-Balqa’ Applied University, Al-Salt 19117, Jordan;
| | - Yazan Abu Omar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.B.); (Y.A.O.)
| |
Collapse
|
3
|
Yang Y, Chen Y, Liu Z, Chang Z, Sun Z, Zhao L. Concomitant NAFLD Facilitates Liver Metastases and PD-1-Refractory by Recruiting MDSCs via CXCL5/CXCR2 in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2024; 18:101351. [PMID: 38724007 PMCID: PMC11227024 DOI: 10.1016/j.jcmgh.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND & AIMS Both nonalcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC) are prevalent worldwide. The effects of concomitant NAFLD on the risk of colorectal liver metastasis (CRLM) and its mechanisms have not been definitively elucidated. METHODS We observed the effect of concomitant NAFLD on CRLM in the mouse model and explored the underlying mechanisms of specific myeloid-derived suppressor cells (MDSCs) recruitment and then tested the therapeutic application based on the mechanisms. Finally we validated our findings in the clinical samples. RESULTS Here we prove that in different mouse models, NAFLD induces F4/80+ Kupffer cells to secret chemokine CXCL5 and then recruits CXCR2+ MDSCs to promote the growth of CRLM. CRLM with NAFLD background is refractory to the anti-PD-1 monoclonal antibody treatment, but when combined with Reparixin, an inhibitor of CXCR1/2, dual therapy cures the established CRLM in mice with NAFLD. Our clinical studies also indicate that fatty liver diseases increase the infiltration of CXCR2+ MDSCs, as well as the hazard of liver metastases in CRC patients. CONCLUSIONS Collectively, our findings highlight the significance of selective CXCR2+/CD11b+/Gr-1+ subset myeloid cells in favoring the development of CRLM with NAFLD background and identify a pharmaceutical medicine that is already available for the clinical trials and potential treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Yunsong Chen
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Zhaogang Liu
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Zhibin Chang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Zhicheng Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China.
| |
Collapse
|
4
|
Chen J, Chan TTH, Zhou J. Lipid metabolism in the immune niche of tumor-prone liver microenvironment. J Leukoc Biol 2024; 115:68-84. [PMID: 37474318 DOI: 10.1093/jleuko/qiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The liver is a common primary site not only for tumorigenesis, but also for cancer metastasis. Advanced cancer patients with liver metastases also show reduced response rates and survival benefits when treated with immune checkpoint inhibitors. Accumulating evidence has highlighted the importance of the liver immune microenvironment in determining tumorigenesis, metastasis-organotropism, and immunotherapy resistance. Various immune cells such as T cells, natural killer and natural killer T cells, macrophages and dendritic cells, and stromal cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes are implicated in contributing to the immune niche of tumor-prone liver microenvironment. In parallel, as the major organ for lipid metabolism, the increased abundance of lipids and their metabolites is linked to processes crucial for nonalcoholic fatty liver disease and related liver cancer development. Furthermore, the proliferation, differentiation, and functions of hepatic immune and stromal cells are also reported to be regulated by lipid metabolism. Therefore, targeting lipid metabolism may hold great potential to reprogram the immunosuppressive liver microenvironment and synergistically enhance the immunotherapy efficacy in the circumstance of liver metastasis. In this review, we describe how the hepatic microenvironment adapts to the lipid metabolic alterations in pathologic conditions like nonalcoholic fatty liver disease. We also illustrate how these immunometabolic alterations promote the development of liver cancers and immunotherapy resistance. Finally, we discuss the current therapeutic options and hypothetic combination immunotherapies for the treatment of advanced liver cancers.
Collapse
Affiliation(s)
- Jintian Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Thomas T H Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
5
|
Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, Gangi A, Noureddin M, Falk BA, Kim S, Fan W, Tighiouart M, You S, Lewis MS, Pandol SJ, Di Vizio D, Merchant A, Posadas EM, Bhowmick NA, Lu SC, Seki E. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab 2023; 35:1209-1226.e13. [PMID: 37172577 PMCID: PMC10524732 DOI: 10.1016/j.cmet.2023.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Liver metastasis is a major cause of death in patients with colorectal cancer (CRC). Fatty liver promotes liver metastasis, but the underlying mechanism remains unclear. We demonstrated that hepatocyte-derived extracellular vesicles (EVs) in fatty liver enhanced the progression of CRC liver metastasis by promoting oncogenic Yes-associated protein (YAP) signaling and an immunosuppressive microenvironment. Fatty liver upregulated Rab27a expression, which facilitated EV production from hepatocytes. In the liver, these EVs transferred YAP signaling-regulating microRNAs to cancer cells to augment YAP activity by suppressing LATS2. Increased YAP activity in CRC liver metastasis with fatty liver promoted cancer cell growth and an immunosuppressive microenvironment by M2 macrophage infiltration through CYR61 production. Patients with CRC liver metastasis and fatty liver had elevated nuclear YAP expression, CYR61 expression, and M2 macrophage infiltration. Our data indicate that fatty liver-induced EV-microRNAs, YAP signaling, and an immunosuppressive microenvironment promote the growth of CRC liver metastasis.
Collapse
Affiliation(s)
- Zhijun Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - So Yeon Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Tu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China
| | - Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Xu
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yoon Mee Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lien Reolizo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandrine Billet
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexandra Gangi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Houston Methodist Hospital, Houston Research Institute, Houston, TX 77030, USA
| | - Ben A Falk
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mourad Tighiouart
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael S Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Stephen J Pandol
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M Posadas
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Neil A Bhowmick
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
6
|
Fasoula NA, Karlas A, Prokopchuk O, Katsouli N, Bariotakis M, Liapis E, Goetz A, Kallmayer M, Reber J, Novotny A, Friess H, Ringelhan M, Schmid R, Eckstein HH, Hofmann S, Ntziachristos V. Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids in patients with hepatic steatosis. PHOTOACOUSTICS 2023; 29:100454. [PMID: 36794122 PMCID: PMC9922962 DOI: 10.1016/j.pacs.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angelos Karlas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Olga Prokopchuk
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Nikoletta Katsouli
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michail Bariotakis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Goetz
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alexander Novotny
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Helmut Friess
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Marc Ringelhan
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Susanna Hofmann
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Internal Medicine IV, Klinikum der Ludwig Maximilian University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
7
|
Younes M, Zhang L, Fekry B, Eckel-Mahan K. Expression of p-STAT3 and c-Myc correlates with P2-HNF4α expression in nonalcoholic fatty liver disease (NAFLD). Oncotarget 2022; 13:1308-1313. [PMID: 36473131 PMCID: PMC9726203 DOI: 10.18632/oncotarget.28324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
We studied the expression of two hepatocyte nuclear factor 4 alpha (HNF4α) isoforms, p-STAT3. and c-Myc in 49 consecutive liver biopsies with nonalcoholic fatty liver disease (NAFLD) using immunohistochemistry. All 49 biopsies (100%) were positive for nuclear expression of P1-HNF4α. Twenty-eight (57%) cases were positive for P2-HNF4α, 6 (12%) were positive for p-STAT3 and 5 (10%) were positive for c-Myc. All 6 (100%) p-STAT3-positive cases were also positive for P2-HNF4α (p = 0.03). p-STAT3-positive cases were more likely to be positive for c-Myc (67% vs. 2%, p = 0.0003). Four cases were positive for P2-HNF4α, p-STAT3 and c-Myc. p-STAT3 expression was associated with hypertension (p = 0.037). All c-Myc positive biopsies were from patients with obesity, diabetes and hypertension. Only c-Myc expression was associated with advanced fibrosis; three (60%) of the c-Myc positive cases were associated with advanced fibrosis in contrast to 7 (10%) of the 44 c-Myc negative cases (p = 0.011). Based on these results, we hypothesize with the following sequence of events with progression of NAFLD: P2-HNF4α expression is followed by expression of p-STAT3 which in turn is followed by the expression of c-Myc. Additional larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Lin Zhang
- Departments of Pathology and Laboratory Medicine, McGovern Medical School at the University of Texas Health Science Center (UTHealth), Houston, TX 77225, USA
| | - Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UTHealth), Houston, TX 77225, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center (UTHealth), Houston, TX 77225, USA
| |
Collapse
|
8
|
Incidence of Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-analysis, and Meta-regression. Clin Gastroenterol Hepatol 2022; 20:283-292.e10. [PMID: 33965578 DOI: 10.1016/j.cgh.2021.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) may be a risk factor for hepatocellular carcinoma (HCC), but the extent of this association still needs to be addressed. Pooled incidence rates of HCC across the disease spectrum of NAFLD have never been estimated by meta-analysis. METHODS In this systematic review, we searched Web of Science, Embase, PubMed, and the Cochrane Library from January 1, 1950 through July 30, 2020. We included studies reporting on HCC incidence in patients with NAFLD. The main outcomes were pooled HCC incidences in patients with NAFLD at distinct severity stages. Summary estimates were calculated with random-effects models. Sensitivity analyses and meta-regression analyses were carried out to address heterogeneity. RESULTS We included 18 studies involving 470,404 patients. In patients with NAFLD at a stage earlier than cirrhosis, the incidence rate of HCC was 0.03 per 100 person-years (95% confidence interval [CI], 0.01-0.07; I2 = 98%). In patients with cirrhosis, the incidence rate was 3.78 per 100 person-years (95% CI, 2.47-5.78; I2 = 93%). Patients with cirrhosis undergoing regular screening for HCC had an incidence rate of 4.62 per 100 person-years (95% CI, 2.77-7.72; I2 = 77%). CONCLUSIONS Patients with NAFLD-related cirrhosis have a risk of developing HCC similar to that reported for patients with cirrhosis from other etiologies. Evidence documenting the risk in patients with nonalcoholic steatohepatitis or simple steatosis is limited, but the incidence of HCC in these populations may lie below thresholds used to recommend a screening. Well-designed prospective studies in these subpopulations are needed. The protocol for this systematic review is registered in the Prospero database (registration number CRD42018092861).
Collapse
|
9
|
Yan J, Zhao Z, Xia M, Chen S, Wan X, He A, Daniel Sheng G, Wang X, Qian Q, Wang H. Induction of lipid metabolism dysfunction, oxidative stress and inflammation response by tris(1-chloro-2-propyl)phosphate in larval/adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 160:107081. [PMID: 35021149 DOI: 10.1016/j.envint.2022.107081] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As an important organophosphate flame retardant, tris(1-chloro-2-propyl)phosphate (TCPP) is ubiquitous in the environment leading to inevitable human exposure. However, there is a paucity of information regarding its acute/chronic effects on obesity, lipid homeostasis, and hepatocellular carcinoma, especially regarding the underlying molecular mechanisms in humans. Herein, we investigated the effects of TCPP exposure (5-25 mg/L) on lipid homeostasis in larval and adult zebrafish (Danio rerio). TCPP exposure caused remarkable lipid-metabolism dysfunction, which was reflected in obesity and excessive lipid accumulation in zebrafish liver. Mechanistically, TCPP induced the over-expression of adipogenesis genes and suppressed the expression of fatty-acid β-oxidation genes. Consequently, excess lipid synthesis and deficient expenditure triggered oxidative damage and an inflammation response by disrupting the antioxidant system and over-expressing proinflammatory cytokine. Based on high-throughput transcriptome sequencing, we found that TCPP exposure led to enrichment of several pathways involved in lipid metabolism and inflammation, as well as several genes related to pathways of cancer. Notably, increasing expressions of Ki-67 and 53BP1 proteins, which are reliable biomarkers for recognition and risk prediction of cellular proliferation in cancer cells, were observed in liver tissues of adult zebrafish. These results imply that chronic TCPP exposure triggers a potential risk of hepatocellular carcinogenesis (HCC) progression. Collectively, these findings offer new insights into our mechanistic understanding for the health effects of organophosphorus flame retardants on humans.
Collapse
Affiliation(s)
- Jin Yan
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Zijia Zhao
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Min Xia
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Shuya Chen
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Xiancheng Wan
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Anfei He
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Guangyao Daniel Sheng
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Xuedong Wang
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Qiuhui Qian
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Huili Wang
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China.
| |
Collapse
|
10
|
Kim J, Randhawa H, Sands D, Lambe S, Puglia M, Serrano PE, Pinthus JH. Muscle-Invasive Bladder Cancer in Patients with Liver Cirrhosis: A Review of Pertinent Considerations. Bladder Cancer 2021; 7:261-278. [PMID: 38993608 PMCID: PMC11181825 DOI: 10.3233/blc-211536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022]
Abstract
The incidence of liver cirrhosis is increasing worldwide. Patients with cirrhosis are generally at a higher risk of harbouring hepatic and non-hepatic malignancies, including bladder cancer, likely due to the presence of related risk factors such as smoking. Cirrhosis can complicate both the operative and non-surgical management of bladder cancer. For example, cirrhotic patients undergoing abdominal surgery generally demonstrate worse postoperative outcomes, and chemotherapy in patients with cirrhosis often requires dose reduction due to its direct hepatotoxic effects and reduced hepatic clearance. Multiple other considerations in the peri-operative management for cirrhosis patients with muscle-invasive bladder cancer must be taken into account to optimize outcomes in these patients. Unfortunately, the current literature specifically related to the treatment of cirrhotic bladder cancer patients remains sparse. We aim to review the literature on treatment considerations for this patient population with respect to perioperative, surgical, and adjuvant management.
Collapse
Affiliation(s)
- John Kim
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - David Sands
- Division of Urology, McMaster University, Hamilton, ON, Canada
| | - Shahid Lambe
- Division of Urology, McMaster University, Hamilton, ON, Canada
- McMaster Institute of Urology, St. Joseph’s Hospital, Hamilton, ON, Canada
| | - Marco Puglia
- Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada
| | | | - Jehonathan H. Pinthus
- Division of Urology, McMaster University, Hamilton, ON, Canada
- Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada
| |
Collapse
|
11
|
Helal M, Yan C, Gong Z. Stimulation of hepatocarcinogenesis by activated cholangiocytes via Il17a/f1 pathway in kras transgenic zebrafish model. Sci Rep 2021; 11:1372. [PMID: 33446803 PMCID: PMC7809472 DOI: 10.1038/s41598-020-80621-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
It has been well known that tumor progression is dependent on secreted factors not only from tumor cells but also from other surrounding non-tumor cells. In the current study, we investigated the role of cholangiocytes during hepatocarcinogenesis following induction of oncogenic krasV12 expression in hepatocytes using an inducible transgenic zebrafish model. Upon induction of carcinogenesis in hepatocytes, a progressive cell proliferation in cholangiocytes was observed. The proliferative response in cholangiocytes was induced by enhanced lipogenesis and bile acids secretion from hepatocytes through activation of Sphingosine 1 phosphate receptor 2 (S1pr2), a known cholangiocyte receptor involving in cholangiocyte proliferation. Enhancement and inhibition of S1pr2 could accelerate or inhibit cholangiocyte proliferation and hepatocarcinogenesis respectively. Gene expression analysis of hepatocytes and cholangiocytes showed that cholangiocytes stimulated carcinogenesis in hepatocytes via an inflammatory cytokine, Il17a/f1, which activated its receptor (Il17ra1a) on hepatocytes and enhanced hepatocarcinogenesis via an ERK dependent pathway. Thus, the enhancing effect of cholangiocytes on hepatocarcinogenesis is likely via an inflammatory loop.
Collapse
Affiliation(s)
- Mohamed Helal
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.419615.e0000 0004 0404 7762Marine Pollution Lab, Marine Environment Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Chuan Yan
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Abdullahi A, Barayan D, Vinaik R, Diao L, Yu N, Jeschke MG. Activation of ER stress signalling increases mortality after a major trauma. J Cell Mol Med 2020; 24:9764-9773. [PMID: 32810382 PMCID: PMC7520325 DOI: 10.1111/jcmm.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) adapts to stress by activating a signalling cascade known as the ER stress response. While ER stress signalling is a central component of the cellular defence against environmental insult, persistent activation is thought to contribute to the progression of various metabolic complications via loss of protein function and cell death. Despite its importance however, whether and how ER stress impacts morbidity and mortality in conditions of hypermetabolism remain unclear. In this study, we discovered that chronic ER stress response plays a role in mediating adverse outcomes that occur after major trauma. Using a murine model of thermal injury, we show that induction of ER stress with Tunicamycin not only increased mortality but also resulted in hepatic damage and hepatic steatosis. Importantly, post‐burn treatment with chaperone ER stress inhibitors attenuated hepatic ER stress and improved organ function following injury. Our study identifies ER stress as a potential hub of the signalling network affecting multiple aspects of metabolism after major trauma and as a novel potential molecular target to improve the clinical outcomes of severely burned patients.
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Dalia Barayan
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Roohi Vinaik
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Li Diao
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nancy Yu
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada.,Department of Surgery, Division of Plastic Surgery and Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Arteel GE, Naba A. The liver matrisome - looking beyond collagens. JHEP Rep 2020; 2:100115. [PMID: 32637906 PMCID: PMC7330160 DOI: 10.1016/j.jhepr.2020.100115] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a diverse microenvironment that maintains bidirectional communication with surrounding cells to regulate cell and tissue homeostasis. The classical definition of the ECM has more recently been extended to include non-fibrillar proteins that either interact or are structurally affiliated with the ECM, termed the 'matrisome.' In addition to providing the structure and architectural support for cells and tissue, the matrisome serves as a reservoir for growth factors and cytokines, as well as a signaling hub via which cells can communicate with their environment and vice-versa. The matrisome is a master regulator of tissue homeostasis and organ function, which can dynamically and appropriately respond to any stress or injury. Failure to properly regulate these responses can lead to changes in the matrisome that are maladaptive. Hepatic fibrosis is a canonical example of ECM dyshomeostasis, leading to accumulation of predominantly collagenous ECM; indeed, hepatic fibrosis is considered almost synonymous with collagen accumulation. However, the qualitative and quantitative alterations of the hepatic matrisome during fibrosis are much more diverse than simple accumulation of collagens and occur long before fibrosis is histologically detected. A deeper understanding of the hepatic matrisome and its response to injury could yield new mechanistic insights into disease progression and regression, as well as potentially identify new biomarkers for both. In this review, we discuss the role of the ECM in liver diseases and look at new "omic" approaches to study this compartment.
Collapse
Key Words
- AUROC, area under the receiver operating characteristic curve
- CCl4, carbon tetrachloride
- ECM
- ECM, extracellular matrix
- Extracellular matrix
- Fibrosis
- HCC, hepatocellular carcinoma
- Liver disease
- MMP, matrix metalloproteinase
- NAFLD, non-alcoholic fatty liver disease
- NPV, negative predictive value
- POSTN, periostin
- PPV, positive predictive values
- Proteomics
- Regeneration
- TGFβ, transforming growth factor beta
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
14
|
Nithyananthan S, Sushmaa D, Myrthong I, Valluru L, Guha S, Hassan Mir I, Behera J, Thirunavukkarasu C. Curcuma longa and Trigonella foenum graecum-enriched nutrient mixture from germinated Macrotyloma uniflorum and Vigna radiate ameliorate nonalcoholic fatty liver diseases in rats. J Food Biochem 2020; 44:e13159. [PMID: 32017151 DOI: 10.1111/jfbc.13159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
The prevalence of nonalcoholic fatty liver is increasing due to modern lifestyle. Germinated and dehulled Macrotyloma uniflorum and Vigna radiate were shown to have enhanced nutrients. Curcuma longa and Trigonella foenum graecum were proven hepatoprotective.The supplementation of the nutrient herbal mixture to the MCD diet-induced steatosis shows reduced hepatic fat accumulation and lipid profile, and liver injury markers in serum also reserved in normal. Increased serum albumin in the treatment group indicates that the liver function is enhanced than that of steatosis. The supplementation of the herbal mixture has preserved the hepatic antioxidant. Zymographic analysis of matrix metalloproteinase, western blot determination of α-SMA, and histological evolution (H&E, Sirius red) depicted reduced fibrosis and reveled management of hepatic stellate cells in quiescent form. The present study concludes that the herbal mixture has reduced hepatocyte fat accumulation in steatotic animals, and curtailed the oxidative stress, further it prevents the progression of steatohepatitis. PRACTICAL APPLICATIONS: Fatty liver diseases can be treated by modulating the diet composition such as consuming food rich in the nutrient herbal mixture. In this study, the nutrient mixture was made with dynamic food processing techniques such as germination, dehulling, and milling to augment the nutritional contents. Besides, Macrotyloma uniflorum, Vigna radiate, Curcuma longa, and Trigonella foenum graecum were used to improve the medicinal value and antioxidant. This formulation could target the various stages of NAFLD. This study revealed that the nutrient herbal mixture reduces the steatosis of the liver and curtailed the progression of steatohepatitis from hepatic steatosis. Since the edible foodstuff was used to make the nutrient mixture, it has excellent clinical application.
Collapse
Affiliation(s)
| | - Dangudubiyyam Sushmaa
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ibansiewdor Myrthong
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | - Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Jajnasenee Behera
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
15
|
Lv Y, Patel N, Zhang HJ. The progress of non-alcoholic fatty liver disease as the risk of liver metastasis in colorectal cancer. Expert Rev Gastroenterol Hepatol 2019; 13:1169-1180. [PMID: 31774328 DOI: 10.1080/17474124.2019.1697231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The liver is the most common metastatic site of colorectal cancer (CRC), and the long-term survival rate of CRC patients who cannot resect liver metastatic lesions radically is extremely low. Early identification of risk factors for liver metastasis from CRC may be an effective strategy to reduce the incidence of liver metastasis. The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing in parallel with an increasing prevalence of obesity and metabolic syndrome (MS), which has become one of the main causes of chronic liver disease worldwide.Areas covered: An overview of the related research progress of the association between NAFLD and colorectal liver metastasis (CRLM).Expert opinion: Certain research proves that there is a close relationship between NAFLD and CRC, and the presence of NAFLD can promote the formation and development of CRC. Although the effect of liver diseases on the incidence of liver metastasis in CRC has been noted in recent years, the results are inconsistent and haven't reached a unified conclusion. Therefore, the association between liver metastasis and NAFLD remains the main focal point in the evolution of CRC.
Collapse
Affiliation(s)
- Yan Lv
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Nishant Patel
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China.,Precision Medicine Center, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
16
|
Ohashi K, Wang Z, Yang YM, Billet S, Tu W, Pimienta M, Cassel SL, Pandol SJ, Lu SC, Sutterwala FS, Bhowmick N, Seki E. NOD-like receptor C4 Inflammasome Regulates the Growth of Colon Cancer Liver Metastasis in NAFLD. Hepatology 2019; 70:1582-1599. [PMID: 31044438 PMCID: PMC6819206 DOI: 10.1002/hep.30693] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) enhances the growth and recurrence of colorectal cancer (CRC) liver metastasis. With the rising prevalence of NAFLD, a better understanding of the molecular mechanism underlying NAFLD-associated liver metastasis is crucial. Tumor-associated macrophages (TAMs) constitute a large portion of the tumor microenvironment that promotes tumor growth. NOD-like receptor C4 (NLRC4), a component of an inflammasome complex, plays a role in macrophage activation and interleukin (IL)-1β processing. We aimed to investigate whether NLRC4-mediated TAM polarization contributes to metastatic liver tumor growth in NAFLD. Wild-type and NLRC4-/- mice were fed low-fat or high-fat diet for 6 weeks followed by splenic injection of mouse CRC MC38 cells. The tumors were analyzed 2 weeks after CRC cell injection. High-fat diet-induced NAFLD significantly increased the number and size of CRC liver metastasis. TAMs and CD206-expressing M2 macrophages accumulated markedly in tumors in the presence of NAFLD. NAFLD up-regulated the expression of IL-1β, NLRC4, and M2 markers in tumors. In NAFLD, but not normal livers, deletion of NLRC4 decreased liver tumor growth accompanied by decreased M2 TAMs and IL-1β expression in tumors. Wild-type mice showed increased vascularity and vascular endothelial growth factor (VEGF) expression in tumors with NAFLD, but these were reduced in NLRC4-/- mice. When IL-1 signaling was blocked by recombinant IL-1 receptor antagonist, liver tumor formation and M2-type macrophages were reduced, suggesting that IL-1 signaling contributes to M2 polarization and tumor growth in NAFLD. Finally, we found that TAMs, but not liver macrophages, produced more IL-1β and VEGF following palmitate challenge. Conclusion: In NAFLD, NLRC4 contributes to M2 polarization, IL-1β, and VEGF production in TAMs, which promote metastatic liver tumor growth.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Zhijun Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yoon Mee Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Wei Tu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Michael Pimienta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Suzanne L. Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California 90048, USA
| | - Shelly C. Lu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California 90048, USA
| | - Fayyaz S. Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Neil Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California 90048, USA
| |
Collapse
|
17
|
Liu Y, Li H, Ye N, Luo CJ, Hu YY, Wu H, Gong JP. Non-Cirrhotic Liver is Associated with Poor Prognosis of Hepatocellular Carcinoma: A Literature Review. Med Sci Monit 2019; 25:6615-6623. [PMID: 31479436 PMCID: PMC6752105 DOI: 10.12659/msm.915722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
Primary hepatocellular carcinoma (HCC) is the fifth most frequently reported malignancy, and it is also the second most common cause of cancer-related deaths worldwide. Although most HCC cases have been reported to develop from cirrhosis, accumulating data suggest that HCC is also closely related to non-cirrhotic chronic liver disease. Traditionally, HCC was thought to develop mostly from cirrhosis; however, an increasing number of reports have found that HCC can develop directly from inflammation without cirrhosis. The incidence of HCC in non-cirrhotic liver (HCC-NCL) is high, especially in developed countries. Studies have found that the most common cause of HCC-NCL is neglected fatty liver disease. This type of HCC has unique clinical characteristics and is closely related to metabolic disorders. Unfortunately, the prevention of HCC-NCL has not received enough attention worldwide, and there is also a lack of specific screening methods and clinical guidelines. This article mainly reviews the etiology, incidence, clinical characteristics, and screening markers of HCC-NCL to improve the understanding and prevention of this disease.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Nan Ye
- Department of Hepatobiliary Surgery, Dongyang People’s Hospital, Jinhua, Zhejiang, P.R. China
| | - Cheng-Jun Luo
- Department of Gastroenterology, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Ye-Yu Hu
- Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Hao Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jian-Ping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
18
|
Abstract
Hepatocellular carcinoma (HCC) is associated with chronic inflammation and fibrosis arising from different etiologies, including hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases. The inflammatory cytokines tumor necrosis factor-α and interleukin-6 and their downstream targets nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 drive inflammation-associated HCC. Further, while adaptive immunity promotes immune surveillance to eradicate early HCC, adaptive immune cells, such as CD8+ T cells, Th17 cells, and B cells, can also stimulate HCC development. Thus, the role of the hepatic immune system in HCC development is a highly complex topic. This review highlights the role of cytokine signals, NF-κB, JNK, innate and adaptive immunity, and hepatic stellate cells in HCC and discusses whether these pathways could be therapeutic targets. The authors will also discuss cholangiocarcinoma and liver metastasis because biliary inflammation and tumor-associated stroma are essential for cholangiocarcinoma development and because primary tumor-derived inflammatory mediators promote the formation of a "premetastasis niche" in the liver.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - So Yeon Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
19
|
Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 2018; 562:69-75. [PMID: 30209397 DOI: 10.1038/s41586-018-0519-y] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Abstract
Primary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and responses to therapy. However, the regulatory molecules and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here we show that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumorigenesis. Whereas a necroptosis-associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes containing identical oncogenic drivers give rise to HCC if they are surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of mouse HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage-commitment factors, a function that is conserved in humans. Together, our results provide insight into lineage commitment in liver tumorigenesis, and explain molecularly why common liver-damaging risk factors can lead to either HCC or ICC.
Collapse
|
20
|
George ES, Forsyth A, Itsiopoulos C, Nicoll AJ, Ryan M, Sood S, Roberts S, Tierney AC. Practical Dietary Recommendations for the Prevention and Management of Nonalcoholic Fatty Liver Disease in Adults. Adv Nutr 2018; 9:30-40. [PMID: 29438460 PMCID: PMC6333937 DOI: 10.1093/advances/nmx007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. In the absence of effective pharmacotherapies, clinical guidelines focus primarily on weight loss to treat this condition. Established consensus, evidence-based, and clinical dietary recommendations for NAFLD are currently lacking. The aim of this paper is to provide evidence-based practical dietary recommendations for the prevention and management of NAFLD in adults. A literature review focusing on established principles for the development of clinical practice recommendations was employed using the following criteria: based on substantial evidence, ensures risk minimization, is flexible for an individual patient approach, and is open to further modification as evidence emerges. The Practice-based Evidence in Nutrition classification system was used to grade these principles. Five key dietary recommendations were developed: 1) follow traditional dietary patterns, such as the Mediterranean diet; 2) limit excess fructose consumption and avoid processed foods and beverages with added fructose; 3) PUFAs, especially long-chain omega-3 rich foods and MUFAs, should replace SFAs in the diet; 4) replace processed food, fast food, commercial bakery goods, and sweets with unprocessed foods high in fiber, including whole grains, vegetables, fruits, legumes, nuts, and seeds; and 5) avoid excess alcohol consumption. Improving diet quality may reduce the incidence and progression of NAFLD and associated risk factors. Many of the benefits are likely to result from the collective effect of dietary patterns. High-quality research-in particular, randomized clinical trials assessing dietary interventions that focus on liver-specific endpoints-are needed as a priority.
Collapse
Affiliation(s)
- Elena S George
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Australia; Departments of Nutrition and Gastroenterology, Alfred Health, Prahran, Australia
- Department of Nutrition and Gastroenterology, Alfred Health, Prahran, Australia
| | - Adrienne Forsyth
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Australia; Departments of Nutrition and Gastroenterology, Alfred Health, Prahran, Australia
| | - Catherine Itsiopoulos
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Australia; Departments of Nutrition and Gastroenterology, Alfred Health, Prahran, Australia
| | - Amanda J Nicoll
- Department of Gastroenterology, Eastern Health, Box Hill, Australia
| | - Marno Ryan
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy, Australia
| | - Siddharth Sood
- Department of Gastroenterology, Melbourne Health, Parkville, Australia
| | - Stuart K Roberts
- Department of Gastroenterology, Alfred Health, Prahran, Australia
| | - Audrey C Tierney
- Department of Rehabilitation, Nutrition and Sport, La Trobe University, Bundoora, Australia; Departments of Nutrition and Gastroenterology, Alfred Health, Prahran, Australia
- Department of Nutrition and Gastroenterology, Alfred Health, Prahran, Australia
| |
Collapse
|
21
|
Despeyroux A, Duret C, Gondeau C, Perez-Gracia E, Chuttoo L, de Boussac H, Briolotti P, Bony C, Noël D, Jorgensen C, Larrey D, Daujat-Chavanieu M, Herrero A. Mesenchymal stem cells seeded on a human amniotic membrane improve liver regeneration and mouse survival after extended hepatectomy. J Tissue Eng Regen Med 2017; 12:1062-1073. [PMID: 29106037 DOI: 10.1002/term.2607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Liver failure remains the leading cause of post-operative mortality after hepatectomy. This study investigated the effect of treatment with allogenic mesenchymal stem cells (MSCs) on survival and liver regeneration 48 hr and 7 days after 80% hepatectomy in C57Bl/6 mice. To optimize their biodistribution, MSCs were grown on acellular human amniotic membranes (HAM) and applied as a patch on the remnant liver. This approach was compared with MSC infusion and HAM patch alone. Hepatectomized mice without any treatment were used as control group. Survival rate was calculated and biological and histopathological parameters were analysed to monitor liver function and regeneration. MSCs grown on HAM retained their ability to proliferate, to differentiate into osteoblasts and adipocytes and to respond to pro-inflammatory stimuli. Extended hepatectomy (80%) led to liver failure that resulted in death within 72 hr in 76% of mice. MSC infusion showed an early but transitory positive effect on survival. MSC/HAM patches stimulated regeneration and significantly improved survival rate (54% vs. 24% in the control group at 7 days). They also decreased the severity of hepatectomy-induced steatosis, suggesting a modulation of lipid metabolism in hepatocytes. MSCs were still present on HAM at Days 2 and 7 posthepatectomy. In conclusion, engineered tissue constructs that combine MSCs and HAM improve survival and liver regeneration after 80% hepatectomy in mice. These encouraging results pave the way to potential clinical application.
Collapse
Affiliation(s)
- Aure Despeyroux
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France
| | - Cédric Duret
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Claire Gondeau
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Department of Hepato-gastroenterology A, Saint Eloi Hospital, CHU, Montpellier, France
| | - Esther Perez-Gracia
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Lisa Chuttoo
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Hugues de Boussac
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Philippe Briolotti
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Claire Bony
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Danièle Noël
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Clinical Unit for Osteoarticular Diseases and Department for Biotherapy, Lapeyronie Hospital, Montpellier, France
| | - Christian Jorgensen
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Clinical Unit for Osteoarticular Diseases and Department for Biotherapy, Lapeyronie Hospital, Montpellier, France
| | - Dominique Larrey
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Department of Hepato-gastroenterology A, Saint Eloi Hospital, CHU, Montpellier, France
| | - Martine Daujat-Chavanieu
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Astrid Herrero
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Rau HH, Hsu CY, Lin YA, Atique S, Fuad A, Wei LM, Hsu MH. Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 125:58-65. [PMID: 26701199 DOI: 10.1016/j.cmpb.2015.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Diabetes mellitus is associated with an increased risk of liver cancer, and these two diseases are among the most common and important causes of morbidity and mortality in Taiwan. PURPOSE To use data mining techniques to develop a model for predicting the development of liver cancer within 6 years of diagnosis with type II diabetes. METHODS Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan, which covers approximately 22 million people. In this study, we selected patients who were newly diagnosed with type II diabetes during the 2000-2003 periods, with no prior cancer diagnosis. We then used encrypted personal ID to perform data linkage with the cancer registry database to identify whether these patients were diagnosed with liver cancer. Finally, we identified 2060 cases and assigned them to a case group (patients diagnosed with liver cancer after diabetes) and a control group (patients with diabetes but no liver cancer). The risk factors were identified from the literature review and physicians' suggestion, then, chi-square test was conducted on each independent variable (or potential risk factor) for a comparison between patients with liver cancer and those without, those found to be significant were selected as the factors. We subsequently performed data training and testing to construct artificial neural network (ANN) and logistic regression (LR) prediction models. The dataset was randomly divided into 2 groups: a training group and a test group. The training group consisted of 1442 cases (70% of the entire dataset), and the prediction model was developed on the basis of the training group. The remaining 30% (618 cases) were assigned to the test group for model validation. RESULTS The following 10 variables were used to develop the ANN and LR models: sex, age, alcoholic cirrhosis, nonalcoholic cirrhosis, alcoholic hepatitis, viral hepatitis, other types of chronic hepatitis, alcoholic fatty liver disease, other types of fatty liver disease, and hyperlipidemia. The performance of the ANN was superior to that of LR, according to the sensitivity (0.757), specificity (0.755), and the area under the receiver operating characteristic curve (0.873). After developing the optimal prediction model, we base on this model to construct a web-based application system for liver cancer prediction, which can provide support to physicians during consults with diabetes patients. CONCLUSION In the original dataset (n=2060), 33% of diabetes patients were diagnosed with liver cancer (n=515). After using 70% of the original data to training the model and other 30% for testing, the sensitivity and specificity of our model were 0.757 and 0.755, respectively; this means that 75.7% of diabetes patients can be predicted correctly to receive a future liver cancer diagnosis, and 75.5% can be predicted correctly to not be diagnosed with liver cancer. These results reveal that this model can be used as effective predictors of liver cancer for diabetes patients, after discussion with physicians; they also agreed that model can assist physicians to advise potential liver cancer patients and also helpful to decrease the future cost incurred upon cancer treatment.
Collapse
Affiliation(s)
- Hsiao-Hsien Rau
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Science, Taiwan; Master Program in Global Health and Development, Taipei Medical University, Taipei, Taiwan.
| | - Yu-An Lin
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan
| | - Suleman Atique
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan
| | - Anis Fuad
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan
| | - Li-Ming Wei
- Department of Information Management, National Taipei University of Nursing and Health Science, Taiwan
| | - Ming-Huei Hsu
- Department of Information Management, Ministry of Health and Welfare and Taipei Medical University, Taiwan.
| |
Collapse
|